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EXPERIMENTAL OBSERVATION OF STABILIZATION
OF TIPPE TOP SPINNING ON A VIBRATING PLANE

Alexander A. Kilin and Yury L. Karavaev

Abstract. This paper presents an experimental study of the motion of a
spherical body with a displaced center of mass on a surface undergoing os-
cillations in the vertical plane. The phenomenon of vibrostabilization of an
unstable position in which the center of mass of the body is above the geo-
metric center of the sphere is revealed. The influence of the frequency and
amplitude of oscillations of the surface on the stabilization of the unstable
position of the motion of the spherical body is analyzed.

1. Introduction

A spherical top (or a tippe top) is an interesting and illustrative example of a
rigid body that exhibits dynamical behavior. To date, there has been a large body
of research on this topic [1–10]. These studies discuss the problems of describing
the motion and explaining the inversion of the top, investigate the stability of its
motion, including the influence of the parameters of a rigid body on stability, and
describe the forces of contact interaction and their influence on the behavior of a
dynamical system.

The results of the above investigations can be applied to describe the mo-
tion and control of more complex mechanical systems such as spherical mobile
robots [11–16]. The review papers [15,16] demonstrate a wide variety of designs
of spherical robots and conditions of their application, including the motion on a
surface undergoing oscillations [20–23]. These papers present theoretical investi-
gations of the stability of the motion of spherical robots and methods of stabilizing
their motion on a surface undergoing oscillations. This will make it possible to
expand the scope of application of spherical robots and to ensure the precision of
their motion. However, due to the complexity of the mechanical system the re-
sults obtained are theoretical in nature and have not yet been validated in practice.
Moreover, in investigating such systems, one often considers simpler mechanical
models.

2020 Mathematics Subject Classification: 74H45; 70-05, 70E50.
Key words and phrases: spherical top, vibrating plane, stabilization, experiment.

1

https://doi.org/10.2298/TAM241204001K


2 KILIN AND KARAVAEV

For example, in the papers [17–19] published recently, a great deal of attention
is given to the problem of stabilizing a spherical top or an ellipsoid of revolution
with a displaced center of mass during its motion on a plane undergoing oscillations,
which is used as a simplified model of a spherical robot.

The use of fast oscillations for stabilization of mechanical systems, particularly
in theoretical treatments, was initiated in Refs. [24–28] devoted to the stabilization
of a one-degree-of-freedom inverted pendulum by means of fast oscillations of its
suspension point. These studies served as a basis for a new field of engineering—
vibration engineering [29] (also called vibration mechanics [30]).

The development of the theory of analysis of pendulum systems with a vi-
brating suspension point is discussed in Refs. [33–38], in which the dynamics of
the systems and the conditions for their stability are investigated. In [52,53], the
dynamics of the motion of a rattleback on a surface undergoing oscillations is ex-
amined. Bifurcation diagrams are constructed and periodic solutions of the system
are investigated. The possibility of using such a mechanical system as an energy
harvesting system is considered.

The hypotheses of the possibility of the motion of spherical and wheeled mo-
bile robots by means of small periodic control actions are based on the results of
investigating the problem of maintaining constant speedup of a wheeled vehicle by
periodically changing the mass distribution [39,40] and the problem of speeding
up the Chaplygin top by means of an internal rotor [41]. Furthermore, the devel-
opment of vibrational propulsion devices of mobile robotic systems and the motion
performed by means of oscillations of internal mechanisms [32,42–51] is studied.
The complexity of the behavior of systems with friction in the presence of vibrations
is discussed in [54]. The efficiency of the control of mechanical systems undergo-
ing forced oscillations is demonstrated in publications on the control of resonant
manipulation robots [55] and other technical systems and applications [31,56].

The aim of this paper is to experimentally estimate the possibility of using
vibrations for stabilization of a spinning tippe top when its center of mass is in
the upper unstable position and to compare the results obtained with those of
theoretical investigations presented in [19].

2. Description of the experimental facility and the object of research

To carry out experimental investigations for estimating the stabilization of
the spinning top by means of vertical oscillations of the base, a using a specially
developed test bench: a vibrating table. Parts a and b of Fig. 1 show, respectively, a
three-dimensional model and a photograph of this experimental facility. The table
board (in the form of a horizontal plane) is mounted on spring supports and is
actuated by eccentrics rotated by direct current motors through a belt drive. The
magnitude of eccentricity determines the oscillation amplitude of the table, and
the voltage that is fed to the direct current motor determines the angular velocity
of the eccentrics, i.e., the frequency of vibrations. Vertical guides ensure that the
table board moves only in the vertical plane. The design shown in Fig. 1b makes
it possible to change the oscillation amplitude δ from 0 to 2.5mm for a range of
oscillation frequencies of the surface f from 0 to 7Hz.
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a b

Figure 1. Experimental facility: a-3D model of a test bench for
generation of oscillations, b-photograph of the laboratory facility.

An optical camera was mounted above the test bench to experimentally deter-
mine the spin rate ω of the top by measuring the change in the angular position of
the special marker.

The spherical top was 3D printed using PET plastic. The top starts spinning
and reaches a sufficient spin rate owing to the fact that it has a narrow cylindrical
stem on which spinning occurs after the top flips over (see Fig. 2). The top was
spun by hand, but the capture of motion began at the instant when the top flipped
over and the optical system identified the marker drawn on its surface (see Fig. 3).
The spherical top is a truncated sphere with a cylindrical narrow stem fastened to
it. The end of the stem is a spherical segment (of smaller radius). The parameters
of the experimental top are denoted by symbols with a hat (̂ ) above them:

- the mass of the top m̂ = 13.6 g;
- the axial moments of inertia î1 = î2 = 3232 g·mm2, î3 = 3145 g·mm2;
- the displacement of the center of mass relative to the center of the trun-

cated sphere: â = 7mm;
- the radius of the spherical body of which the top is made: R̂ = 22.5mm;
- the height of the top ĥ = 43mm;
- the radius of curvature of the surface of the top’s stem on which the top

spins ρ̂ = 7mm.
To analyze the stability of vertical rotations, we will use a mathematical model

of the top in the form of an ellipsoid proposed in [19]. To ensure that the ellipsoid
model provides a correct description of the rotation of the top near the vertical
rotations, we require that the parameters of the ellipsoid satisfy the following con-
ditions:

- The mass of the ellipsoid is the same as that of the top: m=m̂ = 13.6 g.
- The axial moments of inertia of the ellipsoid and the top are the same:
i1 = i2 = î1 = î2 = 3232 g·mm2, i3 = î3 = 3145 g·mm2.

- For the upper position of the center of mass, the heights of the spherical
top and the ellipsoid are the same: h = ĥ.

- The heights of the centers of mass in the upper position of the spherical
top and the ellipsoid are the same: r = r̂ = ĥ− R̂+ â.
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- The radius of curvature of the surface of the spherical top and that of the
ellipsoid at the point of contact with the plane are the same: ρ = ρ̂. For
the case considered here, ρ̂ is the radius of curvature of the cylindrical
stem on which the top spins.

With these conditions in mind, the geometric parameters of an equivalent el-
lipsoid (see Fig. 2) with semiaxes b1 = b2 and b3 are determined as follows:

b3 = ĥ/2, b1 = b2 =
√
ρ̂ · b3, a = â+ ĥ− R̂− b3,

and their values, which were used later, are given by

b3 = 21.5mm, b1 = b2 = 12.27mm, a = 6mm.

In [19], the condition for stability of the spinning of the top in the upper
position of the center of mass is formulated for an ellipsoid in the form of an
inequality for the projection of the dimensionless angular momentum of the top
onto the axis of its rotation c = i3ω

mb23

√
b3
g , where ω is the spin rate of the top and

g is the free-fall acceleration:

(2.1) c2 > c2∗ = c20 −
4ν2(λ− β2)2

(ν + ηβ2λ)2
Θ2,

where ν = i3
i1

, β = b1
b3

, η =
mb23
i1

, Θ2 = 2δ2π2f2

b3g
, α = a

b3
, λ = 1 + α, and the critical

value of the projection of the angular momentum c0 onto the symmetry axis of the
top in the absence of vibrations is defined as

c20 =
4ν2(1 + ηλ2)(λ− β2)

η(ν + ηβ2λ)2
.

A graphical representation of the dependence of the critical spin rate, at which
the upper position of the top loses stability, on the values of the amplitude and
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Figure 2. Diagram of replace-
ment of the top by an ellipsoid with
a displaced center of mass

Figure 3. Individual frame with
an optical image capture system
demonstrating the motion of the
top in the inverted position
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frequency of oscillations of the surface on which the top moves is shown in Fig. 4
with the technical limitations of the oscillation parameters of the table taken into
account.

For the mass-inertia parameters of the top which correspond to the developed
prototype, the critical spin rate changes from the value 66.69 s−1, at which there
are no vibrations, to the value 64.98 s−1 corresponding to the oscillation amplitude
δ = 2.5mm, and the oscillation frequency f = 7Hz. In theory, an increase in
the frequency and amplitude of oscillations of the table leads to a decrease in the
critical spin rate of the top, i.e., the spinning of the top becomes longer.

In the experiments, the spin rate of the top was determined from discrete frame
images obtained with a frequency of 60Hz. The top was spun on the table’s surface
by hand with an initial velocity sufficient for the top’s inversion in the first seconds
of motion. After the inversion, the table began to vibrate, and the process of image
video capture started, which was used later to experimentally determine the spin
rate of the top. Next, using the video capture system, the instant of the fall of the
top and the critical spin rate, at which the loss of stability of the upper position
occurs, were determined.

Figure 5 shows graphs of the spin rates of the top on a fixed base versus time,
which correspond to five experiments. The marker “o” in the graphs of the spin
rates indicates the initial values obtained at the instant of the top’s inversion, and
the marker “x” indicates the values at which the top falls over. For clarity and ease
of comparison (especially of the terminal motion), the graphs were adjusted so that
the initial spin rate of the top in each experiment lay on the curve obtained for
the experiment with the maximal initial spin rate. It can be seen from the figure
that, despite different initial conditions (the top was set spinning by hand), the
changes in the spin rate during motion are the same for all the five experiments.
The average value of the spin rate at which the body comes to a stop, in the five

1.5 3 4.5 6 7.5 9

0

0

0.001

0.002

66

65

67

f, Hz

w,rad/s

d ,m

Figure 4. Dependence of the critical spin rate of the top on the
oscillation parameters of the table’s surface
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Figure 5. Time dependences of the spin rates of the body on a
fixed base, for different initial spin rates

experiments carried out independently, was ω̂ = 73.17 ± 0.34 rad/sec. Here and
in what follows, the confidence interval for average values was calculated by using
t-distribution with a probability of 95%.

The resulting experimental value differs greatly from the value ω = 66.69
rad/sec (shown as a dashed line in Fig. 5) obtained using the criterion (2.1). How-
ever, it should be noted that, in practice, quite a number of factors preclude ideal
experimental conditions, for example, manufacturing errors, measurements of the
spin rate, deviation of the surface from the horizontal line, etc.

In Section 3, the results of application of this experimental facility and methods
for comparative estimation of the critical spin rates for different surface oscillation
parameters in the vertical plane will be considered.

3. Results of experimental investigations

Figure 6 shows graphs of the spin rates of the body on a vibrating base with
an amplitude of 0.5mm. The graph of the spin rate with the base fixed is shown
in black as a reference dependence. For each frequency, a series of five experiments
were carried out. Typical graphs of the spin rates of the body versus time are shown
in green for a surface oscillation frequency of 3Hz, in red for 5Hz, and in blue for
a base oscillation frequency of 7Hz. The markers “o” and “x” in the graphs of spin
rates show the initial values and the values before the fall of the top, respectively.

Despite different initial spin rates, the loss of stability of the body (fall) occurs
on average at ω̂ = 70.94 ± 0.84 rad/sec for a surface oscillation frequency of 3Hz
(in theory ω = 66.68 rad/sec), ω̂ = 67.86 ± 1.1 rad/sec for a surface oscillation
frequency of 5Hz (in theory ω = 66.65 rad/sec), and ω̂ = 63.58 ± 0.82 rad/sec at
7Hz (ω = 66.62 rad/sec). That is to say, one can observe a decrease in the spin
rate at which a fall occurs, as the frequency of oscillations of the base increases. In
the experiment, this tendency is more pronounced. Such dependences have been
obtained for large oscillation amplitudes.

Figure 7 shows graphs of the spin rates of the body on a vibrating base with
an amplitude of 2.5mm. As before, black indicates as a reference dependence, a
graph of the spin rate with the base fixed. Blue indicates graphs of the spin rate
of the body at a surface oscillation frequency of 7Hz, red indicates graphs of the
spin rate of the body at a surface oscillation frequency of 5Hz, and green at 3Hz.
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In these experiments, the body flips over from the upper unstable position at
a surface oscillation frequency of 7Hz when the average spin rate is ω̂ = 62.48 ±
0.59 rad/sec (ω = 64.97 rad/sec), at 5Hz when ω̂ = 65.85 ± 0.53 rad/sec (ω =
65.82 rad/sec), and at 3Hz, when ω̂ = 70.21 ± 1.62 rad/sec (ω = 66.38 rad/sec).
The tendency of the spin rate to decrease with increasing frequency for a base
oscillation amplitude of 2.5mm also persists.

Figure 8 shows graphs of the average spin rates with their confidence intervals
of the experiments for different values of the amplitude and frequency of oscillations
of the base. For the above-mentioned ranges of these parameters, the spinning on
the base oscillating with an amplitude of 2.5mm and frequency of 7Hz turned
out to be the most stable (the longest). These values represented the limiting
factors for technical realization. Further increase requires developing a new design
of the vibrating base. Despite this fact, such approximate methods of experimental
estimation have made it possible to observe the stabilization of rotation of the top
by means of vibrations of the base.
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Figure 6. The spin rates of the body versus time on a vibrating
base with an amplitude of 0.5mm for different initial spin rates
under oscillations of the surface with a frequency of 3Hz (green),
5Hz (red), and 7Hz (blue).
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Figure 7. The spin rates of the body versus time on a vibrating
base with an amplitude of 2.5mm for different initial spin rates.
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Figure 8. The spin rates of the body versus time on a vibrating
base for different initial spin rates and surface oscillation parameters

4. Conclusions

The above investigations have made it possible to observe in practice a stabi-
lization of the motion of a spherical top under oscillations of the surface on which
it spins. It should be noted that the experiment turned out to be fairly simple
and did not require expensive high-precision equipment; therefore, repeating the
experiment would not require much effort. Moreover, we have mentioned several
questions that warrant more thorough investigations.

In the simulations it was assumed that, with increasing amplitude and fre-
quency of oscillations, there is a decrease in the spin rate at which the top loses
stability while spinning in the inverted position, i.e., it continues moving for a
longer time. In the model (2.1), the change in the critical spin rate of the top (at
which a fall occurs) relative to the critical spin rate without vibrations is a function
depending on the product of the frequency and the amplitude of oscillations:

∆ω2 = F (δf),

where ∆ω2 = ω2
0 − ω2

∗.
Figure 9 shows the experimental dependence of ∆ω2(δf). As can be seen from

the figure, experimental dependences for different amplitudes do not lie on the same
curve. This suggests that the dependences of ∆ω2 on the oscillation amplitude δ
and on the oscillation frequency f are different in nature.

Figure 10 shows separate dependences of ∆ω2 on f for the values of the os-
cillation amplitudes considered in the experiments. These dependences provide
evidence of the quadratic dependence of ∆ω2 on f . However, the same figure
indicates that the dependence of ∆ω2 on δ is not quadratic. To determine the
experimental dependence of ∆ω2(δ, f), we approximate it as follows:

∆ω2 = (α+ βδ)f2.

Next, we calculate the coefficients α and β from the available experimental
data. To do so, we depict the available experimental data on the plane (∆ω2

f2 , δ)
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(see Fig. 11) and approximate them by the straight line (∆ω2

f2 ) = α + βδ. As a
result, we obtain the following dependence:

∆ω2 = (4140δ + 28.7)f2,

which is plotted as a solid line in Fig. 11.
The theoretical dependence ∆ω2 = κ2δ2f2, which corresponds to condition

(2.1), where κ = 429 for the parameters of an equivalent ellipsoid, is shown in
Fig. 11 as a dashed line.

The significant differences of the theoretical curve on the experimental depen-
dence stem from the fact that the model (2.1) was constructed with the help of
averaging theory for the case of “fast” oscillations of the plane. In our case, oscil-
lations of the plane cannot be regarded as fast compared to the typical spin rates
of the top. Although in the experiment the quadratic dependence of ∆ω2 from
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rate versus the frequency and
amplitude of oscillations
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frequency f persists, the description of its dependence on the oscillation amplitude
δ requires developing a new stability criterion using a complete (unaverage) model.
This criterion was formulated for a spherical robot on a vibrating base in [20].

The amount of experimental data available only for two values of the oscilla-
tion amplitude allows consideration of the dependence of ∆ω2(δ) only in the linear
approximation. However, it is obvious that in the chosen ranges of values the
influence of the oscillation amplitude is much smaller than the influence of the fre-
quency. This understanding is of particular importance when it comes to technical
implementation, because, in practice, changes in the oscillation frequency over a
wide range are easier to achieve than changes in the oscillation amplitude.

For a more detailed study of this dependence in the future, it is planned to
widen the ranges of frequency and amplitude of oscillations. This will allow a
comprehensive assessment of the applicability of the proposed model. It is also
important to carry out research on other specimens of tops (which have different
mass-inertia and geometric parameters).

Furthermore, for a better agreement with experimental data, it is necessary to
develop a new theoretical model. This effort can be pursued along two avenues:
modification of the proposed model by incorporating resistance forces (friction) and
representation of the top in a form other than that of an ellipsoid.

These investigations will allow an identification of the top’s parameters and
vibration parameters for which the stabilization of motion will be observed for a
longer time.

Acknowledgments. The authors extend their gratitude to Elena Pivovarova
for fruitful discussions. The work of Y. L. Karavaev was carried out within the
framework of the state assignment of the Ministry of Education and Science of
Russia FZZN-2020-0011. The work of A. Kilin was carried out within the framework
of the state assignment of the Ministry of Science and Higher Education of Russia
(FEWS-2020-0009).

References

1. C.M. Cohen, The tippe top revisited, Am. J. Phys. 45 (1977), 12–17.
2. M.C. Ciocci, B. Malengier, B. Langerock, B. Grimonprez, Towards a prototype of a spherical

tippe top, J. Appl. Math. 2012 (2012), 268537.
3. R. Cross, Dynamics of a spherical tippe top, Eur. J. Phys. 39 (2018), 035001.
4. N.M. Bou-Rabee, J. E. Marsden, L.A. Romero, Tippe top inversion as a dissipation induced

instability, SIAM J. Appl. Dyn. Syst. 3(3) (2004), 352–377.
5. A.C. Or, The dynamics of a tippe top, SIAM J. Appl. Math 54(3) (1994), 597–609.
6. D.M. Klimov, V. P. Zhuravlev, On the dynamics of the thompson top (tippe top) on the plane

with real dry friction, Mech. Solids 40 (2005), 117. (in Russian)
7. A.V. Karapetyan, Global qualitative analysis of tippe-top dynamics, Mech. Solids 43 (2008),

33–41. (in Russian)
8. A.A. Zobova, A.V. Karapetyan, Analysis of the steady motions of the tippe top, J. Appl.

Math. Mech 73 (2009), 623–630. (in Russian)
9. R. Usubamatov, M. Bergander, S. Kapayeva, The mathematical model for the tippe top in-

version, Adv. Math. Phys. (2021), 5552369.
10. A.A. Kilin, E.N. Pivovarova, The influence of the first integrals and the rolling resistance

model on tippe top inversion, Nonlinear Dyn. 103 (2021), 419–428.



EXPERIMENTAL OBSERVATION OF STABILIZATION OF TIPPE TOP SPINNING... 11

11. A.V. Borisov, A.A. Kilin, I. S. Mamaev, How to control Chaplygin’s sphere using rotors,
Regul. Chaotic Dyn. 17 (2012), 258–272.

12. Y. L. Karavaev, A.A. Kilin, Nonholonomic dynamics and control of a spherical robot with an
internal omniwheel platform: Theory and experiments, Proc. Steklov Inst. Math. 295 (2016),
158–167.

13. S.A. Tafrishi, M. Svinin, M. Yamamoto, Y. Hirata, A geometric motion planning for a spin-
rolling sphere on a plane, Appl. Math. Modelling 121 (2023), 542–561.

14. T.B. Ivanova, Y. L. Karavaev, A.A. Kilin, Control of a pendulum-actuated spherical robot on
a horizontal plane with rolling resistance, Arch. Appl. Mech. 92 (2022), 137–150.

15. Y. L. Karavaev, Spherical robots: An up-to-date overview of designs and features, Russ. J.
Nonlinear Dyn., 18 (2022), 699–740.

16. A. Diouf, et al. Spherical rolling robots—design, modeling, and control: A systematic litera-
ture review, Robot. Auton. Syst. (2024), 104657.

17. A.A. Kilin, E.N. Pivovarova, Nonintegrability of the problem of a spherical top rolling on a
vibrating plane, Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30 (2020), 628–644.

18. A.V. Borisov, A. P. Ivanov, Dynamics of the tippe top on a vibrating base, Regul. Chaotic
Dyn. 25 (2020), 707–715.

19. A.A. Kilin, Stability of vertical rotations of an axisymmetric ellipsoid on a vibrating plane,
Mathematics 11 (2023), 3948. https://doi.org/10.3390/math11183948

20. A.A. Kilin, E.N. Pivovarova, Stability and stabilization of steady rotations of a spherical
robot on a vibrating base, Regul. Chaotic Dyn. 25 (2020), 729–752

21. A.A. Kilin, E.N. Pivovarova, A particular integrable case in the nonautonomous problem of
a Chaplygin sphere rolling on a vibrating plane, Regul. Chaotic Dyn. 26 (2021), 775–786.

22. A.A. Kilin, E.N. Pivovarova, Motion control of the spherical robot rolling on a vibrating
plane, Appl. Math. Modelling 109 (2022), 492–508.

23. A.A. Kilin, T. B. Ivanova, E.N. Pivovarova, Stabilization of steady rotations of a spherical
robot on a vibrating base using feedback, Regul. Chaotic Dyn. 28 (2023), 888–905.

24. A. Stephenson, On a new type of dynamical stability, Mem. Proc. Manch. Lit. Phil. Sci. 52
(1908), 1–10.

25. P. Hirsh, Das Pendel mit Oszillierendem Aufhaengepunkt, ZAMM 10 (1930), 41–52.
26. E. L. Ince, Mathieu functions of stable type, Phyl. Mag. 6 (1928), 547–558.
27. A. Erdelyi Ueber die kleinen Shwingungen eines Pendels mit oszillierendem Aufhaengepunkt,

ZAMM 14 (1934), 235–247.
28. P. Kapitza, A pendulum with oscillating suspension, Uspekhi Fiz. Nauk 44 (1951), 7–20
29. I. Gutman, Industrial Uses of Mechanical Vibrations, Business Books Limited, London, 1968.
30. I. I. Blechman, Vibrational Mechanics, Allied Publishers, 2003.
31. H. Takano, Motion of an articulated straw along a vibrating rod, Russ. J. Nonlinear Dyn.

20(4) (2024), 529–551.
32. A.Y. Shamin, A. A. Rachkov, On the motion of a vibrating robot on a horizontal plane with

anisotropic friction, Russ. J. Nonlinear Dyn. 20(5) (2024), 945–959.
33. M.V. Belichenko, On the stability of pendulum-type motions in the approximate problem of

dynamics of a lagrange top with a vibrating suspension point, Russ. J. Nonlinear Dyn. 14
(2018), 243–263.

34. B. S. Bardin, A.A. Savin, On the orbital stability of pendulum-like oscillations and rotations
of a symmetric rigid body with a fixed point, Regul. Chaotic Dyn. 17 (2012), 243–257.

35. V. I. Yudovich, Vibrodynamics and vibrogeometry in mechanical systems with constraints,
Uspekhi Mekh. 4 (2006), 26–158. (in Russian)

36. A. P. Markeyev, The equations of the approximate theory of the motion of a rigid body with a
vibrating suspension point, J. Appl. Math. Mech. 75(2) (2011), 132–139; see also: Prikl. Mat.
Mekh. 75 (2011), 193–203.

37. O.V. Kholostova, On the periodic motion of Lagrange’s top with vibrating suspension, Mech.
Solids 1 (2002), 26–38.

https://doi.org/10.3390/math11183948


12 KILIN AND KARAVAEV

38. O.V. Kholostova, On a case of periodic motions of the lagrangian top with vibrating fixed
point, Regul. Chaotic Dyn. 4 (1999), 81–93.

39. I. A. Bizyaev, A.V. Borisov, S. P. Kuznetsov, Chaplygin sleigh with periodically oscillating
internal mass, EPL 119 (2017), 60008.

40. I. A. Bizyaev, A.V. Borisov, I. S. Mamaev, The Chaplygin sleigh with parametric excita-
tion: Chaotic dynamics and nonholonomic acceleration, Regul. and Chaotic Dyn. 22 (2017),
955–975.

41. A.V. Borisov, A.A. Kilin, E.N. Pivovarova, Speedup of the Chaplygin top by means of rotors,
Dokl. Phys. 64 (2019), 120–124.

42. F. L. Chernousko, N. N. Bolotnik, T. Yu. Figurina, Optimal control of vibrationally excited
locomotion systems, Regul. Chaotic Dyn. 18 (2013), 85–99.

43. F. L. Chernousko, N.N. Bolotnik, Rectilinear Periodic Motions of Systems with Internal Bod-
ies, In: Dynamics of Mobile Systems with Controlled Configuration, 255–367, 2024, Springer,
Singapore.

44. N. Bolotnik, P. Schorr, et. al., Periodic locomotion of a two-body crawling system along a
straight line on a rough inclined plane, ZAMM-Z. Angew. Math. Mech. 98 (2018), 1930–1946.

45. N.N.Bolotnik, F. L. Chernousko, et. al., Regular motion of a tube-crawling robot in a curved
tube, Mechanics of Structures and Machines 30 (2002), 431–462.

46. M. Dosaev, V. Samsonov, Sh.-Sh. Hwang, Construction of control algorithm in the problem of
the planar motion of a friction-powered robot with a flywheel and an eccentric weight, Appl.
Math. Model. 89 (2021), 1517–1527.

47. N.N. Bolotnik, I.M. Zeidis, et. al., Dynamics of controlled motion of vibration-driven systems,
J. Comput. Syst. Sci. Int. 45 (2006), 834–840.

48. X. Zhan, J. Xu, H. Fang, Planar locomotion of a vibration-driven system with two internal
masses, Appl. Math. Modelling 40 (2016), 871–885.

49. X. Zhan, J. Xu, H. Fang, A vibration-driven planar locomotion robot-shell, Robotica 36
(2018), 1402–1420.

50. A. Sakharov, Rotation of the body with movable internal masses around the center of mass
on a rough plane, Regul. Chaotic Dyn. 20 (2015), 428–440.

51. A. P. Ivanov, Vibroimpact mobile robot, Russ. J. Nonlinear Dyn. 17 (2021), 429–436.
52. J. Awrejcewicz, G. Kudra, Mathematical modelling and simulation of the bifurcational wob-

blestone dynamics, Discontin. Nonlinearity Complex. 3 (2014), 123–132.
53. J. Awrejcewicz, G. Kudra, Dynamics of a wobblestone lying on vibrating platform modified

by magnetic interactions, Procedia IUTAM 22 (2017), 229–236.
54. F. Chekirou, K. Brahimi, et. al., Analysis of the vibrational behavior of a bolted beam in the

presence of friction, Russ. J. Nonlinear Dyn. 18 (2022), 3–18.
55. V. I. Babitsky, A. Shipilov, Resonant Robotic Systems, Springer-Verlag Berlin Heidelberg,

2003.
56. J. P. Baltanás, L. Lopez, et. al., Experimental evidence, numerics, and theory of vibrational

resonance in bistable systems, Phys. Rev. E 67 (2003), 066119.



EXPERIMENTAL OBSERVATION OF STABILIZATION OF TIPPE TOP SPINNING... 13

ЕКСПЕРИМЕНТАЛНО ПОСМАТРАЊЕ СТАБИЛИЗАЦИJЕ
РОТАЦИJЕ СФЕРНЕ ЧИГРЕ НА РАВНИ КОJА ВИБРИРА

Реиме. Оваj рад представља експериментално проучавање кретања сферног
тела са помереним центром масе на равни коjа осцилуjе у вертикалном прав-
цу. Откривен jе феномен вибростабилизациjе нестабилног положаjа у коме jе
центар масе тела изнад геометриjског центра сфере. Анализиран jе утицаj фре-
квенциjе и амплитуде осцилациjа равни на стабилизациjу нестабилног положа-
jа кретања сферног тела.
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