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Abstract. The decomposition of linear multi-degree-of-freedom systems with
damping, circulatory, and potential forces is considered through a real linear
coordinate transformation generated by an orthogonal matrix. Criteria are de-
rived that establish the conditions under which such a transformation exists,
allowing these systems to be decomposed into independent, uncoupled subsys-
tems, each with a maximum dimension of two. These criteria are expressed
in terms of the properties of systems’ coefficient matrices. Several numerical
examples are provided to demonstrate the analytical results.

1. Introduction

An interesting and long-standing topic in the dynamics of linear multi-degree-
of-freedom (MDOF) systems is the investigation of the possibility of decomposing
them into a series of mutually independent low-dimensional subsystems. It is well
known that the normal modes of a linear symmetric undamped MDOF dynamical
system constitute a modal matrix, which defines a real congruence transformation
(real change of coordinates) that diagonalizes (completely uncouples) the system.
Rayleigh [1] extended the use of normal mode analysis to a damped MDOF system,
in which the damping matrix is a linear combination of its inertia and potential
(stiffness) matrices. Caughey and O’Kelly showed in 1965 that such a symmetric
damped system can be uncoupled by modal analysis if and only if its damping and
potential matrices commute with respect to the inverse of its inertia matrix [2].
In this case, the system is said to be classically damped, and upon uncoupling,
such a system can be treated as a series of independent single-degree-of-freedom
subsystems. Rayleigh damping (proportional damping) is just a special case of
classical damping. Today, classically damped systems are frequently assumed in
the design and modeling of linear MDOF systems.
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The presence of gyroscopic and/or circulatory forces in an MDOF system makes
it asymmetric and the system cannot be completely uncoupled through the use of
a real congruence. The best that can be done is to uncouple the system into
subsystems each of which has at most two-degrees-of-freedom. This is what has
recently been accomplished for several categories of asymmetric MDOF systems
[3–6], and necessary and sufficient (n&s) conditions for their uncoupling have been
obtained. Because the behavior of a low-dimensional subsystem is considerably
easier to understand than that of an MDOF system with numerous degrees of
freedom, the decomposition of an MDOF system into such subsystems is useful
in providing a better understanding of the MDOF system’s behavior as well as
in providing more accurate computational methods in the determination of its
response to external forces.

Systems of interest in this paper are linear MDOF systems described by the
equation

(1.1) M̃ q̈ + D̃q̇ + K̃q + Ñq = f̃(t)

where M̃, D̃, K̃ and Ñ are n by n constant real matrices; M̃ is symmetric and pos-
itive definite (M̃ = M̃T > 0), D̃ and K̃ are symmetric, and Ñ is skew-symmetric
(Ñ = −ÑT ). M̃ is the inertia matrix, D̃, K̃ and Ñ correspond to damping, po-
tential, and circulatory (positional non-conservative) forces, respectively [7]. The
n-vector of generalized coordinates is denoted by q, f̃(t) is the external forcing vec-
tor, and the dots indicate differentiation with respect to time, t. The matrices
K̃ and Ñ can also be thought of as the symmetric and skew-symmetric additive
parts, respectively, of a given stiffness matrix. Since any arbitrary matrix can be
uniquely expressed as the sum of a symmetric and a skew-symmetric part, Eq. (1.1)
also describes a damped multi-degree-of-freedom system whose stiffness matrix is
arbitrary (non-symmetric). Systems modeled by Eq. (1.1) are found in various ar-
eas of physics and engineering (elasticity, fluid dynamics, rotor dynamics, controls,
plasma physics, etc.).

Our overall goal is to obtain n&s conditions for the system described by (1.1)
to be uncoupled so that a real change of coordinates q = Pp where P is a real
nonsingular matrix, transforms it into a canonical (simplest) form that is max-
imally uncoupled. It was previously shown in [3] that gyroscopic conservative
systems can be uncoupled into at most two degrees of freedom independent sub-
systems when the appropriate two n&s conditions are met. Reference [4] extends
this result to damped gyroscopic MDOF potential systems wherein the symetric
damping matrix has a special form. Ref. [5] deals with developing the n&s con-
ditions for uncoupling MDOF potential systems with arbitrary damping matrices
through quasi-diagonalization, yielding independent subsystems with at most two
degrees of freedom. MDOF gyroscopic systems with arbitrary stiffness matrices
are considered in Ref. [6], and the n&s uncoupling conditions for such systems are
obtained. The dynamical system (1.1) considered in this paper does not belong
to any of the classes of systems considered in Refs. [3–6]; however, the approach
developed in [5] can be applied for uncoupling it, as shown below.
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The organization of the paper is as follows. In Section 2 some results in lin-
ear algebra are briefly presented, including a recent result on the simultaneous
quasi-diagonalization (the term that will be specified later) of a skew-symmetric
matrix and two symmetric matrices by means of real orthogonal congruence. This is
applied in Section 3 to develop the conditions for the decoupling of MDOF damped
circulatory systems by a real change of coordinates. Section 4 gives the conclusions.

2. Algebraic preliminaries

It is well known that for an n × n real skew-symmetric matrix N there exists
an n by n real orthogonal matrix Q such that

QTNQ = diag(v1J2, . . . , vn/2J2) for n even(2.1)
= diag(v1J2, . . . , v(n−1)/2J2, 0) for n odd,

where J2 is the two-dimensional skew-symmetric matrix

J2 =

[
0 1
−1 0

]
and some of the real numbers vj may be zero (see, for example [8, p. 65]). Further-
more, J2

2 = −I2, where I2 is the 2 by 2 identity matrix.
The block-diagonal form of matrix (2.1), which we shall refer to as quasi-

diagonal, is the simplest possible (canonical) form of a skew-symmetric matrix
with respect to orthogonal similarities, while the canonical form for a real symmet-
ric matrix is, of course, a diagonal matrix consisting of its eigenvalues along the
diagonal. We note that if Rank(N) = 2m (the rank of a skew-symmetric matrix
must be even), then m of the vj are nonzero. The two-dimensional blocks appearing
along the diagonal of matrix (2.1) can then be ordered, with no loss of generality,
in such a way that the first m of them are nonzero, i.e., we can put

(2.2) QTNQ = N = diag(v1J2, . . . , vmJ2, 0n−2m),

where the real numbers vj ̸= 0, j = 1, . . . ,m, and 0n−2m is an (n − 2m) by
(n− 2m) zero matrix. The nonzero numbers vj correspond to (complex) conjugate
pairs of purely imaginary eigenvalues of N , namely,±vji, i =

√
−1, with the zero

eigenvalue of N having a multiplicity of (n − 2m). Note the distinction between
N and N in (2.2): N is a real skew-symmetric matrix, while N is a quasi-diagonal,
skew-symmetric matrix whose structure is given in (2.2).

The following assertion plays a key role in our further considerations.

Theorem 2.1. Let K = KT , D = DT and N = −NT be n× n real matrices,
and let be Rank(N) = 2m. Necessary and sufficient conditions for a real orthogonal
matrix Q to exist such that

(2.3) QTKQ = Λ = diag(λ1, . . . , λn), and

(2.4) QTDQ = ∆ = diag(δ1, . . . , δn), and

(2.5) QTNQ = N = diag(v1J2, . . . , vmJ2, 0n−2m),
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are that the following seven commutation conditions be met:

[K,D] = 0,(2.6)

[K,N2] = 0, [K,NKN ] = 0,(2.7)

[D,N2] = 0, [D,NDN ] = 0,(2.8)

and

(2.9) [K,NDN ] = 0, [D,NKN ] = 0,

where the commutator of any two square matrices A and B is defined as [A,B] :=
AB −BA.

Proof. The proof of this theorem is given in Ref. [5]. □

When the matrices K, D and N can be reduced to the forms (2.3)–(2.5) by
a real orthogonal congruence, we shall say that these matrices are simultaneously
quasi-diagonalized by the real orthogonal matrix Q, or simultaneously orthogonally
quasi-diagonalized, for short.

Remark 2.1. Conditions in (2.6)–(2.9) are equivalent to the symmetry of the
following set of matrices

KD, KG2, DN2, (KN)2, (DN)2, KNDN, DNKN.

Remark 2.2. It can be verified by direct computation that the six conditions
in (2.7)–(2.9) are satisfied when n = 2 and [K,D] = 0.

The following statement, which was obtained earlier in [9] (see also [3] and [10]),
follows directly from Theorem 2.1.

Corollary 2.1. Let K = KT and N = −NT be n by n real matrices, and
let be Rank(N) = 2m. Necessary and sufficient conditions that there exists a real
orthogonal matrix Q such that QTKQ and QTNQ are such as in (2.3) and (2.5)
respectively, are that

(2.10) [K,N2] = 0

and

(2.11) [K,NKN ] = 0.

Proof. Application of Theorem 2.1 with D = 0 gives the result. □

Remark 2.3. When conditions (2.10) and (2.11) are satisfied, then

[Kj , NKkN ] = 0,

where j and k are non-negative integers. Indeed, under conditions (2.10) and
(2.11), according to Corollary 2.1, there exists a real orthogonal matrix Q such
that K = QΛQT and N = QNQT with Λ and N as in (2.3) and (2.5), respectively.
Then [Kj , NKkN ] = Q[Λj ,NΛkN]QT = 0 because Λj and NΛkN are diagonal
matrices.

We give the following three lemmas next, which will be used later.
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Lemma 2.1. Let K = KT and N = −NT be n by n real matrices. If all the
nonzero eigenvalues of the skew-symmetric matrix N are distinct, then the condition

[K,N2] = 0

implies the condition
[K,NKN ] = 0

Proof. See [3]. □

Lemma 2.2. Let K = KT , D = DT and N = −NT be n by n real matrices. If
all the nonzero eigenvalues of the skew-symmetric matrix N are distinct, then the
three conditions

(2.12) [K,D] = 0, [K,N2] = 0, [D,N2] = 0,

imply the conditions

(2.13) [K,NKN ] = 0, [D,NDN ] = 0,

and

(2.14) [K,NDN ] = 0, [D,NKN ] = 0.

Proof. See [5]. □

Lemma 2.3. Let K = KT , D = DT and N = −NT be n by n real matrices. If
all eigenvalues of the symmetric matrix K are distinct, then the conditions

(2.15) [K,D] = 0, [K,N2] = 0, [K,NKN ] = 0,

imply the conditions

(2.16) [D,N2] = 0, [D,NKN ] = 0, [K,NDN ] = 0 [D,NDN ] = 0.

Proof. Since K and D commute and the matrix K has all distinct eigenvalues,
the matrix D can be expressed in the polynomial form

D =

n−1∑
j=0

ajK
j ,

where aj are real numbers [11]. Then we obtain

[D,N2] =

n−1∑
j=0

aj [K
j , N2], [D,NKN ] =

n−1∑
j=0

aj [K
j , NKN ],

[K,NDN ] =

n−1∑
j=0

aj [K,NKjN ],

and

[D,NDN ] =

n−1∑
j,k=0

ajak[K
j , NKkN ].

From this, in view of Remark 2.3, we get (2.16). □
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3. Uncoupling of damped circulatory systems

We begin with the observation that the change of coordinates q = M̃−1/2x,
where M̃−1/2 denotes the inverse of the unique positive definite square root of M̃ ,
transforms (1.1) to the simpler form

(3.1) ẍ+Dẋ+Kx+Nx = f(t),

where

D = DT = M̃−1/2D̃M̃−1/2,(3.2)

K = KT = M̃−1/2K̃M̃−1/2,(3.3)

N = −NT = M̃−1/2ÑM̃−1/2,(3.4)

and

(3.5) f(t) = M̃−1/2f̃(t).

The systems described in (1.1) and (3.1) are equivalent and we will focus mainly
on (3.1) in the subsequent analysis. We shall refer to the matrices D, K, and N as
the damping matrix, the potential matrix, and the circulatory matrix, respectively.

Result 3.1. Consider the system described in Eq. (3.1) in which Rank(N) =
2m. Then conditions

[K,D] = 0(3.6)

[K,N2] = 0 [K,NKN ] = 0,(3.7)

[D,N2] = 0 [D,NDN ] = 0,(3.8)
[K,NDN ] = 0 [D,NKN ] = 0,(3.9)

are necessary and sufficient conditions for Eq. (3.1) to be transformed by an or-
thogonal change of coordinates x = Qp to the equation

(3.10) p̈+∆ṗ+ Λp+Np = QT f(x)

with

∆ = diag(δ1, . . . , δn),(3.11)
Λ = diag(λ1, . . . , λn),(3.12)

and

(3.13) N = diag(v1J2, . . . , vmJ2, 0n−2m),

where δj, λj, and vj are real numbers with vj ̸= 0, j = 1, . . . ,m.

Proof. Using the real orthogonal transformation x = Qp with QTQ = I,
Eq. (3.1) after multiplication from the left by QT becomes

p̈+QTDQṗ+QTKQp+QTNQp = QT f(x)

in the new coordinate p. Theorem 2.1 states that an orthogonal matrix Q exists,
such that

QTDQ = ∆, QTKQ = Λ, QTNQ = N
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where ∆, Λ, and N are as in (3.11), (3.12) and (3.13), if and only if conditions
(3.6)–(3.9) are satisfied. □

Corollary 3.1. The system described in Eq. (3.1) with two degrees-of-freedom
can be transformed by an orthogonal congruence transformation to the form (3.10)–
(3.13) if and only if [K,D] = 0.

Proof. See Remark 2.2. □

As seen, Eqs. (3.10)–(3.13) describe a set of independent, uncoupled (real) sub-
systems, m of which are quasi-diagonalized two-degree-of-freedom and n − 2m of
which are, in general, damped single-degree-of-freedom potential subsystems. Re-
call that 2m is the rank of the circulatory matrix N . When the skew-symmetric
matrix N is nonsingular and conditions (3.6)–(3.9) are satisfied, then the system
uncouples into m = n/2 independent two-degree-of-freedom subsystems, each gen-
erally functioning as a damped circulatory system. When n is odd, then the uncou-
pled system has at least one single degree of freedom subsystem which, in general,
is a damped potential system.

The uncoupling conditions (3.6)–(3.9) trivially hold (disappear) in the following
three cases: D = N = 0, K = N = 0 and K = D = 0. In the first two cases,
it is well known that the system can be transformed to the completely uncoupled
(diagonal) forms p̈ + Λp = 0 and p̈ + ∆ṗ = 0, respectively. In the third case the
system can be reduced to the quasi-diagonal form p̈ + Np = 0. When N = 0, the
uncoupling conditions disappear except for [K,D] = 0, which is a necessary and
sufficient condition for the complete uncoupling (i.e., diagonalization) of damped
potential systems (Caughey–O’Kelly [2]). On the other hand, if D = 0, conditions
(3.6)–(3.9), clearly, become two conditions (3.7) that are necessary and sufficient for
the quasi-diagonalization of potential circulatory systems, which were mentioned
earlier in the case when the circulatory matrix N is nonsingular [12,13].

Let us illustrate Result 3.1 with the following example.

Example 3.1. Consider a four-degree-of-freedom system, as described above,
in which

K =


4 −2 0 0
−2 4 0 0
0 0 5 3
0 0 3 5

 , N =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , D =


0.2 0.1 0 0
0.1 0.2 0 0
0 0 0.3 0.2
0 0 0.2 0.3

 .

Evidently, [K,N2] = [D,N2] = 0 because N2 = −I.

To determine if the other commutation conditions (3.6)–(3.9) are satisfied, we
use Remark 2.1. We obtain:

KD =
1

10


6 0 0 0
0 6 0 0
0 0 21 19
0 0 19 21

 = (KD)T , i.e., [K,D] = 0;
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(KN)2 =


−14 −2 0 0
−2 −14 0 0
0 0 −14 −2
0 0 −2 −14

 = (KN)2
T
, i.e., [K,NKN ] = 0;

(DN)2 =
1

100


−8 −7 0 0
−7 −8 0 0
0 0 −8 −7
0 0 −7 −8

 = (DN)2
T
, i.e., [D,NDN ] = 0;

KNDN =
1

10


−8 −2 0 0
−2 −8 0 0
0 0 −13 −11
0 0 −11 −13

 = (KNDN)T , i.e., [K,NDN ] = 0; and

DNKN =
1

10


−13 −11 0 0
−11 −13 0 0
0 0 −8 −2
0 0 −2 −8

 = (DNKN)T , i.e., [D,NKN ] = 0.

Thus, conditions (3.6)–(3.9) of Result 3.1 are satisfied. Taking into account that
Rank(N) = 4, i.e., m = 2, the system in this example can be transformed by a
real orthogonal transformation into two independent two-dimensional subsystems.
Indeed, one easily verifies that the orthogonal change of coordinates x = Qp, where

Q =
1√
2


1 0 1 0
−1 0 1 0
0 1 0 1
0 −1 0 1


decomposes the system into two independent, uncoupled two-degree-of-freedom
subsystems described by[

p̈1
p̈2

]
+

[
0.1ṗ1
0.1ṗ2

]
+

[
6p1
6p2

]
+

[
0 1
−1 0

] [
p1
p2

]
=

1√
2

[
f1(t)− f2(t)
f3(t)− f4(t)

]
and [

p̈3
p̈4

]
+

[
0.3ṗ3
0.5ṗ4

]
+

[
2p3
8p4

]
+

[
0 1
−1 0

] [
p3
p4

]
=

1√
2

[
f1(t) + f2(t)
f3(t) + f4(t)

]
In the case of proportional damping, the following result is obtained as a con-

sequence of Result 3.1.

Corollary 3.2. Let K = KT , D = aI + bK, N = −NT and Rank(N) = 2m.
Then conditions (3.7), i. e.,

[K,N2] = 0, [K,NKN ] = 0,

are necessary and sufficient for Eq. (3.1) to be transformed by an orthogonal change
of coordinates x = Qp to the form

p̈+ (aI + bΛ)ṗ+ Λp+Np = QT f(t)

with Λ and N as in Eqs. (3.12) and (3.13).
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Proof. When D = aI + bK and two commutation conditions (3.7) are satis-
fied, we obtain

[K,D] = [K, aI + bK] = a[K, I] + b[K,K] = 0,

[D,N2] = [aI + bK,N2] = a[I,N2] + b[K,N2] = 0,

[D,NKN ] = [aI + bK,NKN ] = a[I,NKN ] + b[K,NKN ] = 0,

[K,NDN ] = [K, aN2 + bNKN ] = a[K,N2] + b[K,NKN ] = 0, and

[D,NDN ] = a[I,NDN ] + b[K,NDN ] = 0

Thus, all the commutation conditions of Result 3.1 are satisfied, and the statement
follows. It is worth noting that a more direct proof could have been obtained by
applying Corollary 2.1. □

Remark 3.1. When the non-zero eigenvalues of the circulatory matrix N are
distinct then, because of Lemma 2.1, the two commutation conditions in Corollary
3.2 reduce to just the single condition [K,N2] = 0.

Corollary 3.3. If the matrices K, D and N commute pairwise, i.e.,

(3.14) [K,D] = 0, [K,N ] = 0, [D,N ] = 0,

and Rank(N) = 2m, then there exists an orthogonal change of coordinates that
transforms Eq. (3.1) to the form (3.10) with

(3.15) Λ = diag(λ1I2, . . . , λmI2, λ2m+1, . . . , λn),

and

(3.16) ∆ = diag(δ1I2, . . . , δmI2, δ2m+1, . . . , δn),

and N as in (3.13).

Proof. Evidently, if the matrices K, D and N commute pairwise, then con-
ditions (3.6)–(3.9) are satisfied, and, according to Result 3.1, there exists a real
orthogonal transformation that transforms Eq. (3.1) to the form (3.10)–(3.13).
Moreover, the two last conditions in (3.14) correspond to the conditions [Λ,N] = 0
and [∆,N] = 0 that require λ1 = λ2, λ3 = λ4, . . . , λ2m−1 = λ2m and δ1 = δ2, δ3 =
δ4, . . . , δ2m−1 = δ2m, because vj ̸= 0. Denoting repeated numbers λj and δj with
λ1, λ2, . . . , λm and δ1, δ2, . . . , δm we get (3.15) and (3.16). □

The pairwise commutation of K, D and N given in conditions (3.14) ensures
that the conditions in (3.6)–(3.9) are all satisfied. However, the reverse is not
true. This is because the set of matrices {K,D,N} that satisfy (3.6)–(3.9) is much
“larger” than the set that satisfies (3.14). As a simple example, when n = 2 and
K is proportional to the identity matrix, all 2 by 2 matrices D and N satisfy
conditions (3.6)–(3.9), while the satisfaction of (3.14) restricts the matrix D to
being proportional to the identity matrix.

When the matrices K, D and N have certain spectral characteristics that often
occur in real-world applications, the number of necessary and sufficient uncoupling
conditions in Result 3.1 can be reduced as follows.
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Result 3.2. The system described in Eq. (3.1) in which Rank(N) = 2m can
be reduced to the form given in Eqs. (3.10)–(3.13) using a real orthogonal transfor-
mation

(a) When the eigenvalues of the potential matrix K are distinct: if and only
if

(3.17) [K,D] = 0, [K,N2] = 0, [K,NKN ] = 0;

(b) When the nonzero eigenvalues of the circulatory matrix N are distinct: if
and only if

(3.18) [K,D] = 0, [K,N2] = 0, [D,N2] = 0;

(c) When the eigenvalues of the potential matrix K are distinct and the nonze-
ro eigenvalues of the circulatory matrix N are distinct: if and only if

(3.19) [K,D] = 0, [K,N2] = 0.

Proof. Parts (a) and (b) follow readily from Result 3.1 and Lemmas 2.3 and
2.2, respectively. Part (c) follows from part (a) and Lemma 2.1. □

Remark 3.2. The roles of K and D can be interchanged in the parts (a) and
(c) of the above assertion. Thus, when the eigenvalues of the damping matrix D
are distinct then the conditions in (3.17) and (3.19), in which the symbols K and
D are interchanged, are necessary and sufficient for (3.1) to be transformed using
a real orthogonal transformation to (3.10)–(3.13).

Example 3.2. Consider the four-degree-of-freedom system described by (3.1)
in which

K =


7 3 −1 −1
3 9 3 0
−1 3 7 1
−1 0 1 7

 , N =


0 −5 −2 −4
5 0 −5 −2
2 5 0 −4
4 2 4 0

 ,

D =


1.3 0.1 −0.3 −0.2
0.1 1.1 0.1 0
−0.3 0.1 1.3 0.2
−0.2 0 0.2 1.4

 .

The spectra of N and K are {±3
√
2i,±6

√
2i} and {3, 6, 9, 12} respectively, and

we can apply Result 3.2(c). We obtain

KD =


9.9 3.9 −3.3 −3
3.9 10.5 3.9 0
−3.3 3.9 9.9 3
−3 0 3 10.2

 = (KD)T , i.e., [K,D] = 0,

and

KN2 = −18


22 15 −4 −10
15 33 15 0
−4 15 22 10
−10 0 10 16

 = (KN2)T , i.e., [K,N2] = 0.
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Thus all conditions of Result 3.2(c) are satisfied and the system can be transformed
by a real orthogonal transformation into two independent two-dimensional subsys-
tems. Indeed, the orthogonal coordinate transformation x = Qp, where

Q =
1√
3


1 −1/

√
2 1 −1/

√
2

−1 0 0 −
√
2

1 1/
√
2 −1 −1/

√
2

0 −
√
2 −1 0


transforms the system into the following uncoupled form that has two independent
two-degree-of-freedom subsystems[

p̈1
p̈2

]
+

[
0.9ṗ1
1.2ṗ2

]
+

[
3p1
6p2

]
+ 3

√
2

[
0 1
−1 0

] [
p1
p2

]
=

[
g1(t)
g2(t)

]
[
p̈3
p̈4

]
+

[
1.8ṗ3
1.2ṗ4

]
+

[
9p3
12p4

]
+ 6

√
2

[
0 1
−1 0

] [
p3
p4

]
=

[
g3(t)
g4(t)

]
where [g1(t) g2(t) g3(t) g4(t)]

T = QT f(t) with

g1(t) =
1√
3
(f1(t)− f2(t) + f3(t)), g2(t) =

1√
6
(f3(t)− f1(t)− 2f4(t)),

g3(t) =
1√
3
(f1(t)− f3(t)− f4(t)) and g4(t) = − 1√

6
(f1(t) + 2f2(t) + f3(t)).

All of the above results can be translated for the original system described
by Eq. (1.1) using Eqs. (3.2)–(3.4). For example, taking into account that the
eigenvalues of the matrices D, K and N are the same as those of M̃−1D̃, M̃−1K̃
and M̃−1Ñ respectively, Result 3.2 can be translated for (1.1) as follows.

Result 3.3. The system described in Eq. (1.1) in which Rank(Ñ) = 2m can
be reduced by a real change of coordinates q = Pp to the equation

(3.20) p̈+∆ṗ+ Λp+Np = PT f̃(t)

where ∆,Λ and N are as in Eqs. (3.11)–(3.13)
(a) When the eigenvalues of the matrix M̃−1K̃ are distinct: if and only if

(3.21)
K̃M̃−1D̃ = D̃M̃−1K̃, K̃M̃−1ÑM̃−1Ñ = ÑM̃−1ÑM̃−1K̃,

(K̃M̃−1ÑM̃−1)2 = (ÑM̃−1K̃M̃−1)2;

(b) When the nonzero eigenvalues of the matrix M̃−1Ñ are distinct: if and
only if

(3.22)
K̃M̃−1D̃ = D̃M̃−1K̃, K̃M̃−1ÑM̃−1Ñ = ÑM̃−1ÑM̃−1K̃,

D̃M̃−1ÑM̃−1Ñ = ÑM̃−1ÑM̃−1D̃;

(c) When the eigenvalues of the matrix M̃−1K̃ are distinct and the nonzero
eigenvalues of the matrix M̃−1Ñ are distinct: if and only if

(3.23) K̃M̃−1D̃ = D̃M̃−1K̃, K̃M̃−1ÑM̃−1Ñ = ÑM̃−1ÑM̃−1K̃.

Also, in view of Corollary 3.2 and Remark 3.1, we state the following assertion.
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Corollary 3.4. Let D̃ = aM̃ + bK̃, Rank(Ñ) = 2m and the nonzero eigen-
values of the matrix M̃−1Ñ are distinct. Then the condition

K̃M̃−1ÑM̃−1Ñ = ÑM̃−1ÑM̃−1K̃

is necessary and sufficient for Eq. (1.1) to be transformed by a real change of coor-
dinates x = Pp to the form (3.20) with Λ and N as in Eqs. (3.12) and (3.13).

Example 3.3. Consider the three-degree-of-freedom system described by (1.1)
in which

M̃ =

5 0 4
0 4 0
4 0 5

 , K̃ =

13 −3 14
−3 10 3
14 3 13

 , Ñ =

 0 2 0
−2 0 2
0 −2 0

 ,

D̃ =

 0.96 −0.06 0.84
−0.06 0.76 0.06
0.84 0.06 0.96

 .

We first calculate

M̃−1 =
1

9

 5 0 −4
0 2.25 0
−4 0 5


and then we find that the spectrum of M̃−1K̃ is {−2, 3, 3.5}, i.e., the matrix M̃−1K̃

has distinct eigenvalues. Furthermore, since Ñ is a three-dimensional nonzero skew-
symmetric matrix, the matrix M̃−1Ñ has a conjugate pair of purely imaginary
eigenvalues, and therefore Result 3.3(c) can be applied. Thus, we obtain

K̃M̃−1D̃ =

2.685 −0.51 2.715
−0.51 2.26 0.51
2.715 0.51 2.685

 = (K̃M̃−1D̃)T = D̃M̃−1K̃

and

K̃M̃−1ÑM̃−1Ñ =

 1 6 −1
6 −20 −6
−1 −6 1

 = (K̃M̃−1ÑM̃−1Ñ)T = ÑM̃−1ÑM̃−1K̃

and, according to Result 3.3(c), there exists a change of coordinates q = Pp that
decomposes the system into two independent subsystems: one with two degrees of
freedom and another with a single degree of freedom. Indeed, the transformation
q = Pp with

P =


3√
22

1√
11

1
3
√
2

1√
22

− 3
2
√
11

0

− 3√
22

− 1√
11

1
3
√
2


reduces the system to the form[

p̈1
p̈2

]
+

[
0.1ṗ1
0.21ṗ2

]
+
√
2

[
0 −1
1 0

] [
p1
p2

]
+

[
−2p1
3.5p2

]
=

[
g1(t)
g2(t)

]
p̈3 + 0.2ṗ+ 3p3 = g3(t),
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where [g1(t) g2(t) g3(t)]
T = PT f̃(t) with g1(t) = 1√

22
(3f̃1(t) + f̃2(t) − 3f̃3(t)),

g2(t) =
1

2
√
11
(2f̃1(t)− 3f̃2(t)− 2f̃3(t)) amd g3(t) =

1
3
√
2
(f̃1(t) + f̃3(t)).

Note that the matrix D̃ of this example can be expressed as D̃ = 0.14M̃+0.02K̃
and therefore Corollary 3.4 can also be applied.

Remark 3.3. The results presented above may be interpreted as counterparts
to the uncoupling results obtained via a real coordinate transformation, recently de-
rived for other mathematically and physically distinct classes of linear asymmetric
dynamical systems [3–6].

4. Conclusion

This paper investigates linear n-degree-of-freedom (MDOF) systems with po-
tential, damping and circulatory forces, building upon our earlier work in the un-
coupling of linear dynamical systems [3–6].

Since the circulatory matrix is skew, it precludes the decomposition of such a
system into n uncoupled subsystems through the use of a real coordinate change.
The best that can be done using a real coordinate change is to uncouple the system
into subsystems each of which has at most two-degrees-of-freedom. The conditions
for such a decoupling are provided here. The main findings are summarizes below.

In the general case, the MDOF system under consideration, in which the circu-
latory matrix has rank 2m ⩽ n, can be decomposed by a suitable real linear change
of coordinates into m uncoupled two-degree-of-freedom subsystems and (n − 2m)
single-degree of freedom subsystems if and only if the seven conditions obtained in
the paper are satisfied. Each of the two-degree-of-freedom subsystems corresponds
to a circulatory system in canonical form (with diagonal potential and damping
matrices), while each of the single-degree-of-freedom subsystems corresponds to a
potential system. Such an uncoupling is useful in providing a deeper physical un-
derstanding of the behavior of an MDOF system with numerous degrees of freedom
in terms of one- and two-degree-of-freedom subsystems that are much simpler and
easier to understand, as well as in providing more accurate computational methods
in the determination of its response to external forces.

The seven n&s uncoupling conditions, as expected place restrictions on the
system’s matrices. It is shown that the incorporation of additional information
about the spectra of the matrices, which many real-life systems commonly possess,
enables a reduction in the number of these conditions. When the potential matrix
K has distinct eigenvalues, the number of n&s uncoupling conditions reduce to
three; when the non-zero eigenvalues of the circulatory matrix N are distinct, they
reduce also to three; and when the eigenvalues of K are distinct and non-zero
eigenvalues of N are distinct, they reduce to two.

Several illustrative examples are considered throughout the paper to give clarity
to the analytical results that are obtained.

Lastly, we point out that the results obtained here are also useful in analysing
the behavior of MDOF nonlinear dynamical systems in the vicinity of their equi-
libria, about which they can be linearized.
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О КВАЗИ-ДИJАГОНАЛИЗАЦИJИ И РАСПРЕЗАЊУ
ПРИГУШЕНИХ ЦИРКУЛАТОРНИХ СИСТЕМА СА

КОНАЧНИМ БРОJЕМ СТЕПЕНИ СЛОБОДЕ

Резиме. Разматра се декомпозициjа линеарних пригушених циркулаторних
система са коначним броjем степени слободе помоћу реалне линеарне коорди-
натне трансформациjе, генерисане ортогоналном матрицом. Изведени су кри-
териjуми коjи садрже услове егзистенциjе координатних трансформациjа коjе
омогућаваjу декомпозициjу система на независне, међусобно неспрегнуте под-
системе, при чему ниjедан од њих нема више од два степена слободе. Крите-
риjуми су изражени кроз карактеристике описних матрица система. Неколико
нумеричких примjера дато jе ради илустрациjе аналитичких резултата.
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