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ROLLING GEODESICS ON SYMMETRIC
SEMI-RIEMANNIAN SPACES

Velimir Jurdjevic

Abstract. This paper is an outgrowth of the results in the domain of rolling
obtained in our recent paper written with F. Silva Leite and I. Markina, and
the earlier papers on the rollings of spheres produced with J. Zimmerman. We
show that the rolling equations associated with a symmetric semi-Riemannian
manifold rolling on its tangent space at a fixed point on the manifold essentially
have the same structure as the rolling equations for the n-dimensional sphere
rolling on the horizontal hyperplane; that is, we show that the rolling equations
are described by a left-invariant distribution D on a Lie group G with the Lie
bracket growth

D + [D,D] + [D, [D,D]] = TG,

reminiscent of the growth (2, 3, 5) for the two spheres rolling on the horizontal
plane. We then define rolling geodesics on semi-Riemannian spaces as exten-
sions of sub-Riemannian geodesics in the Riemannian symmetric spaces, and
show that the rolling geodesics are the projections of the extremal curves,
which, remarkably, are the solution curves of a completely integrable Hamil-
tonian system in the cotangent bundle of the configuration space. Finally, we
illustrate the theory with a few noteworthy examples.

1. Introduction

This paper is a continuation of my long-standing interest in the role of Lie
groups and Lie algebras in the theory of integrable systems and the equations of
mathematical physics. The interest in this topic originated from two seemingly un-
related phenomena, the presence of elastica in the theory of rolling spheres [1,2]),
and the presence of the heavy top in the equations describing the equilibrium con-
figurations of an elastic rod [3–5]. My interest in these phenomena was further
renewed by the results of our recent paper [6] that showed that the rollings of the
semi-Riemannian symmetric manifolds on their tangent planes admitted a concep-
tually simple description analogous to the equations for the rolling spheres [7].
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Briefly, this paper outlines the relevant theory of symmetric semi-Riemannian
spaces for the results in [6] and defines a new class of curves called rolling geodesics.
Then, the paper demonstrates that the rolling geodesics are the projections of the
extremal curves generated by a completely integrable Hamiltonian system on the
cotangent bundle of the configuration space. The passage to Hamiltonian systems
reveals a geometric significance of rolling for the problems of geometric mechanics.

Of course, mathematical considerations of objects rolling on one another have
a long and diverse history. The interest in the rolling phenomena very likely be-
gan with the wheel rolling without slipping on a flat surface and the discovery
of the cycloid, which, in time, got to be known as the crown jewel of all curves
because of two remarkable properties: the tautochrone property, whereby a parti-
cle, sliding without friction under uniform gravity, reaches the lowest point of the
curve in time independent of the initial position (C. Huygens, (1659)), and also the
brachistochrone property, as the curve along which a particle slides under gravity
in shortest time (discovered by the Bernoulli brothers around 1696).

More generally, rollings of curves along other curves became a standard topic in
classical mechanics in which the cardioid and the astroid stood out as particularly
beautiful examples. In these early studies, rolling was regarded as a part of the
mechanical world in which rolling objects were seen as rigid bodies moved by the
forces that preserved their geometric properties and kept them in contact with
each other. The passage to geometric rolling, principally surfaces rolling on their
affine tangent planes, was initiated by the geometers in the early part of the 20th

century. In particular, T. Levi-Civita, in his famous treatise on intrinsic calculus
[8], motivates the notion of parallelism on a surface in R3 by appealing to the
rollings of a surface on its tangent plane. In the case of a developable surface,
which Levi-Civita describes as flexible and inextensible and which can be made
to coincide with a region of the plane, like the cylinder and the cone, tangential
directions u1 and u2 situated at the points p1 and p2 on the surface are parallel
whenever these directions are parallel in the ordinary sense when the surface is
unfolded on the plane. In the case of a more general surface, he states that a
surface S is rolled along a curve α(t) on the tangent plane P at a point p1 on S if
during the rolling the point of contact with the stationary plane P traces a curve
α̂(t) in P , called the development of α(t), if the tangential directions u1 and u2

at the points p1 and p2 are parallel along α(t) if they are parallel, in the ordinary
sense, along the developed curve α̂(t) [8, p. 102].

Since then, rolling and parallel transport took somewhat divergent paths: par-
allel transport found its natural definition within the realm of the affine connection
and the covariant derivative, while rolling continued to be of interest to mechanics as
a prototype of phenomena encountered in systems with non-holonomic constraints
[1,9]. In this interim period, the paper of E. Cartan [10] on the rollings of spheres
on each other and their relation to the 14-dimensional Lie group G2 stands out as
the most fascinating contribution to the subject of rolling.

It was only recently that rolling got its first axiomatic treatment by R. Sharpe
for Riemannian manifolds M and M̂ that are embedded isometrically in a Euclidean
space En [11]. For this class of manifolds, Sharpe showed that each curve α(t) in M
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can be rolled on a curve α̂(t) in M̂ , called the development of α(t), by an isometry
g(t) that satisfies the no slipping and no twisting condition. Moreover, he showed
that the isometry curve that does this rolling is unique. The axiomatic notion of
rolling made this subject matter more accessible and led a way to several studies
[12,13] with a particular interest on the rollings of symmetric Riemannian spaces
on their affine tangent spaces [14]. Sharpe’s definition of rolling, however, made no
explicit connection to the parallel transport.

Independently of the studies based on Sharpe’s definition of rolling, R. Bryant
and L. Hsu [15] introduced another definition of rolling according to which a curve
α(t) in a Riemannian manifold M rolls on a curve α̂(t) in another Riemannian
manifold M̂ if there is an isometry A(t) such that

(1.1) A(t) : Tα(t)M → Tα̂(t)M̂,
dα̂

dt
(t) = A(t)

dα

dt
(t),

and v̂(t) = A(t)v(t) is a parallel transport along α̂(t) for each parallel transport
v(t) along α(t). New studies emerged based on this notion of rolling [16–20] with
a philosophical outlook sufficiently different from the papers based on Sharpe’s
formulation, suggesting conceptual differences between the two definitions. As a
result, these two notions of rollings became known as the extrinsic rolling (Sharpe)
and intrinsic rolling (Bryant and Hsu). However, it was shown recently [6] that
a curve α(t) rolls on a curve α̂(t) independently of the definition used, but the
isometry curve A(t) that does the rolling may be different. Sharpe’s definition
imposes an additional condition, dependent on the embedding, under which A(t)
becomes a unique isometry that rolls α(t) on α̂(t).

This paper provides a comprehensive overview of semi-Riemannian symmetric
spaces rolling on their tangent spaces and then focuses on the extremal equations as-
sociated with the rolling curves. The material is presented in five distinctive parts.
The first part establishes the essential properties of symmetric semi-Riemannian
spaces, largely a synthesis of the theory presented in the seminal work of B. O’Neill
[21]. The second part derives rolling equations and sets the stage for the asso-
ciated variational problems (a complement to the results presented in [6]). The
third part discusses some noteworthy examples that give the reader a glimpse
into the large variety of systems covered in the first section. This section also
includes an original treatment of the rolling spheres and the rolling hyperboloids
that play an important role in the latter sections. The fourth section outlines the
passage to the Hamiltonian systems and the associated extremal equations. This
section also shows the connections between the Poisson systems associated with
the affine-quadratic systems, which figure prominently in the equations of geomet-
ric mechanics, and the rolling systems. Finally, section five returns to the space
forms, hyperboloids and spheres, with an original rendition of the results obtained
in [7] linking rolling to the elastic curves.

2. Semi-Riemannian spaces

Because of the relative novelty of rollings in the semi-Riemannian environment,
it may be advantageous to present a self-contained account of the relevant theory, in
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order to make the paper more accessible to a wider audience. For that reason some
of the exposition presented below is a re-hash of the material presented in [21].

A semi-Riemannian manifold M is a smooth manifold endowed with a non-
degenerate symmetric tensor g⟨. , .⟩. We write n = dimM , and denote by p the
number of positive eigenvalues of the tensor g, so that n − p is the number of
negative eigenvalues of g. Any vector space V equipped with a symmetric and
non-degenerate form ( , ) is semi-Riemannian. Any such form can be diagonalized,
that is, there exists a basis e1, . . . , en in V such that (ei, ej) = ±δij . Then, there
exist integers p ⩽ n and n− p such that (ei, ei) = 1, for i ⩽ p and (ei, ei) = −1 for
i > p. It then follows that

(x, y) =

p∑
k=1

xkyk −
n∑

k=p+1

xkyk, x, y ∈ Rp,n−p.

where x1, . . . , xn and y1, . . . , yn are the coordinates of x and y in the above basis.
Following the terminology in [21], we will refer to the above form as a scalar
product.

On any semi-Riemannian manifold M , there is a unique affine connection DXY
that satisfies

• [V,W ] = DV W −DWV
• X⟨V,W ⟩ = ⟨DXV,W ⟩ + ⟨V,DXW ⟩ for all smooth vector fields X,V,W

on M .
Such a connection is called the Levi-Civita connection. The Levi-Civita connection
is characterized by the Koszul formula

2⟨DV W,X⟩ = V ⟨W,X⟩+W ⟨X,V ⟩ −X⟨V,W ⟩
− ⟨V, [W,X]⟩+ ⟨W, [X,V ]⟩+ ⟨X, [V,W ]⟩.

The Levi-Civita connection induces the covariant derivative DV
dt of a vector field

V (t) along a differentiable curve c(t) in M according to the usual formula DV
dt =

D dc
dt
Ṽ where Ṽ is a vector field on M such that V (t) = Ṽ (c(t)). A vector filed V (t)

along a curve c(t) is called parallel if DV
dt = 0. Parallel vector fields exist along

any curve c(t) in M . In fact, if w is a vector in Tc(t0)M , then there exist a parallel
vector field V (t) along c(t) such that V (t0) = w.

A curve γ(t) in a semi-Riemannian manifold M is called a geodesic if the
tangent vector field dγ

dt is parallel along γ(t). It then follows that for any v ∈ TpM
there exists an open interval I around the origin and a unique geodesic γv(t) such
that dγv

dt (0) = v (of course,γv(0) = p). Any semi-Riemannian manifold in which the
geodesics are defined for all t ∈ R is said to be complete. In general, there exists a
maximal open interval I on which a geodesic γv(t) is defined. In such a case γv(t)
is unique. If the domain of γv includes the interval [0, 1] then the end point map
v → γv(1) is one to one and it is easy to show that γtv(1) = γv(t).

As in the Riemannian case, the exponential map expo(tv) = γv(t) is a diffeo-
morphism from a star shaped open neighbourhood U = {tv : t ∈ [0, 1], v ∈ U}
of the origin in ToM onto an open neighbourhood Ū of the point o in M . This
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neighbourhood is called normal. This implies that any two points p and q in
a connected manifold M can be connected by a broken geodesic, a continuous
curve c(t) defined on a finite union of closed intervals Ij = [tj , tj+1], j = 1, . . . , n,
such that on each interval Ij c(t) is a geodesic γvj (t) that satisfies γvj (tj) = c(tj)

and
dγvj

dt (tj) = vj .
A diffeomorphism ϕ on M that leaves its semi-Riemannian metric invariant

is called an isometry. The set of all isometries on M is a Lie group I(M) that
naturally acts on M by the left action g, p → gp. A semi-Riemannian manifold is
said to be homogeneous if I(M) acts transitively on M . One can easily show using
the Koszul’s formula that DdϕXdϕY = dϕ(DXY ) is the Levi-Civita connection on
M for any isometry ϕ. But then dϕ(DXY ) = DXY by the uniqueness of the Levi-
Civita connection. Therefore, isometries preserve the geometric quantities of M .
In particular, they preserve geodesics. We also have

Proposition 2.1. Suppose that g and h are elements in I(M) such that go =
ho and dog = doh for some point o in M . Then g = h whenever M is connected.

Proof. Suppose that go = ho then h−1go = o. So, it suffices to show that
go = o and dog = Id implies g = Id. Let U = {p ∈ M : gp = p, dog = Id}. By
continuity U is a closed set in M . It remains to show that U is open. Let p be an
arbitrary point in U and let α(t) be any geodesic in M such that α(0) = p. Since
dpg(α̇(0) = α̇(0), gα(t) = α(t). Therefore, U contains a normal neighbourhood
at p, and hence is open. But then U = M , since M is connected. Thus gp = p
for all p ∈ M □

2.1. Semi-Riemannian symmetric spaces. A smooth manifold M togeth-
er with a transitive group action of a Lie group G on M is called homogeneous.
If the action of G is represented by the diffeomorphisms {ϕg : g ∈ G}, then M
can be written as the quotient M = G/K where K = {g ∈ G : ϕg(o) = o} for
some fixed point o ∈ M . In this representation, the natural projection π : g → gK
is identified with ϕg(o), in which case we have π(Lg) = ϕgπ, where Lg is the left
action Lg(h) = gh of G on itself.

Any homogeneous manifold admits a finite dimensional family of complete vec-
tor fields F that span each tangent space TpM . They are the infinitesimal genera-
tors of the flows {ϕexp tX : t ∈ R, X ∈ g}, where ϕg denotes the action of G on M .
When G is the isometry group of M , these vector fields are known as the Killing
vector fields (a vector field X on a semi-Riemannian manifold M is called Killing if
its one-parameter group of diffeomorphisms {exp tX : t ∈ R} acts on M as a group
of isometries [21,23]). The correspondence

X ∈ g → X⃗, X⃗(p) =
d

dt
ϕexp tX(p)|t=0

is an anti-isomorphism since [X,Y ] → −[X⃗, Y⃗ ].
A homogeneous space G/K is called reductive if the Lie algebra g admits a

vector space p such that g = p ⊕ k and AdK(p) ⊆ p. This invariance implies that
[p, k] ⊆ p. On reductive homogeneous spaces TpM can be identified with p via
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the correspondence X ∈ p → X⃗(p) ∈ TpM . If, in addition, a reductive space
G/K is equipped with a G-invariant metric ⟨ , ⟩p, then ⟨doϕgX⃗(o), doϕgY⃗ (o)⟩p =

⟨X⃗(o), Y⃗ (o)⟩o for any g ∈ G and any X⃗(o) and Y⃗ (o) in ToM by the invariance of
the metric. In particular, ⟨doϕhX⃗(o), doϕhY⃗ (o)⟩p = ⟨X⃗(o), Y⃗ (o)⟩o when h ∈ K.

Since ϕh(o) = o, doϕhX⃗(o) ∈ ToM , and therefore doϕhX⃗(o) = ⃗̃X(o) for some X̃ in
p. We now have

doϕhX⃗(o) =
d

dt
ϕh exp tX(o)|t=0 =

d

dt
ϕh exp tXh−1(o)|t=0 =

d

dt
ϕexp tAdh(X)(o)|t=0

Therefore, doϕhX⃗(o) = ⃗̃X(o) where X̃ = Adh(X). If we now define an isometric
scalar product ⟨⟨ , ⟩⟩ on p via the formula

(2.1) ⟨⟨X,Y ⟩⟩ = ⟨X⃗(o), Y⃗ (o)⟩o

then ⟨⟨AdhX,AdhY ⟩⟩ = ⟨⟨X,Y ⟩⟩, that is, ⟨⟨ , ⟩⟩ is an AdK invariant scalar product
on p. Let now ⟨⟨ , ⟩⟩ denote any scalar product on g which agrees with ⟨⟨ , ⟩⟩ on
p. Then G together with the left-invariant metric induced by ⟨⟨ , ⟩⟩ becomes a
semi-Riemannian manifold.

Conversely, suppose that G/K is a reductive manifold with G equipped with
a left-invariant metric defined by a scalar product ⟨⟨ , ⟩⟩ that is AdK invariant on
p. Then, formula (2.1) can be used to define a scalar product ⟨ , ⟩o on ToM which
can be extended to a G-invariant metric on M via

⟨doϕgX⃗(o), doϕgY⃗ (o)⟩p = ⟨X⃗(o), Y⃗ (o)⟩o.

Definition 2.1. A connected semi-Riemannian manifold
(
M, g

)
is called sym-

metric if for each o ∈ M there exists an isometry ζo : M → M called the global
symmetry of M at o, such that ζoo = o and doζo = −I on ToM .

Proposition 2.2. Any symmetric semi-Riemannian connected manifold is
complete and homogeneous.

Proof. Since ζo is an isometry, it acts on the geodesics. So if γ(t) is a geodesic
that satisfies γ(0) = o, then c(t) = ζ0γ(t) = γ(−t) because ċ(0) = −γ̇(0). More
generally,

(2.2) ζγ(s)γ(s− t) = γ(s+ t) = c(t)

for any geodesic curve γ(t). So, if γ(t) is defined on an interval [−s, s] then c(t) is
a geodesic defined on [0, 2s] that satisfies c(0) = γ(s) and ċ(0) = γ̇(s). Hence, the
domain of γ(t) can be extended to the interval [0, 2s]. The same argument with −s
shows that the domain of γ can be extended to the interval [−2s, 2s]. Hence, each
geodesic is defined on (−∞,∞).

To prove homogeneity, we will use the fact that any two points p and q in M
can be connected by a broken geodesic curve. So, let α(t) be a continuous curve
in M on an interval [0, T ], partitioned by n points 0 < t1 < t2 < · · · < tn+1 = T ,
such that on each interval [tj , tj+1], j ⩽ n, α(t) = γj(t) for some geodesic γj(t).
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If α(0) = p and α(T ) = q then ζγ1(
t1
2 )α(0) = α(t1) = γ2(t1) by (2.2). Then

ζ
γ2(

t2−t1
2 )

α(t1) = α(t2) = γ3(t2). Continuing we get

q = α(tn+1) = ζ
γn(

tn+1−tn
2 )

· ζ
γn−1(

tn−tn−1
2 )

· · · ζ
γ2(

t2−t1
2 )

· ζγ1(
t1
2 )p

Hence, I(M) acts transitively on M . □

Let G = I0(M) be the connected component of I(M) that contains the group
identity. Since I(M) acts transitively on M so does G. Hence, M is diffeomorphic
to the quotient manifold G/K where K is the isotropy group of a point o in M
[22]. In this representation π ◦Lg = ϕg ◦π, and therefore the left actions Lg, g ∈ G,
become isometries.

The existence of global symmetry on M induces an involutive automorphism
σ : G → G defined by ϕσ(g) = ζoϕgζo. One easily shows using Proposition 2.1 that
ζ2o = Id, hence ζ−1

o = ζo. Therefore, σ satisfies

σ(g1g2) = σ(g1)σ(g2), σ
2 = I.

Proposition 2.3. Let H = {g ∈ G : σ(g) = g}. Then Ho ⊆ K ⊆ H, where
H0 is the connected component of H through the group identity.

Proof. Let g ∈ G satisfy ϕgo = o, i.e., g ∈ K. Then ϕσ(g)o = ζoϕgζo(o) = o,
and

doϕσ(g) = doζodoϕgdoζo = (−Id)doϕg(−Id) = doϕg

It then follows from Proposition 2.1 that σ(g) = g, that is, g ∈ H. This shows
that K ⊆ H. To show that H0 ⊆ K, let exp tX denote the one-parameter group
generated by an element X in the Lie algebra of H. Then exp tX belongs to H0 for
all t , hence satisfies σ(exp tX) = exp tX. It follows that ζo exp tX(o) = exp tX(o).
Since o the only fixed point by ζo in a neighbourhood of o in M , exp tX(o) = o for
small t. But then exp tX(o) = o for all t by analyticity of exp tX. This shows that
{exp tX : t ∈ R} ⊆ K for each X in the Lie algebra of H. But, H0 is generated by
the exponentials in the Lie algebra of H, hence H0 ⊆ K. □

Corollary 2.1. The Lie algebra of K is the same as the Lie algebra of H.

The automorphism σ induces a Cartan decomposition g = p⊕k with g is the Lie
algebra of G, and p = {X ∈ g : dσe(X) = −X}, and k = {X ∈ g : dσe(X) = X},
where e denotes the group identity in G. Evidently k is the Lie algebra of K, and
therefore [k, k] ⊆ k. In addition,

[p, k] ⊆ p, [p, p] ⊆ k.

Corollary 2.2. AdK(p) ⊂ p.

Proof. Since σ is an autotomorphism, dσeAdh = Adσ(h)dσe. When X ∈ p,
and h ∈ K,

dσeAdhX = Adσ(h)dσeX = −Adσ(h)X = −Adh(X). □

Remarkably, the existence of an involutive automorphisms on G implies the
existence of global symmetries according to the following proposition.
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Proposition 2.4. Let K be a closed subgroup of a connected Lie group G. Let
σ be an involutive automorphism of G such that H0 ⊆ K ⊆ H, where H = {g ∈
G : σ(g) = g}. Then, any G-invariant metric tensor on M = G/K makes M a
semi-Riemannian symmetric space with ζ, the global symmetry of M at o, defined
by ζ ◦ π = π ◦ σ.

Remark 2.1. The existence of global symmetry at a single point o implies the
existence of global symmetry at every point p ∈ M . For if ζo is the symmetry at o,
then ζp = gζog

−1 is the symmetry at p = g(o).

It follows that a symmetric semi-Riemannian space M is a reductive space
and satisfies an extra property [p, p] ⊆ k. In this setting, every curve m(t) in
M can be lifted to a curve g(t) ∈ G via the formula ϕg(t)(o) = m(t). Then,
ṁ(t) = doϕg(t)X⃗(t)(o) where X(t) is a curve in g defined by dg

dt = g(t)X(t).
It follows that X(t) = U(t) + V (t) for U(t) ∈ p and V (t) ∈ k, and, therefore,
ṁ(t) = doϕg(t)(U⃗(t)(o) + V⃗ (t)(o)) = doϕg(t)U⃗(t)(o) because V⃗ (o) = 0. An ab-
solutely continuous curve g(t) ∈ G is called horizontal if g(t) is a solution of
dg
dt = g(t)U(t) for some bounded measurable curve U(t) in p. It follows from
above that every curve m(t) in M can be lifted to a horizontal curve g(t). Any two
horizontal lifts g1(t) and g2(t) satisfy g2(t) = g1(t)h for some fixed element h ∈ K.
Then dg2

dt = g2(t)U2(t) = g2(t)Adh−1U1(t) where U1(t) = g−1(t)dg1dt . Hence

dm

dt
= doϕg2(t)U⃗2(t)(o) = dodϕg1(t)U⃗1(t)(o).

To summarize, every curve m(t) in M is the projection of a horizontal curve g(t) a
solution of dg

dt = g(t)U(t) for some absolutely continuous curve U(t) ∈ p, in which
case

(2.3)
dm

dt
= doϕg(t)U⃗(t)(o).

2.2. The Levi-Civita connection and the parallel transport. Suppose
now that M = G/K is a symmetric semi-Riemannian manifold, and suppose that
its isometry group G = I0(M) is equipped with a left-invariant semi-Riemannian
metric induced by an (arbitrary) orthogonal extension to g of an AdK invariant
scalar product ⟨⟨ , ⟩⟩ on p. Then,

Lemma 2.1.
⟨⟨V, [W,U ]⟩⟩ = ⟨⟨[V,W ], U⟩⟩

for any elements U ,V in p and W in k.

Proof. ⟨⟨AdhU,AdhV ⟩⟩ = ⟨⟨U, V ⟩⟩ for any h ∈ K. If h(t) = exp tW , then

0 =
d

dt
⟨⟨AdhU,AdhV ⟩⟩|t=0 = ⟨⟨[W,U ], V ⟩⟩+ ⟨⟨U, [W,V ]⟩⟩. □

Let ▽UV denote the corresponding Levi-Civita connection on TG correspond-
ing to the above metric.
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Proposition 2.5. Suppose that Ū(g) = gU , and V̄ (g) = gV are left-invariant
vector fields defined by U and V in p. Then ,

▽Ū V̄ (g) =
1

2
g[U, V ],

Proof. We will use Koszul’s formula

2⟨⟨▽Ū V̄ , X̄⟩⟩ = Ū⟨⟨V̄ , X̄⟩⟩+ V̄ ⟨⟨X̄, Ū⟩⟩ − X̄⟨⟨Ū ,̄V ⟩⟩
− ⟨⟨Ū , [V̄ , X̄]⟩⟩+ ⟨⟨V̄ , [̄̄X, Ū ]⟩⟩+ ⟨⟨X, [Ū , V̄ ]⟩⟩.

Let now ▽Ū V̄ = g(DUV ) for some element DUV in g and let X̄ = gX for X ∈ g.
By the invariance of the metric ⟨⟨gX, gY ⟩⟩g = ⟨⟨X,Y ⟩⟩e, and hence is constant.
Therefore, Z̄⟨⟨X̄, Ȳ ⟩⟩ = 0 for any left-nvariant vector field Z̄. Koszul’s formula
then simplifies to

2⟨⟨DUV,X⟩⟩e = −⟨⟨U, [V,X]⟩⟩e + ⟨⟨V, [X,U ]⟩⟩e + ⟨⟨X, [U, V ]⟩⟩e
If X ∈ k the first two terms cancel due to Lemma 2.1, and if X ∈ p, then both
[V,X] and [U,X] are in k, and, then, by the orthogonality, the fist two terms are
both equal to zero. Hence 2DUV = [U, V ]. □

Proposition 2.6. Suppose that W (t) = g(t)V (t), V (t) ∈ p is a curve of tangent
vector fields along a horizontal curve g(t), a solution of dg

dt = gU(t), U(t) ∈ p. Then,
the covariant derivative ▽g(t)U(t)W (t) of W (t) along g(t) is given by

▽g(t)U(t)W (t) = g(t)
(dV
dt

+
1

2
[U(t), V (t)]

)
.

Proof. Let A1, . . . , An denote an orthonormal basis in p. Then U(t) =∑n
i=1 ui(t)Ai and V (t) =

∑n
i=1 vi(t)Aifor some functions u1(t), . . . , un(t) and

v1(t), . . . , vn(t). If Xi(g) = gAi, then dg
dt =

∑n
i=1 ui(t)Xi(g(t)) and

V (t) =
∑n

i=1 vi(t)Xi(g(t)). It follows that

Dg(t)V (t)

dt
=

n∑
i=1

dvi
dt

Xi(g(t)) + vi(t)
Dg(t)Xi

dt

=

n∑
i=1

dvi
dt

Xi(g(t)) + vi▽∑n
j=1 uj(t)Xj

Xi(g)

=

n∑
i=1

dvi
dt

Xi(g(t)) +

n∑
i,j=1

viuj▽Xj
Xi

=

n∑
i=1

dvi
dt

Xi(g(t)) +
1

2

n∑
i,j=1

viuj [Xi, Xj ] = g(t)
(dV
dt

+
1

2
[U(t)V (t)]

)
. □

Proposition 2.7. Let U⃗ and V⃗ be any Killing vector fields defined by U and
V in p. Let ▽U⃗ V⃗ denote the Levi Civita connection on M . Then ▽U⃗ V⃗ = 0. The
covariant derivative Dm(t)

dt v(t) of a vector field v(t) = doϕg(t)V⃗ (t) along a curve

m(t) = ϕg(t)(o) in M is given by Dm(t)

dt v(t) = doϕg(t)
dV⃗ (t)
dt (o).
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Proof. It is easy to show using Koszul’s formula that ▽U⃗ V⃗ is equal to the
orthogonal projection of ▽Ū V̄ on the horizontal distribution H(g) = {gX : X ∈ p}.
As in the Proposition 2.5, Ū and V̄ are the left invariant vector fields defined by
U and V . The same proposition gives ▽Ū V̄ = 1

2 [Ū , V̄ ]. Since [U, V ] ∈ k, the
projection of ▽Ū V̄ on H is zero.

Suppose now that v(t) is a vector field along m(t) = ϕg(t)(o) for g(t) a solution
of dg

dt = g(t)U(t), U(t) ∈ p. It follows from above that there is a curve V (t) ∈ p

such that v(t) = doϕg(t)V⃗ (t)(o). Then Dm(t)

dt v(t) = doϕg(t)

(
dV⃗
dt +▽U⃗(t)V⃗ (t)

)
(o) =

doϕg(t)
dV⃗
dt (o). □

3. Rollings of symmetric semi-Riemannian manifolds

Let us now return to the intrinsic equations of rolling (1.1), whereby a curve
α(t) in a Riemannian manifold M rolls on a curve α̂(t) in another Riemannian
manifold M̂ of the same dimension if there is an isometry A(t) such that

A(t) : Tα(t)M → Tα̂(t)M̂,
dα̂

dt
(t) = A(t)

dα

dt
(t),

and v̂(t) = A(t)v(t) is a parallel transport along α̂(t) for each parallel transport
v(t) along α(t). Note that the following properties follow from the above definition.

• Reflexive property: if A(t) rolls α(t) in M onto a curve α̂(t) in M̂ then
A−1(t) rolls α̂(t) onto α(t).

• Transitive property: if A(t) rolls α(t) on α̂(t), and if B(t) is an isometry
that rolls α̂(t) on β(t), then B(t)A(t) is the isometry that rolls α(t) on β(t).

• no need for the initial contact between M and M̂ .
On symmetric semi-Riemannian spaces rolling on their tangent spaces the equa-

tions of rolling equations follow almost immediately from the definition according
to the following proposition.

Proposition 3.1. Suppose that M̂ is the tangent space ToM at o in a sym-
metric semi-Riemannian space M . A curve α(t) in M rolls on a curve α̂(t) in
M̂ , a solution of ˙̂α(t) = U⃗(t)(o), by the isometry A(t) = (dgϕg(t))

−1 defined by a
horizontal lift g(t) of α(t) and a solution of dg

dt = g(t)U(t), U(t) ∈ p.

Proof. Let α(t) = ϕg(t)(o) with g(t) a solution of dg
dt = g(t)U(t) for some

curve U(t) ∈ p. It follows (equation (2.3)) that
dα

dt
= doϕg(t)U⃗(t)(o).

If we now let α̂(t) denote a solution of dα̂
dt = U⃗(t)(o), then the preceding equation

can be written as
dα

dt
= doϕg(t)

dα̂

dt
= A−1(t)

dα̂

dt
,

where A−1(t) = doϕg(t). So we have

(3.1)
dα̂(t)

dt
= A(t)

dα(t)

dt
.
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We need to show that A(t) maps parallel transport v(t) along α(t) onto a parallel
transport v̂(t) along α̂(t). Every vector field v(t) along α(t) can be represented as
v(t) = doϕg(t)V⃗ (t)(o) for some V (t) ∈ p. According to Proposition 2.7, Dα(t)

dt v(t) =

doϕg(t)
dV⃗
dt . Then v(t) is parallel whenever Dα(t)

dt v(t) = 0 = doϕg(t)
dV⃗
dt , that is,

whenever dV⃗ (t)
dt = 0. Therefore v̂(t) = A(t)v(t) = doϕg(t)−1v(t) = V⃗ (t), and V⃗ (t) is

constant, hence parallel to α̂(t). □

The above shows that each horizontal curve g(t) in G, a solution of dg
dt =

g(t)U(t), U(t) ∈ p, defines a family of curves α̂(t) in ToM , each a solution of
dα̂
dt = U⃗(t)(o), that roll on α(t) = ϕg(t)(o). Conversely, every solution (g(t), α̂(t)) of
the differential system

(3.2)
dg

dt
= g(t)U(t),

dα̂(t)

dt
= U⃗(t)(o), U(t) ∈ p

singles out a curve α(t) = ϕg(t)(o) in M that is rolled on α̂(t) in ToM by dg−1ϕg−1(t).
The triple (α̂(t), dgϕg(t), α(t)) is known as a rolling curve in the existing literature
on rolling [17,18].

We shall refer to (3.2) as the rolling distribution and we will denote it by
H(g, p). Solutions of (3.2) generated by bounded and measurable curves U(t), t ∈
[0, T ] will be referred to as the rolling motions. Rolling motions take place in the
configuration space

G = G× M̂, M̂ = TaM

which we regard as a Lie group, with the group operation gh = (g, p)(h, q) =
(gh, p + q), g = (g, p) and h = (h, q). Then the Lie algebra G of G is naturally
identified with g× M̂ and its canonical Lie bracket [(X, p), (Y, q)] = ([X,Y ], 0). It
then follows that H(g, p) is a left-invariant distribution given by

H(g) = H(g, p) = {(gU, U⃗(o)) : U ∈ p},g = (g, p) ∈ G.

Let Γ = {(U, U⃗(o)) : U ∈ p}, so that H(g, p) = gΓ. Since Γ is a vector subspace
in G that satisfies

(3.3) Γ + [Γ,Γ] + [Γ, [Γ,Γ]] = G,

the Lie algebra generated by the left-invariant vector fields tangent to H is equal
to G and, therefore, any two points in G can be connected by a rolling motion (by
the Chow-Rashevsky theorem [27]).

In the Riemannian case rolling motions inherit natural length
∫ T

0

√
⟨⟨U(t), U(t)⟩⟩dt

from G. Since vector fields in H are complete, any pair of points in G can be
connected by an integral curve of H of minimal length [16]. An integral curve γ(t)
of H is called a rolling geodesic if for any t0 and t1, sufficiently close to each other,
the length of γ(t) in the interval [t0, t1] is minimal among all other integral curves
of H that connect γ(t0) to γ(t1).

To put the matter in a control theoretic context, let A1, . . . , Am be an orthonor-
mal basis in p so that (Ai, A⃗i(o)) is an orthonormal basis in Γ. Then, an absolutely
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continuous curve g(t) = (g(t), p(t)) is a rolling motion if and only if

(3.4)
dg

dt
= g(t)(

m∑
i=1

ui(t)Ai),
dp

dt
=

m∑
i=1

ui(t)A⃗i(o),

for some bounded and measurable control functions u1(t), . . . , um(t). Then, the
length of g(t) is given by

∫ T

0

√
u2
1(t) + · · ·+ u2

m(t)dt. In the semi-Riemannian case
⟨⟨U(t), U(t)⟩⟩ is of indefinite sign and does not lend itself to any length interpreta-
tions. This potential obstacle is bypassed when the length functional is replaced by
the energy functional E = 1

2

∫ T

0
⟨⟨U(t), U(t)⟩⟩dt, in which case the rolling geodesics

are redefined as the rolling motions along which the energy of transfer is critical
(rather than optimal) relative to the given boundary conditions g(0) = g0 and
g(T ) = g1. Our ultimate aim is to find the differential equations that the rolling
geodesics must satisfy. But first let us look at some particular cases.

4. Some noteworthy cases

4.1. Rolling spheres and rolling hyperboloids. According to the Killing-
Hopf theorem, the universal cover of a complete Riemannian manifold of constant
curvature is isometric to the hyperboloid Hn, the sphere Sn, or the Euclidean space
En depending whether the curvature is negative, positive or zero [24]. These three
prototypes are known as the space forms. Let us now consider rollings of non-
Euclidean space forms on their tangent spaces under the action of the isometry
groups. For that purpose let

(4.1) (x, y)ϵ = x0y0 + ϵ

n∑
i=1

xiyi, ϵ = ±1,

for x and y in Rn+1. For ϵ = 1 this scalar product is Euclidean, and for ϵ = −1 it
is Lorentzian. Let now ∥x∥2ϵ = (x, x)ϵ and then define

Sn
ϵ (ρ) = {x ∈ Rn+1 : ∥x∥2ϵ = ρ2, x0 > 0 when ϵ = −1}.

We will refer to Sn
ϵ (ρ) as the sphere of radius ρ (Euclidean when ϵ = 1 and hy-

perbolic when ϵ = −1). Indeed for ϵ = −1, the hyperbolic sphere is the connected
component of the hyperboloid x2

0 = ρ2 +
∑n

i=1 x
2
i through x0 = ρ. Below we will

show that each sphere Sn
ϵ (ρ) is a Riemannian symmetric manifold with its metric

defined by ⟨ẋ, ẏ⟩ϵ = ϵ(ẋ, ẏ)ϵ for each pair of tangent vectors ẋ and ẏ in TpS
n
ϵ (ρ).

Let now Gϵ be SO(n + 1) when ϵ = 1, and be the connected component of
SO(1, n) that contains the group identity when ϵ = −1. Each group Gϵ acts on
the points of Rn+1 by the matrix multiplication and preserves the bilinear form
(4.1). We will regard Gϵ as a semi-Riemannian manifold with its semi-Riemannian
left-invariant metric given by

⟨⟨RX,RY ⟩⟩ϵ = ⟨⟨X,Y ⟩⟩ϵ = −ϵρ2

2
Tr(XY ),

for any X and Y in the Lie algebra gϵ of Gϵ, where RX and RY are the abreviates
for deLR(X) and deLRY . This metric is Gϵ invariant because the trace form is
AdGϵ

invariant.
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Each group Gϵ acts transitively on the sphere Sn
ϵ (ρ) via the action ϕR(x) = Rx

and identifies the sphere Sn
ϵ (ρ) as the quotient Sn

ϵ (ρ) = SOϵ(n+ 1)/Kϵ, where Kϵ

is the isotropy group of a given point o ∈ Sn
ϵ (ρ). That is, {Ro : R ∈ SOϵ(n+1)} is

identified with {RKϵ : R ∈ Gϵ}. If π denotes the natural projection from Gϵ onto
the quotient space Gϵ/Kϵ then π(R) = ϕR(o) = Ro. We then have

π(gR) = ϕgRo = (gR)o = g(Ro) = ϕg(π(R)), g, R,∈ Gϵ.

The realization of Sn
ϵ (ρ) as the orbit {Ro : R ∈ Gϵ} induces a decomposition

gϵ = pϵ ⊕ kϵ with kϵ the Lie algebra of the isotropy group Kϵ and pϵ its orthogonal
complement in gϵ. Since Gϵ preserves the scalar product ( , )ϵ, the elements of gϵ
are skew-symmetric, that is, satisfy (Xu, v)ϵ = −(u,Xv)ϵ for each X ∈ gϵ.

Elements in gϵ can be represented in terms of linear operators (u ∧ϵ v) =
u ⊗ϵ v − v ⊗ϵ u, u ∈ Rn+1, v ∈ Rn+1, where (u ⊗ϵ v)x = (v, x)ϵu, x ∈ Rn+1. One
can easily verify that

((u ∧ϵ v)x, y)ϵ + (x, (u ∧ϵ v)y)ϵ = 0,

hence, (u∧ϵ v) ∈ gϵ. Then one can show that gϵ is the linear span of {u∧ϵ v : u, v ∈
Rn+1} by an easy dimensionality argument. The preceding operators satisfy

[u ∧ϵ v, w ∧ϵ z] = (u,w)ϵ(v ∧ϵ z) + (v, z)ϵ(u ∧ϵ w)(4.2)
− (v, w)ϵ(u ∧ϵ z)− (u, z)ϵ(v ∧ϵ w).

In addition, they conform to the following inner product in gϵ:

⟨⟨u ∧ϵ v, w ∧ϵ z⟩⟩ϵ = −ϵρ2

2
Tr((u ∧ϵ v)(w ∧ϵ z))(4.3)

= ϵρ2((v, z)ϵ(u,w)ϵ − (w, v)ϵ(u, z)ϵ)

The following formula will be needed later in the paper.

Proposition 4.1. Let U = u∧ϵo, V = v∧ϵo,W = w∧ϵo, where ⟨⟨V,W ⟩⟩ϵ = 0.
Then

(4.4) ∥[U, [V.W ]]∥2ϵ =
1

ρ4
(⟨⟨V,W ⟩⟩2ϵ∥V ∥2ϵ + ⟨⟨U, V ⟩⟩2ϵ∥W∥2ϵ .

Proof. It follows from above that [V,W ] = ρ2(v ∧ϵ w), and

[U, [V,W ]] = ρ2[u ∧ϵ o, v ∧ϵ w]

= ρ2((u,w)ϵV − (u, v)ϵW ).

Hence,
∥[U, [V,W ]]∥2ϵ = ρ4(u,w)2ϵ∥V ∥2ϵ + (u, v)2ϵ∥W∥2ϵ .

But then,
⟨⟨U, V ⟩⟩ = ϵρ4(u, v)ϵ, ⟨⟨U,W ⟩⟩ϵ = ϵρ4(u,w)ϵ

gives the desired formula. □
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In this notation,

kϵ = {u ∧ϵ v, (u, o)ϵ = (v, o)ϵ = 0}, pϵ = {u ∧ϵ o, u ∈ Rn+1, (u, o)ϵ = 0}.
The reader can readily verify using (4.2) that these factors satisfy Cartan’s Lie
algebraic relations

[pϵ, pϵ] = kϵ, [pϵ, kϵ] = pϵ, [kϵ, kϵ] ⊆ kϵ,

Then each U = u ∧ϵ o gives rise to a Killing vector field U⃗ through U⃗(o) =
d
dt exp (tU(o)|t=0 = Uo = ρ2u. Then for each U, V in pϵ we have

(4.5) ⟨⟨U, V ⟩⟩ϵ = ϵρ4(u, v)ϵ = ⟨U⃗o, V⃗ o⟩ϵ
hence the mapping U → U⃗ is an isometry. According to the lemma below, ⟨⟨ , ⟩⟩ϵ
is positive on pϵ, so each sphere Sn

ϵ (ρ) is a Riemannian symmetric space.

Lemma 4.1. The bilinear form ⟨⟨ , ⟩⟩ϵ is positive on pϵ, and negative on kϵ when
ϵ = −1.

Proof. It follows from (4.3) that ⟨⟨u∧ϵ o, v∧ϵ o⟩⟩ϵ = ϵρ4(u, v)ϵ. When o = ρe0
then ∥o∥2ϵ = ρ2 and (u, v)ϵ = ϵ

∑n
i=1 uivi. Therefore,

⟨⟨u ∧ϵ ρe0, v ∧ϵ ρe0⟩⟩ϵ = ρ4
n∑

i=1

uivi.

Evidently, this form is positive independently of ϵ, but on kϵ it is negative for
ϵ = −1.

Suppose now that o is any point on the sphere Sn
ϵ (ρ). Since SOϵ acts transi-

tively on each sphere Sn
ϵ (ρ) there exists an element R of SOϵ such Re0 = o. Then

R(u ∧ϵ e0)R
−1 = Ru ∧ϵ o and Ru is orthogonal to o. Since the quadratic form

⟨⟨ , ⟩⟩ϵ is invariant under the conjugations by elements in Gϵ we have

⟨u ∧ϵ e0, v ∧ϵ e0⟩ = ⟨R(u ∧ϵ e0)R
−1, R(v ∧ϵ e0)R

−1)⟩ = ⟨Ru ∧ϵ o,Rv ∧ϵ o⟩.
Likewise, one shows that ⟨ , ⟩−1 is negative on ko when ϵ = −1. □

Let us now return to the rolling on tangent spaces. The following proposition
is a direct corollary of Proposition 3.1.

Proposition 4.2. A curve α(t) = R(t)o in Sn
ϵ (ρ) is rolled on α̂(t) in ToS

n
ϵ (ρ)

by an isometry R−1(t) whenever the following equations hold

(4.6) α(t) = R(t)o,
dR

dt
= R(t)(u(t) ∧ϵ o),

dα̂

dt
= U⃗(o) = ρ2u(t).

Rolling equations (4.6) can be modified to include the rollings of spheres centred
at any point c in Rn+1. If Sn

ϵ (ρ, c) is such a sphere then Gϵ acts on it by the action
ϕR(t)p = c + R(t)(p − c). If o is a point on Sn

ϵ (ρ, c), and if α(t) based at o then
α(t) = ϕR(t)(o) = c + R(t)(o − c). Relative to this action the Killing vector fields
are given by U⃗(p) = U(p − c) for each U ∈ pϵ. It follows that α(t) is rolled on
α̂(t) in the tangent space ToS

n
ϵ (ρ, c) by a curve R(t) in Gϵ whenever the following

modified equations hold

(4.7)
dR

dt
= R(t)(u(t) ∧ϵ (o− c),

dα̂

dt
(t) = U⃗(t)(o) = U(t)(o− c),
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For instance, when Sn
ϵ (ρ, c) rolls on the hyperplane P = {q ∈ Rn+1 : qn+1 = 0}

its centre is confined to {q ∈ Rn+1 : qn+1 = ρ}. Hence o = 0 is on the sphere when
c = ρen+1 in which case o − c = −ρen+1. Then α(t) = c + R(t)(−ρen+1) is rolled
on ˙̂α(t) = U⃗(t)(o) = −ρU(t)(en+1) by the isometry R−1(t), a solution of dR

dt =

R(t)U(t), with U(t) = −ρu(t)∧ϵ (en+1). It follows that U(t) = ρ
( 0 u(t)

−ϵuT (t) 0

)
, and

˙̂α(t) = −ρu(t) ∧ϵ en+1(−ρen+1) = ρ2
(
u(t)

0

)
.

On the other hand, when the sphere Sn
ϵ (ρ) is rolled on the hyperplane P = {q ∈

Rn+1 : q1 = 0} then o − c = −ρe1. Hence U(t) = −u(t) ∧ϵ (ρe1) = ρ
(

0 ϵuT (t)
−u(t) 0

)
and ˙̂α(t) = ρ2

(
u(t)
o

)
which agrees with the results obtained in [7].

4.1.1. Spheres rolling on spheres. Equations (4.6) and (4.7) can be used to
obtain the rolling equations for the sphere of radius ρ rolling on the sphere of
radius σ by employing a brilliant observation of F. Silva Leite and F. Louro [25]
that the rollings of the spheres can be done through the intermediate rolling on the
common tangent plane. In particular, we will consider the case where the sphere
Sn
ϵ (ρ, (ρ + σ)e0) is rolled on the stationary sphere Sn

ϵ (σ, 0). Then x0 = σe0 is the
"north pole" for the stationary sphere centred at c = 0 as well as the "south pole"
for the rolling sphere centred at c = (ρ+ σ)e0.

Let M1(ρ, ϵ) denote the sphere of radius ρ centred at c = (ρ + σ)e0 and let
M2(σ, ϵ) denote the stationary sphere of radius σ centred at the origin of Rn+1.
Then o = σe0 is the common point for the two spheres in both the hyperbolic and
the Euclidean case. If α(t), α(0) = o is a curve on M1(ρ, ϵ) then α(t) is rolled onto
β1(t) in the tangent plane ToM1(ρ, ϵ) by a horizontal curve g1(t) that is a solution
of dg1

dt = g1(t)U1(t), U1(t) = u1(t) ∧ϵ (o− c) with

β̇1(t) = U⃗1(t)(o) = U1(t)(o− c) = U1(t)(−ρe0).

Likewise, a curve α2(t) in M2(σ, ϵ), α2(0) = σe0, is rolled on a curve β2(t) in
Tσe0M2(σ, ϵ) by a curve g2(t) that projects onto α2(t), that is, α2(t) = g2(t)(σe0),
and is a solution of

dg2
dt

= g2(t)U2(t), U2(t) = u2(t) ∧ϵ σe0

with β̇2(t) = U⃗2(t)(σe0) = U2(t)(σe0).
If we now impose the condition that β1(t) = β2(t) then by the transitivity

property of rollings, α1(t) is rolled on α2(t) by g(t) = g2(t)g
−1
1 (t) since g−1

2 α̇2(t) =

β̇2 = β̇1 = g−1
1 α̇1(t). Then

U1(−ρe0) = β̇1(t) = β̇2(t) = U2(σe0) ⇒ u1 =
σ2

ρ2
u2,

therefore, U1 = σ2

ρ2 u2 ∧ϵ (−ρe0) = −σ
ρU2.

Ωϵ(t)g(t) =
d

dt
g2(t)g

−1
1 (t) = g2U2g

−1
1 − g2U1g

−1
1 =

ρ+ σ

ρ
g2U2g

−1
2 (t)g(t).
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Thus,

Ωϵ(t) =
ρ+ σ

ρ
g2(t)U2(t)g

−1
2 (t).

Hence

α̇2(t) =
dg2
dt

(σe0) = σg2(t)U2(t)e0 = (g2U2g
−1
2 )α2(t) =

ρ

ρ+ σ
Ωϵ(t)α2(t).

If we now write U2(t) =
ρ

ρ+σUϵ(t) where Uϵ(t) = u(t)∧ϵe0, and rename the variables
g2 = S, g1 = Ŝ and g(t) = R(t), then we get:

Ωϵ(t) = S(t)Uϵ(t)S
−1(t) = S(t)u(t) ∧ϵ S(t)e0,

dR

dt
= Ωϵ(t)R(t),

α1(t) = Ŝ(o) = c+ Ŝ(o− c) = −ρŜ(t)e0 + (ρ+ σ)e0, α2(t) = σS(t)e0,

dS

dt
=

ρ

ρ+ σ
SUϵ(t),

dŜ

dt
= − σ

ρ+ σ
ŜUϵ(t).

These equations agree with the rolling equations obtained in [7].

4.2. Semi-simple Lie groups. Every semi-simple Lie algebra of a connected
Lie group G admits an AdG invariant and non-degenerate scalar product ⟨X,Y ⟩
equal to a constant multiple of the Killing form Kl(X,Y ) = Trace(adX ◦ adY ).
The scalar product induced a left-invariant metric ⟨⟨gX, gY ⟩⟩g = ⟨X,Y ⟩ where gX
and gY stand respectively for deϕg(X) and deϕgY . This left-invariant metric is
also bi-invariant because ⟨ , ⟩ is AdG invariant. It follows that the group of left
translations {ϕg : g ∈ G} is the connected component I0(G) of the isometry group
I(G). Therefore, G together with the metric ⟨⟨ , ⟩⟩ is a semi-Riemannian manifold.

However, G is also a symmetric semi-Riemannian manifold because ζe(g) = g−1

is a global symmetry at the group identity e, with ζg = ϕgζeϕg−1 a global symmetry
at any other point g in G.

Alternatively, this fact could be verified through the action of G × G on G
given by

ϕ(g1,g2)h = g1hg
−1
2 , (g1, g2) ∈ G×G.

For then, G = G×G/K, where K = {(g, g) : g ∈ G} is the isotropy group of this
action through the group identity e. The group K is also the group of fixed points of
the involutive automorphism σ((g1, g2)) = (g2, g1). Hence p = {(X,−X) : X ∈ h}
and k = {X,X) : X ∈ h} are the Cartan factors induced by σ.

When G × G is endowed with a left-invariant metric induced by the scalar
product ⟨⟨(X1, X2), (Y1, Y2)⟩⟩ = 2(⟨X1, Y1⟩ + ⟨X2, Y2⟩) then any horizontal curve
(g1(t), g2(t)), a solution of dg1

dt = g1(t)U(t), dg2
dt = −g2(t)U(t) satisfies

4⟨⟨U(t), U(t)⟩⟩ =
〈〈 d

dt
(g1(t), g2(t)),

d

dt
(g1(t), g2(t))

〉〉
=
〈 d

dt
(g1(t)g

−1
2 (t)),

d

dt
(g1(t)g

−1
2 (t))

〉
= 4⟨g1U(t)g−1

2 , g1U(t)g−1
2 ⟩ = 4⟨U(t), U(t)⟩
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Thus G, with it metric induced by the Killing form, becomes a symmetric semi-
Riemannian space (it is a symmetric Riemannian space only when G is compact
[29]). Then Proposition 2.4 can be used to obtain the global symmetry. We have
ζe ◦ π = π ◦ σ which yields

ζeπ(g1, g2) = ζ2(g1g
−1
2 ) = g2g

−1
1 = (g1g

−1
2 )

−1
,

which agrees with the global symmetry quoted above.
In the category of matrix groups, SL(n,R), the group of non-singular matrices

with determinant one, is a particularly important semi-simple case. On SL(n,R),
Kl(X,Y ) = 2nTr(XY ) [29]. For computational purposes it is more convenient to
endow G with the left-invariant metric defined by ⟨⟨X,Y ⟩⟩ = 1

2Tr(XY ). Then,
⟨⟨X,X⟩⟩ = ±

∑n
i,j=1 x

2
ij , depending whether X is symmetric or skew-symmetric.

4.3. Self adjoint subgroups of SL(n,R). A closed subgroup H of SL(n,R)
is said to be self-adjoint if gT , the transpose of g, is in H for each g ∈ H [26].
Then SL(n,R) as well as any self-adjoint subgroup H, admits an involutive au-
tomorphism σ(g) = (gT )

−1. It follows that K = {σ(g) = g, g ∈ H} = H ∩
SO(n,R). In each case, H/K is a symmetric Riemannian space. In particular,
SL(n,R)/SO(n,R) is equal to the space of positive definite matrices with deter-
minant one, and SO0(1, n)/SO(n,R) is the hyperboloid Hn. For other cases, see
[26,27].

Let us consider M = SL(n,R)/SO(n,R) in some detail. Then K = SO(n,R)
is the Lie group of points fixed by the automorphism σ and k = so(n,R) is its Lie
algebra. It follows that deσ(X) = d

dt exp(−tX)
T |t=0 = −XT . Hence deσ(X) = −X

if and only if X symmetric. Thus p is equal to the space of symmetric matrices in g.
It is easy to verify that ⟨ , ⟩ is positive on p and negative on k = so(n). Therefore,
G with its left-invariant metric induced by ⟨ , ⟩ is a semi-Riemannian manifold.

Then, the quotient space M = G/K will be identified with the space of positive-
definite matrices of determinant one, denoted by Pn, through the action

τg(P ) = gPgT , g ∈ SL(n,R), P ∈ Pn.

Since any positive definite matrix P with Det(P ) = 1 can be written as P = SST for
some S ∈ SL(n,R) the action is transitive, and Pn can be identified with the orbit
through the identity I. Horizontal curves are the solutions of dg

dt = g(t)U(t), with
U(t) ∈ sl(n,R) symmetric. Any curve α(t) in Pn is the projection of a horizontal
curve g(t) and the length of α(t) is given by

∫ T

0

√
⟨U(t), U(t)⟩ dt. Killing vector

fields are given by U⃗(P ) = UP + PUT , U ∈ sl(n,R) and P ∈ M . The rolling
distribution is given by

dg

dt
= g(t)U(t), U(t) ∈ sl(n,R), U(t) = UT (t),

dp

dt
= U⃗(t)(o) = 2U(t).

The case n = 2 is somewhat special, for then P2 is isometrically diffeomorphic
to the Poincaré upper half plane P = {z = x + iy : y > 0} with its metric
1
y

√
ẋ2 + ẏ2. To elaborate, note that every g ∈ SL(2) can be written as g = PR
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where P is an upper triangular matrix and R a rotation matrix in SO(2). In fact,
if g =

(
a b
c d

)
is an element of SL(2) then(

a b
c d

)
=

1√
c2 + d2

(
1 ac+ bd
0 c2 + d2

)
1√

c2 + d2

(
d −c
c d

)
.

Let now

P =
1√

c2 + d2

(
1 ac+ bd
0 c2 + d2

)
=

(
y√
y

x√
y

0 1√
y

)
,

where x = ac+bd
c2+d2 , y = 1

c2+d2 , and then define a mapping F from the Poincaré upper
half plane to the space of positive definite matrices with determinant one by

F (x+ iy) = ggT = PPT =
1

y

(
x2 + y2 x

x 1

)
,

We will now show that F is an isometry from P with its hyperbolic metric onto P2

with its H-invariant metric. If α̃(t) = F (α(t) then

˙̃α(t) = ṖPT + PṖT = P (P−1Ṗ + ṖT (P−1)T )PT ,

and therefore, ∥ ˙̃α(t)∥ = ∥P−1Ṗ + ṖT (P−1)T ∥. If Y = y√
y and X = x√

y , then an
easy calculation shows that

P−1Ṗ + ṖT (PT )−1 =

(
2 Ẏ
Y

XẎ+ẊY
Y 2

XẎ+ẊY
Y 2 −2 Ẏ

Y

)
=

1

y

(
ẏ ẋ
ẋ −ẏ

)
,

and hence ∥ ˙̃α(t)∥ = 1
y

√
ẋ2 + ẏ2. It follows that ∥α̇(t)∥ = ∥ ˙̃α(t)∥ and, therefore, F

is an isometry.
It then follows that the rolling distribution has its isometric analogue on P

rolling on the tangent space at i. In this scenario SL(2,R) acts on P via the
Moebius transformations τg(z) = az+b

cz+d , g =
(
a b
c d

)
, and P is represented by the orbit

{τg(i) : g ∈ SL(2,R)}. Horizontal curves are the solutions of dg
dt = g(t)

( u1(t) u2(t)
u2(t) −u1(t)

)
and their projections on P are given by z(t) = g(t)(i).

Suppose that α(t) is a curve such that α(0) = i. Then α(t) = g(t)i for a
horizontal curve g(t) such that g(0) = I. Then

dα(t)

dt
|t=0 =

d

dt
g(t)(i)|t=0 =

d

dt

1

c2 + d2
(bd+ ac+ i)|t=0 = 2i(u1 − iu2).

Therefore rolling motions are the solutions of

dg

dt
= g(t)

(
u1(t) u2(t)
u2(t) −u1(t)

)
,
dp

dt
= 2i(u1(t)− iu2(t)).

5. Hamiltonian and Poisson systems: Extremal curves

We now come to the central part of the paper, the Hamiltonian systems asso-
ciated with rolling problems. We will apply the Maximum Principle to obtain the
extremal equations.
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Remark 5.1. Even though the Maximum Principle is invented for problems
of optimal control for which it provides the necessary conditions that an optimal
control must satisfy, it can be also used to provide the necessary conditions that
a critical control (a control along which the variational equation is equal to zero)
must satisfy.

5.1. Rolling Hamiltonians. Let us recall the rolling equations (4.6) for sym-
metric spaces M rolling on M̂ = ToM

dg

dt
= g(t)

( m∑
i=1

ui(t)Ai

)
,

dp

dt
=

m∑
i=1

ui(t)A⃗i(o),

and the variational problem associated with the energy function

E =
1

2

∫ T

0

m∑
i=1

u2
i (t)dt.

Our immediate aim is to use the Maximum Principle to obtain the equations for the
extremal curves in the cotangent bundle T ∗G of the configuration space G = G×M̂ .
To emphasize the structure of the problem we will rewrite (3.4) as

dg

dt
=

m∑
i=1

ui(t)Xi(g),

where each Xi a left-invariant vector field Xi(g) = (gAi, A⃗i(o)), g = (g, p) and we
assume that g(t) is a critical trajectory generated by a control u(t) that satisfies
the given boundary conditions g(0) = g0 and g(T ) = g1. Then according to the
Maximum Principle, g(t) is either the projection of a normal extremal curve ξ(t)
in T ∗G along which the extended Hamiltonian

H(ξ(t), u1(t), . . . , um(t)) = −1

2

m∑
i=1

u2
i (t) +

m∑
i=1

ui(t)Hi(ξ(t)),

satisfies ∂H
∂uj

= 0, j = 1, . . . ,m at u(t) = u(t), or g(t) is the projection of an
abnormal extremal curve ξ(t), ξ(t) ̸= 0, that satisfies the constraints

Hi(ξ(t)) = 0, i = 1, . . . ,m.

In this notation, each Hi(ξ(t) is the Hamiltonian Hi(ξ(t)) = ξ(t)(Xi(g(t))).
In what follows we will confine our attention to the normal extremal curves. It

then follows that the normal extremal curves are generated by the controls ui(t) =
Hi(ξ(t)), i = 1, . . . ,m, that is, the normal extremal curves are the solution curves
of a single Hamiltonian vector field H⃗ corresponding to the rolling Hamiltonian

H(ξ) =
1

2

m∑
i=1

H2
i (ξ).

Remark 5.2. On Riemannian symmetric spaces of constant curvature every
optimal trajectory is the projection of a normal extremal curve, so the abnormal
extremal curves can be ignored [7]. I suspect that the same is true for arbitrary
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symmetric Riemannian spaces. It is not clear if the same could be said about
general symmetric semi-Riemannian spaces.

In the left-invariant trivialization T ∗G = G × G∗ the above Hamiltonian is
G invariant, hence it can be viewed as a function on G∗. Thus, H is both a
Hamiltonian relative to the symplectic structure of T ∗G as well as a Hamiltonian
relative to the Poisson structure of G∗. Recall that the dual g∗ of a Lie algebra g is a
Poisson space relative to the Poisson bracket {f, h}(ℓ) = ℓ([dh, df ]), ℓ ∈ g∗, for any
smooth functions f and h on g∗. Then f⃗ defined by f⃗(h) = {f, h}, h ∈ C∞(g∗) is
the Poisson vector field generated by f . As a consequence, the Hamiltonian system
generated by H is given in the quadrature form:

dℓ

dt
= −ad∗dH(ℓ(t))(ℓ(t)),

dg

dt
=

m∑
i=1

Hi(ℓ(t))Xi(g(t)), ℓ ∈ G∗,

where ad∗dH(ℓ)(ℓ)X = −ℓ[dH,X], X ∈ G. It follows that

(5.1)
dℓ

dt
= −ad∗dH(ℓ(t))(ℓ(t))

is the Poisson equation on G∗ associated with H. Most of this theory is taken from
my earlier publications [3, 27]. We will now examine the solutions of the above
equations in more detail.

Let us also recall several fundamental facts about the dual g∗ of a Lie algebra
g. First, g∗ is foliated by the coadjoint orbits of G. Second, each coadjoint orbit
is a symplectic submanifold in g∗, and, third, each coadjoint orbit is an invariant
set for each Poisson vector field f⃗ [27]. We will now concentrate on the solutions
of the associated Poisson equation.

Let us first comment on the structure of the coadjoint orbits in this situation.
Since M̂ is a vector space, its tangent space at 0 can be identified with M̂ . Then,
the Lie algebra G can be identified with g⊕ M̂ , and its dual can be identified with
G∗ = g∗ ⊕ M̂∗, where

g∗ = {ℓ ∈ G∗ : ℓ(ṗ) = 0, ṗ ∈ M̂}, M̂∗ = {ℓ ∈ G∗ : ℓ(g) = 0}.

It then follows that every ℓ ∈ G∗ can be written as ℓ = ℓ1 + ℓ2 with ℓ1 ∈ g∗ and
ℓ2 ∈ M̂∗. Since M̂ , as a vector space, is an abelian algebra, the projection ℓ2 on
M̂∗ is constant on each coadjoint orbit of G. The argument is straightforward: if
g = (g, p), and if (X, ṗ) ∈ G then

Ad∗g(ℓ)(X + ṗ) = ℓ(Adg−1(X + ṗ)) = ℓ(Adg−1(X) + ṗ) = ℓ1(Adg−1(X)) + ℓ2(ṗ),

It follows that the coadjoint orbits in G∗ are of the form

{Ad∗g(ℓ1) : g ∈ G}+ ℓ2, for any ℓ = ℓ1 + ℓ2.

This fact can be also verified directly from equation (5.1): we have

dℓ

dt
V = −ℓ[dH, V ], for any any V = X + ṗ in G,
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where dH =
∑m

i=1 Hi(ℓ)(Ai + A⃗i(o)) and Hi(ℓ) = ℓ1(Ai) + ℓ2(A⃗i(o)). Therefore,

dℓ1
dt

(X) +
dℓ2
dt

(ṗ) = −(ℓ1 + ℓ2)([dH,X + ṗ]) = −
m∑
i=1

Hi(ℓ1)[Ai, X].

from which follows that

dℓ1
dt

(X) = −
m∑
i=1

Hiℓ1[Ai, X], X ∈ g,
dℓ2
dt

(ṗ) = 0.

Since ṗ is arbitrary dℓ2
dt = 0.

To uncover other constants of motion, identify G∗ with G via the natural qua-
dratic forms on each of the factors, and then recast the preceding equations on
G. More precisely, identify each ℓ2 in M̂∗ with a tangent vector l =

∑m
i=1 liA⃗i(o)

via the formula ℓ2(ṗ) = ⟨l, ṗ⟩ṗ ∈ M̂ . Similarly, identify ℓ1 ∈ g∗ with L ∈ g via
the formula ℓ1(X) = ⟨⟨L, X⟩⟩, X ∈ g. Note that in this identification of the Lie
algebras with their duals, coadjoint orbits {Ad∗g(ℓ1) + ℓ2 : g ∈ G} are identified
with the affine sets {Adg(L) + l : g ∈ G}. Also, L ∈ g is identified with the sum
L = Lp + Lk, Lp ∈ p and Lk ∈ k. Relative to the orthonormal basis A1, . . . , Am in
p, Lp =

∑m
i=1 PiAi where Pi = ℓ1(Ai) = ⟨⟨L,Ai⟩⟩. It follows that

Hi(ξ) = ℓ(Ai) + A⃗i(o) = ℓ1(Ai) + ℓ2(A⃗i(o)) = Pi + li,

and

dℓ1
dt

(X) =
〈〈dL

dt
,X
〉〉

= −
〈〈

L,

[ m∑
i=1

(li + Pi)Ai, X

]〉〉

= −
〈〈[

L,

m∑
i=1

(li + Pi)Ai

]
, X

〉〉
,
〈dl
dt

, ṗ
〉
=

dℓ2
dt

(t)(ṗ) = 0

Since X and ṗ are arbitrary,

(5.2)
dL

dt
=

[ m∑
i=1

(li + Pi)Ai, L

]
= [A+ Lp, L], A =

m∑
i=1

liAi,
dl

dt
= 0.

Equations (5.2) constitute the Poisson equations on G generated by the rolling
Hamiltonian

H =
1

2

m∑
i=1

H2
i =

1

2

m∑
i=1

(li + Pi)
2 =

1

2
∥A+ Lp∥2.

They may be also written as

(5.3)
dLp

dt
= [A+ Lp, Lk],

dLk

dt
= [A,Lp], A =

m∑
i=1

liAi,
dl

dt
= 0.

We will refer to the above equations as the rolling extremals. Its solutions project
onto the rolling geodesics via the differential equations

dg

dt
= g(t)(A+ Lp(t)),

dp

dt
=

m∑
i=1

(li + Pi(t))A⃗i(o).
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Each extremal curve (Lp(t), Lk(t), l) projects onto a geodesic g(t) = (g(t), p(t)),
and each geodesic further projects onto the pair of curves α(t) = ϕg(t)(o) in M and
α̂(t) = p(t) in M̂ that are rolled upon each other by g(t).

5.2. Rolling and affine-quadratic Hamiltonians. The isometry groups
of symmetric Riemannian spaces harbour another class of Hamiltonian systems
that show remarkable connections with the equations of mechanical tops. These
Hamiltonians are induced by a class of optimal control problems associated with
an affine control system dg

dt = g(t)(A+U(t)) where A is an element in p and where
U(t) is an arbitrary bounded and measurable control curve in k. In the case that
M = G/K is a Riemannian symmetric space, K is compact and the Killing form
is negative definite on k. Hence ⟨ , ⟩, a negative scalar multiple of the Killing form,
can be used to define an energy function E = 1

2

∫ T

0
⟨U(t), U(t)⟩dt. More generally,

any positive linear operator P on k could be used to define a modified energy
function E = 1

2

∫ T

0
⟨P(U(t)), U(t)⟩dt. This energy functional is bounded below,

and assuming that the preceding control system is controllable, admits trajectories
that satisfy the given boundary conditions along which the energy is minimal.
Then every such optimal trajectory is the projection of an integral curve of the
Hamiltonian system induced by H = 1

2 ⟨P
−1(Lk), Lk⟩ + ⟨A,Lp⟩ (assuming that

there are no abnormal optimal extremals).The case P = Id is called canonical. In
this case the associated Hamiltonian system is given by

(5.4)
dLk

dt
= [A,Lp],

dLp

dt
= [Lk, Lp] + [A,Lk],

dg

dt
= g(t)(A+ Lk),

where L ∈ g and L = Lp + Lk, Lp ∈ p, Lk ∈ k [27].
This Hamiltonian system remains valid for semi-Riemannian spaces, in the

sense that the solution curves project onto the rolling motions along which the
energy is critical (rather than optimal, as in the Riemannian case).

The proposition below shows that the Poisson system generated by the affine-
quadratic Hamiltonian H is an invariant subsystem of the Poisson system generated
by the rolling Hamiltonian H (see also [28]).

Proposition 5.1. Let g(t) = (g(t), p(t)),Lp(t),Lk(t) be any integral curve of
the rolling Hamiltonian H = 1

2∥A+ Lp∥2, that is,

dg

dt
= g(t)(A+ Lp(t)),

dp

dt
=

m∑
i=1

(li + Pi)A⃗i(o),

dLk

dt
= [A,Lp],

dLp

dt
= [A+ Lp,Lk], A =

m∑
i=1

liAi

Then

g̃(t) = g(t)h(t), Lp(t) = Adh−1(t)(Lp(t)), Lk = Adh−1(t)(Lk(t))

is an integral curve of the affine-quadratic Hamiltonian H = 1
2 ⟨Lk, Lk⟩ + ⟨A,Lp⟩,

where A = Adh−1(t)(A + Lp(t)), and h(t) is the solution of dh
dt = Lk(t)h(t) with

h(0) = I.
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Proof. If A is any element in p then d
dtAdh(t)(A) = [Adh(t)(A),Lk]. Since

d
dt (A + Lp(t)) = [A + Lp(t),Lk(t)], Adh(t)(A) and A + Lp(t) are the solutions of
the same differential equation, hence, they will be equal to each other whenever
Adh(0)(A) = A+ Lp(0), that is, when A = A+ Lp(0).

Assume that Adh(t)(A) = A+ Lp(t). Then,

dg̃

dt
= g(t)(A+ Lp(t))h(t) + g(t)Lk(t)h(t)

= g̃(t)(Adh−1(t)(A+ Lp(t)) +Adh−1(t)Lk(t)) = g̃(t)(A+ Lk(t)).

Additionally,
dLp

dt
=

d

dt
Adh−1(t)(Lp(t)) = Adh−1(t)([Lk,Lp]) +Adh−1(t)([A+ Lp(t),Lk(t)])

= Adh−1(t)[A,Lk(t)] = [Adh−1(t)A, Adh−1(t)Lk(t)]

= [A−Adh−1(t)Lp(t), Adh−1(tLk(t)] = [A− Lp(t), Lk(t)],

and
dLk

dt
=

d

dt
Adh−1(t)(Lk(t)) = Adh−1(t)[A,Lp(t)] = [Adh−1(t)A, Adh−1(t)(Lp]

= [A−Adh−1(t)(Lp(t)), Adh−1(t)(Lp(t))] = [A,Lp(t)]. □

The converse also holds as this proposition demonstrates.

Proposition 5.2. Suppose that (g̃(t), Lp(t), Lk(t)) is an extremal curve of the
affine Hamiltonian H = 1

2 ⟨Lk, Lk⟩+ ⟨A,Lp⟩. Then

g(t) = ((g̃(t)h−1(t), p(t)),
dp

dt
= A⃗(o) + L⃗p(t)(o),

dh

dt
= h(t)(Lk(t))

Lp(t) = Adh(t)(Lp(t)), Lk(t) = Adh(t)(Lk(t)), A = Adh(t)(A− Lp(t))

is an extremal curve of the rolling Hamiltonian H = 1
2 ⟨A+ Lp,A+ Lp⟩.

Proof. The proof is essentially the same as in the previous proposition. □

6. Integrability

An n×n matrix equation dL
dt = [M(t), L(t)] is called a Lax equation, and (M,L)

is called Lax pair (recall our convention that L,M ] = ML − LM). If (M,L) is a
Lax pair then the spectrum of L(t) is constant. The proof is simple: g(t)L(t)g−1(t)

is a constant matrix Λ , for any solution of dg
dt = g(t)M(t) in the general linear

group GLn(R). Hence the spectrum of Λ is equal to the spectrum of L(t).
The Poisson equation of any left-invariant Hamiltonian H on a semi-simple Lie

algebra g can be represented as dL
dt = [dH,L] and therefore the eigenvalues of L(t)

are constants of motion, hence may be regarded as the conservation laws on g. A
function h on a Poisson space is said to be invariant if {h, f} = 0 for any function
f . On semi-simple Lie algebras any spectral function is invariant. In particular
{ϕk(L) = Tr(Lk), k = 1, 2, . . . } form a family of invariant functions. Again the
proof is simple: d

dtTr(L
k) = Tr([M,L]Lk−1) = Tr(MLk − LkM) = 0.
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In some situations a Lax equation dL
dt = [M(t), L(t)] extends to the Lax equa-

tion dLλ

dt = [Mλ(t), Lλ(t)] with a parameter λ. Then a discrete spectrum of L(t)
is replaced by a continuous spectrum of Lλ(t) which results in additional con-
stants of motion. In the case of spheres rolling on their tangent planes, J. Zim-
merman in his PhD thesis (2002 University of Toronto) discovered an extension
of the Lax equation which he called isospectral [7, 30]. Remarkably, Zimmer-
man’s extension is valid for any symmetric semi-Riemannian space rolling on its
tangent plane, for the same reasons as in the case of rolling spheres. In fact, if
X0(t) = A+Lp(t), X1(t) = Lk(t), X2(t) = −A,X3 = 0, then the Poisson equations
may be written as

dXi

dt
= [X0(t), Xi+1(t)], i = 0, 1, 2.

This equation is invariant under a dilational change Xi → λi−1Xi. It then follows
that

Lλ =

3∑
i=0

λiXi = Lp(t) + λLk(t) + (1− λ2)A

satisfies the equation
dLλ

dt
= [Mλ(t), Lλ(t)], Mλ(t) =

1

λ
(A+ Lp(t)).

Therefore, the spectrum of Lλ(t) = Lp(t)+λLk(t)+ (1−λ2)A is constant. We will
refer to Lλ as the spectral curve for H. Of course, the above implies that the Poisson
system associated with the affine-quadratic Hamiltonian also admits an isospectral
representation. To be more specific, revert to the notations of Proposition 5.1 with
the bold-face variables corresponding to the rolling extremals. Then,

Lλ = Lp(t) + λLk(t) + (1− λ2)A

= Adh(t)Lp + λAdh(t)Lk + (1− λ2)Adh(t)(A− Lp)

= Adh(t)(λ
2Lp + λLk + (1− λ2)A) = Adh(t)Lλ,

where Lλ = λ2Lp + λLk + (1− λ2)A. It follows that

dLλ

dt
=

d

dt
(Adh(t)(Lλ) = Adh(t)[Lλ, Lk] +Adh(t)

dLλ

dt

=
[ 1
λ
(A+ Lp),Lλ

]
= Adh(t)

[ 1
λ
A,Lλ

]
.

Therefore,
dLλ

dt
= [Lk, Lλ] +

[ 1
λ
A,Lλ

]
=
[ 1
λ
A+ Lk, Lλ

]
.

To be consistent with my earlier publications replace λ by − 1
λ to get

(6.1)
dLλ

dt
= [Mλ, Lλ],

where Mλ = Lk − λA, and Lλ = Lp − λLk + (λ2 − 1)A. Equation (6.1) agrees with
the isospectral representation in [27] (obtained by other means).
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Each spectral curve Lλ defines a family of functions

F = {ϕ(k)
λ (L) = Tr(Lk

λ), k = 1, 2, . . . }.
It follows that

Tr(L2
λ) = Tr(Lp +A)2 + λ2Tr(−ALp + L2

k) + λ4Tr(A2),

after replacing A by −A. Therefore both Tr(Lp + A)2 and Tr(L2
k − ALp) belong

to F . Since these functions are scalar multiple of the Hamiltonians H and H, we
get that both Hamiltonians H and H are in the family F . Each function in F is an
integral of motion for both Hamiltonian systems. But, equally remarkably, any two
functions in F Poisson commute (first proved by [31]). Thus, F is an involutive
family of functions in g. This family of functions also figures prominently in the
writings of Semenov Tian-Shansky [33] but in a completely different context. In
addition to the family F , FA = {⟨⟨L,X⟩⟩ : X ∈ k, [X,A] = 0} is another family of
functions whose elements Poisson commute with each member of the family F (see
[32], and [27, p. 164]).

The following proposition sums up the essential integrability implications.

Proposition 6.1. Each function in I = F ∪ FA is an integral of motion for
both H = 1

2 ⟨Lk, Lk⟩+ ⟨A,Lk⟩ and H = 1
2∥A+Lp∥2 . In the case that A is regular,

then I is also complete, in the sense that it contains a subfamily I0 that is Liouville
integrable on each coadjoint orbit in g [27, p. 164–165].

To say that a family of functions F on a symplectic manifold M is Liouville
integrable means that F is involutive, i.e., {f, h} = 0 for any f and h in F , and
maximal, in the sense, that the Hamiltonian vector fields {f⃗ : f ∈ F} span the
tangent space of M at each point p ∈ M . An element A in p is said to be regular
if the set of elements in p that commute with A is an abelian subalgebra in p, i.e.,
A is an element of a maximal abelian subalgebra in p.

Corollary 6.1. Both H = 1
2 ⟨Lk, Lk⟩ + ⟨A,Lk⟩and H = 1

2∥A + Lp∥2 are
completely integrable on each coadjoint orbit in g when A is regular.

So, in principle, both Hamiltonian systems H⃗ and H⃗ are solvable in terms of
the action-angle variables. But, the path to these variables is known only in a few
exceptional cases, so finding explicit solutions remains an open problem in general.
In some special cases, the known solutions suggest deep connections between rolling
and the geometry of symmetric spaces and the problems of mechanics. We will
now return to the spheres and the hyperboloids to be more specific about these
connections.

6.1. The elastic problem on spheres and hyperboloids. On spaces of
constant curvature the problem of minimizing 1

2

∫ T

0
κ2(s) ds subject to the given

boundary conditions, stated below, is intertwined with the rolling problem. This
problem, called the curvature problem, or the elastic problem consists of finding
a continuously differentiable curve p(t) in M in an interval [0, T ], with its tangent
vector ṗ(t) of unit length and its covariant derivative bounded and measurable in
[0, T ] that satisfies fixed tangential directions ṗ(0) = v0, v0 ∈ Tp(0)M and ṗ(T ) =
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v1, v1 ∈ Tp(T )M along which the integral 1
2

∫ T

0
κ2(s) ds minimal (critical) among all

other curves that satisfy the same boundary conditions. Here κ(t) = ∥dDp(t)

dt (ṗ(t))∥,
where dDp(t)

dt denotes the covariant derivative along p(t). The integral 1
2

∫ T

0
κ2(s) ds

is known as the elastic energy of the curve p(t) [5]. Curves p(t) defined on some
interval [0, T ] are called elastic if for each t ∈ (0, T ) there exits an interval [t0, t1] ⊂
[0, T ] over which the elastic energy of p(t) is minimal (critical) relative to the
boundary conditions ṗ(t0) and ṗ(t1) [27].

On symmetric semi-Riemannian manifolds M = G/K, the curvature problem
can be lifted to the unit tangent bundle of the isometry group G, and it is this lifted
version of the problem that will be of interest for this paper. We recall that each
curve p(t) in M is the projection of a horizontal curve g(t) in G, i.e., p(t) = ϕg(t)(o).
Then dg

dt = g(t)U(t) for some curve U(t) ∈ p. It follows that the tangent vector
ṗ(t) is the projection of the manifold V = {(g(t)h,Adh(U(t))), h ∈ K} in the left-
trivialization G × g of the tangent bundle of G. In this representation the unit
tangent bundle is represented by G × Sp where Sp = {Λ ∈ p : ⟨⟨Λ,Λ⟩⟩ = 1}.
The lifted curvature problem consists of finding a curve (g(t),Λ(t)) in G × Sp, a
solution of

dg

dt
= g(t)Λ(t),

dΛ

dt
= U(t), ⟨U(t),Λ(t)⟩ = 0,

that originates in the manifold V0 = {(g0h,Adh−1Λ0), h ∈ K,Λ0 ∈ Sp} at t = 0 and
terminates at the manifold V1 = {(g1h,Adh−1Λ1) : h ∈ K,Λ1 ∈ Sp} at t = T for
which the energy of transfer 1

2

∫ T

0
∥U(s)∥2 ds is minimal (critical). If (g(t),Λ(t)) is

any solution of the above system then the projected curve p(t) = ϕg(t)(o) satisfies

ṗ(t) = dg(t)ϕg(t)Λ(t)(o),
Dp(t)

dt
(ṗ(t)) = dg(t)ϕg(t)U(t)(o),

and the tangential boundary conditions

ṗ(0) = dg(0)ϕ(g(0)Λ0, ṗ(T ) = dg(T )ϕ(g(T )Λ1.

It is easy to show that a curve p(t) is elastic if and only if it is the projection of a
solution of the lifted curvature problem on a fixed interval [0, T ].

The solutions of the lifted curvature problem are the projections of the Hamil-
tonian system associated to the Hamilonian H in the cotangent bundle of G × Sp

obtained through the Maximum principle properly modified to account for the con-
straints as outlined in [27, Chapter 11]. After the cotangent bundle of G × Sp

is identified with the tangent bundle via the natural inner product in g, the con-
figuration space for the Hamiltonian system can be represented by the quadruple
(g, L,Λ, X) with L and X the tangent vectors at (g,Λ) subject to the constraints
∥Λ∥2 − 1 = 0, ⟨⟨Λ, X⟩⟩ = 0. Then L = P + Q with P ∈ p and Q ∈ k. In these
variables the curvature Hamiltonian is given by

H =
1

2
∥X∥2 + ⟨⟨Λ, P ⟩⟩+ λ1G1, λ1 =

1

2
(∥X∥2 − ⟨⟨P,Λ⟩⟩),

and the associated Hamiltonian equations are given by
dg

dt
= gΛ(t),

dP

dt
= [Λ, Q],

dQ

dt
= [Λ, P ]
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dΛ

dt
= X(t),

dX

dt
= −P − (∥X∥2 − ⟨⟨P,Λ⟩⟩)Λ,

subject to the transversality condition Q(t)+[Λ(t), X(t)] = 0 [27, p. 354–355]. The
transversality condition can be incorporated into the above equations to yield an
equivalent system

(6.2)

dg

dt
= gΛ(t),

dX

dt
= −P − (∥X∥2 − ⟨⟨P,Λ⟩⟩)Λ,

dΛ

dt
= X(t),

dP

dt
= −[Λ, [Λ, X]],

dQ

dt
= [Λ, P ].

We will now confine our attention to the spaces of constant curvature, with a
particular interest on the connections between the rolling problems and the elastic
curves reported in [7]. Let us first recall the basic facts. If P is the plane spanned
by the unit vectors U⃗(o) and V⃗ (o) in ToM such that ⟨⟨U⃗(o), V⃗ (o)⟩⟩ = 0, then the
sectional curvature k(P ) is given by

k(P ) = ⟨⟨[[U, V ], U ], V ⟩⟩,

[21, Proposition 26, 11]. Then M is the space of constant curvature if the sectional
curvature k(P ) is independent of the choice of the plane P . It is known that the
spheres Sn

ϵ (ρ) are the only simply connected spaces of non-zero constant curvature
[24]. In fact,

k(P ) = ⟨⟨[[U, V ], U ], V ⟩⟩ϵ =
ϵ

ρ2

for U = u ∧ϵ o, V = v ∧ϵ o that satisfy ∥U∥ϵ = ∥V ∥ϵ = 1 and ⟨⟨U, V ⟩⟩ϵ = 0. Hence,
k = ϵ

ρ2 on Sn
ϵ (ρ).

On spaces of constant curvature −[Λ, [Λ, X]] = kX, hence extremal equations
(6.2) simplify

dg

dt
= gΛ(t),

dΛ

dt
= X(t),

dX

dt
= −P − (∥X∥2 − ⟨P,Λ⟩)Λ,

dP

dt
= kX,

dQ

dt
= [Λ, P ].

It follows that k dΛ
dt − dP

dt = 0, and therefore, kΛ − P = kA for some constant
element A in p. The transversality condition Q + [Λ, X] = 0 can be recast as
0 = [Λ, Q] + [Λ, [Λ, X]] = [Λ, Q] − kX. These observations can be incorporated in
the preceding equations to get

dg

dt
= g(t)Λ(t) = g(t)

1

k
(kA+ P ),

dP

dt
= kX = [Λ, Q] =

1

k
[kA+ P,Q],

dQ

dt
= [Λ, P ] =

1

k
[kA+ P, P ] =

1

k
[kA, P ].

We will now make use of the following isospectral integrals of motion associated
with the preceding rolling problem extracted from the functions f2,λ = Tr(L2

λ) and
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f4,λ = Tr(L4
λ)

I0 = 2H = ∥A+ Lp∥2, I1 = ∥Lp∥2 + ϵ∥Lk∥2,
I2 = |k∥|Lk∥2∥Lp∥2 − ∥[Lp, Lk]∥2 + |k|(∥Lk∥4 − ∥L2

k∥2),
I4 = |k∥|Lk∥2∥A+ Lp∥2 − ∥[A+ Lp, Lk]∥2.

These integrals of motion are the rescaled variants of the integrals of motion in [7]
after the metric ⟨A,B⟩ = − ϵ

2Tr(AB) in [7] is rescaled to − ϵρ2

2 Tr(AB) (the metric
in this paper is a scalar multiple of the metric used in [7]).

Proposition 6.2. Rolling geodesics that are the projections of the extremal
curves on H = 1

2 and I4 = 0 project on the elastic curves in Sn
ϵ (ρ). Conversely,

each elastic curve in Sn
ϵ (ρ) is the projection of such an extremal curve.

Proof. Each elastic curve on Sn
ϵ (ρ) is the projection of an extremal curve, a

solution of
dg

dt
= g(t)Λ(t) = g(t)

1

k
(kA+ P ),

dP

dt
= kX = [Λ, Q] =

1

k
[kA+ P,Q],

dQ

dt
= [Λ, P ] =

1

k
[kA+ P, P ] =

1

k
[kA, P ],

as shown above. If we now identify 1
kP with Lp, and 1

kQ with Lk, then

Λ = A+
1

k
P = A+ Lp, and Lk =

1

k
Q = −1

k
[A+ Lp, X].

In these variables the above equations are given by

dLk

dt
= [A,Lp],

dLp

dt
= [A+ Lp, Lk].

Hence, they agree with the extremal equations for the rolling geodesics. Since
∥A+ Lp∥ = 1 the first constraint is satisfied. To verify the second constraint note
that Lk = − 1

k [A+ Lp, X], and therefore

∥Lk∥2 =
1

k2
∥[A+ Lp, X]∥2 =

1

k2
⟨[[A+ Lp, X], A+ Lp], X⟩ = 1

k
∥X∥2,

and ∥[A+ Lp, Lk]∥2 = 1
k2 ∥[A+ Lp, [A+ Lp, X]]|2 = ∥X∥2. Therefore,

I4 = ∥Lk∥2|k∥A+ Lp∥2 − ∥[A+ Lp, Lk]∥2 = ∥X∥2 − ∥X∥2 = 0.

To prove the converse assume that g(t), p(t), A, Lk(t), Lp(t) is a rolling extremal
curve on I4 = 0. As a geodesic it satisfies H = 1

2 , or ∥A+Lp∥ = 1. We need to show
that Lk(t) = [A+ Lp(t), X(t)] for some X(t) ∈ p such that ⟨X(t), A+ Lp(t)⟩ = 0.

Let

Λ(t) = A+ Lp(t), p⊥Λ(t) = {X(t) ∈ p : ⟨X(t),Λ(t)⟩ = 0},

kΛ(t) = {Q(t) ∈ k : [Q(t),Λ(t)] = 0}, k⊥Λ(t) = {Q ∈ k; : ⟨Q, kΛ⟩ = 0}.
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Then Λ(t) = λ(t) ∧ϵ a, (λ(t), a)ϵ = 0 for some vector λ(t) ∈ Rn+1. It then follows
that p⊥Λ(t) = {u(t) ∧ϵ a : (u(t), a)ϵ = (λ(t), u(t))ϵ = 0}, and k⊥Λ(t) = {λ(t) ∧ϵ u(t) :

(u(t), λ(t))ϵ = (a, u(t))ϵ = 0}.
Hence, dim(p⊥Λ(t)) = dim(k⊥Λ ). The mapping F (t)X = adΛ(t)(X), for X ∈ p⊥Λ(t),

satisfies F (p⊥Λ(t)) ⊆ k⊥Λ(t), because ⟨[Λ, X], kΛ⟩ = 0 . On spaces of non-zero constant
curvature, the kernel of this mapping is zero because adΛ(t)X = 0 implies that
0 = ad2Λ(t)(X(t)) = −ϵρ2X(t). Since p⊥Λ(t) and k⊥Λ(t) have the same dimension, F
maps p⊥Λ(t) onto k⊥Λ(t). So every curve L(t) ∈ k⊥Λ(t) is of the form L(t) = [Λ(t), X(t)]

for some X(t) ∈ p perpendicular to Λ(t).
It remains to show that Lk(t) belongs to k⊥Λ(t) when the rolling geodesic is

on I4 = 0, that is, when ∥Lk∥2 = 1
|k|∥[Λ(t), Lk(t)∥2. Now assume that Lk(t) =

U1(t) + U2(t), U1(t) ∈ kΛ(t) and U2(t) ∈ k⊥Λ(t). It follows from above that U2(t) =

[Λ(t), X(t)], and therefore

∥U2(t)∥2 = ∥[Λ(t), X(t)], [Λ(t), X(t)]∥2 = |⟨ad2Λ(t)(X), X(t)⟩| = |k∥|X∥2.
Hence,

1

|k|
∥[Λ(t), U1(t) + U2(t)]∥2 =

1

|k|
∥[Λ(t), U2(t)]∥2 = |k∥|X∥2 = ∥Lk∥2.

But ∥Lk(t)∥2 = ∥U1∥2+∥U2(t)∥2 = ∥U1(t)∥2+|k∥|X∥2, and therefore U1(t) = 0. □

The following proposition characterizes elastic curves ([27], see also [34]).

Proposition 6.3. Let κ(t) and τ(t) denote the geodesic curvature and the tor-
sion of the projection curve p(t) associated with an extremal curve of the curvature
problem. Then ξ(t) = κ2(t) is the solution of the following equation(dξ

dt

)2
= −ξ3 + 4(H − ϵ)ξ2 + 4(I1 −H2)ξ − 4I2,

and (κ2(t)τ(t))2 = kI2. All other curvatures in the Serret-Frenet frame along p(t)
are zero.

Proof. We leave it to the reader to verify that ∥Lk∥4 − ∥L2
k∥2 = 0 when

Lk = − 1
k [A+Lp, X]. In fact, the same is true for any Q ∈ k of the form Q = [U, V ]

for some mutually orthogonal matrices U, V in p.
Reverting to the notation used above, let P (t) = kLp(t), and Q(t) = kLk(t).

Recall that

∥Lk∥2 =
1

k2
∥[A+ Lp, X]∥2 =

1

k2
⟨[[A+ Lp, X], A+ Lp], X⟩ = 1

k
∥X∥2,

hence ∥Q∥2 = k∥X∥2. Also, recall that κ2 = ∥X∥2 and that 2H = 1
2∥X∥2 +

⟨⟨Λ, P ⟩⟩. Then,

I2k
2 = k2(∥Lk∥2∥Lp∥2 − ∥[Lp, Lk]∥2)
= ∥P∥2∥X∥2∥ − ∥[Lp, Q]∥2 = ∥P∥2∥X∥2 − ∥[Lp, [A+ Lp, X]]∥2

= ∥P∥2∥X∥2 − ⟨A+ Lp, Lp⟩2∥X∥2 − ⟨P,X⟩2,
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thanking to the formula in (4.4). In addition,

I1k
2 = k2(∥Lp∥2 + ϵ∥Lk∥2) = ∥P∥2 + ϵ∥Q∥2 = ∥P∥2 + ϵk∥X∥2.

Since κ2(t) = ∥X∥2, dξ
dt = 2⟨X, Ẋ⟩ = 2⟨X,P ⟩. Therefore,(dξ

dt

)2
= 4⟨P,X⟩2 = 4(∥P∥2∥X∥2 − ⟨A+ Lp, P ⟩2∥X∥2)− 4k2I2

= 4
(
(I1k

2 − ϵk∥X∥2)∥X∥2 −
(
H − 1

2
∥X∥2

)2
∥X∥2

)
− 4k2I2

= 4(I1k
2 − ϵkξ)ξ − 4

(
H − 1

2
ξ
)2

ξ − 4k2I2

= −ξ3 + 4(H − ϵk)ξ2 + (I1k
2 −H2)ξ − 4k2I2.

As to the second part, let T = A + Lp(t). Since ∥A + Lp(t)∥ = 1, T (t) is a unit
vector that projects onto the tangent vector ṗ(t). Then

dT

dt
= [A+ Lp(t), Lk(t)] =

[
A+ Lp(t),−

[
A+ Lp(t),

1

k
X(t)

]]
= X(t).

Therefore dT
dt = κ(t)N(t) where N(t) = 1

∥X(t)∥X(t) is a unit vector in p that
projects onto the unit normal n(t) along p(t). Continuing,

dN

dt
=

1

∥X(t)
∥(−P − (∥X∥2 − ⟨Λ, P ⟩(A+ Lp))−

1

∥X∥2
⟨X, Ẋ⟩X)

= −∥X∥(A+ Lp) +
1

∥X∥
(−P + ⟨A+ Lp, P ⟩(A+ Lp)) +

1

∥X∥2
⟨P,X⟩X)

= −κ(t)T (t) + Y (t),

where

Y (t) =
1

∥X∥
(−P (t) + ⟨T (t), P (t)⟩T (t)) + 1

∥X∥2
⟨P (t), X(t)⟩X.

Since Y (t) is is orthogonal to A+ Lp and X, it is in the direction of the binormal
vector B(t). So, if we define τ(t) = ∥Y (t)∥ and B(t) = 1

∥Y ∥Y then dN
dt = κ(t)T (t)+

τB(t) and B(t) projects onto the binormal vector b(t) along p(t). Hence,

∥X∥2τ2 = ∥P∥2 − ⟨A+ Lp, P ⟩2 − 1

∥X∥2
⟨P,X⟩2,

or
|(κ2τ)2 = ∥X∥4τ2 = ∥P∥2∥X∥2 − ⟨A+ Lp, P ⟩2 − ⟨P,X⟩2 = k2I2,

Evidently dB
dt is in the linear span of T (t), N(t), B(t), hence the Serret-Frenet frame

along p(t) terminates. □

Corollary 6.2. Elastic curves in Mϵ = Sn
ϵ (ρ) are rolled on the elastic curves

in the tangent space M̂ = ToM .

Proof. Since the geodesic curvature is preserved under rolling, the elastic
curves in Sn

ϵ (ρ) are rolled on the elastic curves in M̂ relative to the Euclidean
metric inherited from the metric on p. So, the statement follows from the rolling
definition. □
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This remarkable relation between elastic curves and rolling geodesics breaks
down on spaces of non-constant Riemannian curvature, as it becomes evident when
one compares equations (6.2) for the curvature problem to the equations (5.2) for
the rolling problem. While the curvature equation seems particularly challenging
beyond the spaces of constant curvature, the rolling extremal equations (5.3) remain
integrable on all semi-Riemannian symmetric spaces according to Proposition 6.1,
and should be “solvable” on some Abelian variety according to the general theory
of integrable systems. However, as stated earlier, no such solution is known except
in a few exceptional cases. We leave this challenge to an interested reader.
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КОТРЉАJУЋЕ ГЕОДЕЗИJСКЕ ЛИНИJЕ НА
СИМЕТРИЧНИМ ПСЕУДО-РИМАНОВИМ ПРОСТОРИМА

Резиме. Оваj рад jе настао из резултата добиjених у области котрљања у
нашем недавном раду написаним са Ф. Силвом Леитеом и И. Маркином, и
раниjих радова о котрљању сфера написаних са J. Цимерманом. Показуjе-
мо да jедначине котрљања повезане са симетричном псеудо-Римановом мно-
гострукошћу коjа се котрља по свом тангентном простору у издвоjеноj тач-
ки многострукости у суштини имаjу исту структуру као jедначине котрљања
n-димензионалне сфере по хоризонталноj хиперравни; то jест, показуjемо да су
jедначине котрљања описане левоинвариjантном дистрибуциjом D на Лиjевоj
групи G са растом

D + [D,D] + [D, [D,D]] = TG.

То подсећа на раст (2, 3, 5) за две сфере коjе се котрљаjу по хоризонталноj рав-
ни. Затим, дефинишемо котрљаjуће геодезиjске линиjе на псеудо-Римановим
многострукостима као проширења суб-Риманових геодезиjских линиjа у Ри-
мановим симетричним просторима. Након тога показуjемо да су котрљаjуће
геодезиjске линиjе проjекциjе екстремних кривих, коjе су, донекле неочекива-
но, решења потпуно интеграбилног Хамилтоновог система у котангетном ра-
слоjењу конфигурационог простора. Коначно, илуструjемо теориjу са неколико
значаjних примера.
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