THEORETICAL AND APPLIED MECHANICS
Article in Press (2025) DOI: https://doi.org/10.2298/ TAM250109017K

VORTICES FOR LAKE EQUATIONS
(review with questions and speculations)

Jair Koiller

To Darryl Holm, as a token of my esteem.

ABsTrACT. The ‘lake equation’ on a planar domain D with bathymetry b(z, y)
is given by Oiu + (u - grad)u = — grad p, div(bu) = 0, with u || 8D. It is well
posed as a PDE, but when b # const, justifying point vortex models requires
the analyst’s attention. We focus on Geometric Mechanics aspects, glossing
over hard analysis issues. The motivating example is a ‘rip current’ produced
by vortex pairs near a beach shore. For a beach with uniform slope, there is a
perfect analogy with Thomson’s vortex rings. The stream function produced
by a vortex is defined as the Green function of the operator — div(grad/b)
with Dirichlet boundary conditions. As in elasticity, the lake equations give
rise to pseudo-analytical functions and quasi-conformal mappings. Uniformly
elliptic equations on close Riemann surfaces could be called ‘planet equations’.

1. Introduction

In 1996, Camassa, Holm and Levermore [1,2] introduced the ‘small’ lake equa-
tion. It is a PDE for a planar vector field u(z,y) on a domain D,

Ou+ (u- grad)u = —gradp, div(bu) =0, wu | 9D

where b(x,y) is the bathymetry. It represents a mean field limit of shallow waters
when a small vertical component is averaged out. Well-posedness as a PDE was
shown in [3]. Vertical columns of fluid supposedly move horizontally in unison, so
one adjusts the 2d area form to make the fluid 3d-incompressible: div(bu) = 0.
Thus the velocity fields u € sDiff ;(D), with fi = bdx A dy.

Upon D. Holm’s suggestion, G. Richardson [4] studied the small lake equation.
Applying matching asymptotic expansions around a vortex patch of size ~ ¢ (for
better approximations, one needs information about the inner vortex structure), he
showed that the patch has a self-velocity, given in leading order by

Tr 1 .
(1.1) = log(=)V+tlogh (V* = —iV = (9/dy, —0/0x)).
7 €
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Thus if b # const. a point vortex (e = 0) moves with infinite self-velocity.

This contrasts with the consensus for point vortices when b = 1. In that case,
the self-velocity is finite and governed by the Robin function R of the Green function
G for the Laplacian, with Dirichlet boundary conditions

R(z) = ch—>ni Ga(z,¢)+1/2nlog |z — ¢| (see eg. [5]).

Indeed, the use of point vortices for the traditional Euler equations in planar
domains is classic [6]. Since the 1980’s with Marchioro and Pulvirenti [7], its
validity has been considered common knowledge. For recent work, see e.g. [8,9].

Following the core energy method in [10], it was proposed in [11] that in closed
Riemann surfaces with a metric, desingularization could be done adding 1/2 d(p, q)
to the Green function of the metric Laplacian. This still lacks a real proof although
it produces an expected result: close by vortex pairs mimic a geodesic. Once again,
the self-motion would be governed by the Robin function. C. Ragazzo studied the
Robin function of Bolza’s surface [12,13].

However, B. Gustafsson [14] pointed out that when the surface genus is > 1,
the Hamiltonian in [11] is incomplete. One needs also to consider the potential
flows and he showed how to describe their interaction with the vortices. Together
with Gustafsson and Ragazzo, we developed this theme in [15] that contains the
background for this paper. A special case is a multiply connected planar domain,
that becomes a “pancake” surface via its Schottky double.

The aim here is to outline how to extend the geometric description in [15] to
the lake equations. In section 2, we describe the analogy of the classic Thomson’s
vortex rings with return (‘rip’) currents. The established Hamiltonian description
for the motion of vortex rings (see [16,17] for history) suggests an analogue for
the lake equations, presented in section 3. In section 4, the stream function of a
vortex is introduced: it is the Green function of — div(grad/b). Approximations
for the Green function are discussed and a simple toy model for a rip current is
presented. Sections 11 and 12 treat multiply connected domains'. Extension to
closed Riemann surfaces is outlined in section 13, and and we finish with two short
comments in section 15.

Studies about the limits of validity of point vortex approximations were done
for the lake equation [18-23]. They are not discussed here.

2. Correspondence of vortex rings and rip currents

The infinite self-velocity for a ‘pure’ point vortex (e = 0) in the lake equation
is not that surprising if one is familiar with William Thomson’s (later Lord Kelvin)
torus vortex [24-28].

The self-velocity along the axis is given by

Tllog(8r/a) — C)/4mr

where «a is the inner radius of the torus, and r is its radius, so it diverges as a — 0.
The inner vorticity structure determines the value of constant C.

LOur results essentially coincide with the description in Dekeyser and Schaftingen [20].
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Recent experimental studies are [29-35]. For a mathematical proof of vortex
rings see [36]. We draw attention to studies [37-40]. What is the connection with
lake equations?

PROPOSITION 2.1. Euler’s equation for axisymmetric flows without swirl in
cylindrical coordinates (x,r,¢) coincides with the lake equations on (x,y),y = 0
with b(x,y) = y. (Make r <> y and ignore ¢.)

‘Morally’ a (from the torus ring) <> € (the vortex core) (see [41]), so there is an
analogy of rip currents (informations below) with the collision of two equal vortex
rings, [33,42]. The later is a detailed analysis of the turbulent collision.

See Fig. 1 and Fig. 2. Imagine two opposite vortices at the same distance from
the shore on a sloping beach, with the positive vortex positioned to the right of
the negative vortex. As they move towards the ocean, they approach each other.

F1GURE 1. Collision of two vortex rings. An important parameter
is the thickness. Adapted from [42]. Recent videos: [43,44].
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FIGURE 2. Source: wikipedia (public domain). The wide head of
the current indicates the merge of vortex couples.
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A sequence of such vortex pairs produces the rip current. The current dissolves at
the ‘head’. This is similar to the mutual destruction of the colliding rings that pro-
duces subsidiary small rings all over, but represents a different physical mechanism.
Videos: [43,44].

As Richard Feynman used to say, “same equations have same solutions”. Thus,
for the lake equations on a uniformly sloping beach, one can use ipsis verbis the
quite extensive literature on coaxial vortex rings.

3. Geometric Mechanics of lake equations. Green function

In Arnold-Khesin approach [45,46] for Euler equations, the energy functional

1

f/ g(u,u)fr, u € sDiff;
2 Jm

is considered on a Riemannian manifold (M, g) with a volume form f that can be
unrelated to the metric g in M.

THEOREM 3.1. FEuler’s equation becomes
u + (v, V)u= —gradp, diviju=0 (V is the covariant differential of g).

Geometrically, it is better treated dualizing to sDiff:i via the musical isomorphim

> vt = and Euler equations rewritten as

relative to g, v = u
v+ Lyv =exact (u=1*¢ sDiff 7).
DEFINITION 3.1. The vorticity is defined as a 2-form w = dv.

PROPOSITION 3.1. Helmholtz’s transport formula
wt + Lyw =0 (L, is the Lie derivative)
holds exactly the same way as in the usual case in which [i is the volume form of g.
One important consequence is the concept of isovorticity:

COROLLARY 3.1. The vorticity at any moment is transported to the vorticity
at any other moment of time by a diffeomorphism preserving the volume element.

An important information is that, in 2d, isovorticity is equivalent to being in
the same coadjoint orbit [47,48]. In 3d, the situation is more complicated. What
does isovorticity imply for 2d point vortex models? This is clear: the ambient must
have constant vorticity, which is usually zero on a bounded domain, or a constant
counter-value on a closed Riemann surface.

For the lake equations, a stream function ¥ (z,y) gives rise to the vector field

u=(1/b)V*+e,
so that div(bu) = 0. The vorticity vector field is
w = curl(V+y/b) = — div(grad ¢ /b) k.

which leads us to consider the elliptic operator, with Dirichlet boundary conditions,

(3.1) Lyt = —div (% gradw).
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The stream function of a (bound) point vortex is taken by definition to be
the Green function Gy, (z;z2,) of Ly vanishing at the boundaries that we denote
G for short. The stream function v corresponding to a distributed vorticity w is
recovered via

(3.2) $(z) = /D Gy (2, Ow(¢)de dy.

® via the Euclian metric, incompressibility entails

dbxv)=0

In the Appendix A of [15] we summarize the properties of the Hodge star x, a
conformal invariant object.

Dualizing to v = u

REMARK 3.1. It may be premature to draw conclusions, but when the domain
D is multiply connected the kernel of L; is non-empty the pair of equations

(3.3) dn = 0 (being irrotational), d(bxn) = 0 (being incompressible)

defines the pseudo-harmonic 1-forms. For b = 1 these are the harmonic forms.

On closed Riemann surfaces those forms belong to a 2g dimensional space, but
on a planar domain only half of those forms on the Schottky double are used, i.e.,
those that are dual to the inner boundaries.

Hamiltonian for vortices on lake equations. The literature on coaxial
vortex rings suggests a natural proposal. Let us assume, for the moment, that the
domain is simply connected. The velocity u(z,y) for a marker (particle z = x + iy
with its I' — 0) is

I
u(xvy) - b(x,y)v 'll),
(3.4) N
V(x,y;21,...,2N) = ZFkGLb(z, 2k)-
k=1

using the Green function Gp, of the elliptic operator (3.1) (more next).
The Hamiltonian system will be

1 .
H= Z I\TwGr, (2, 2k) + 3 Z F? Richy(z;)
(3.5) gk J
Q= ijb(z])dx] N dyj.
J
where the vortex self-velocity comes from Richardson’s (phenomenological in ¢;):

Richy(z;) = % log (613) logb (see 1.1).

REMARK 3.2. This Hamiltonian system suffices for simply connected domains
or for a closed Riemann surface of genus zero. However, the same way as shown
in [14], it is incomplete for multiply connected domains or closed surfaces of genus
> 1. We outline the ideas for the interplay of vortices + pseudoharmonic flows in
section 13. It should mimic [15].
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We end this section with a query.

QUESTION. For consistency, it is important that, when b approaches a constant
value, then Richy(z) becomes the Robin function of the domain. What would be
correct to do: (i) establish an interpolation between the expressions, or (ii) add the
Robin function to the Hamiltonian (3.5)7

4. Elliptic operators in 2d. The Green functions G and Ay

Elliptic operators in " form a noble area in mathematical physics [49,50]. In
divergence form, operators with variable coefficients appear as

(4.1) Ly = —div(A(x)Vy), xze€DCR"

where A(x) (conductivity matriz) is positive and satisfies an uniformity condition.
In the now classical treatises by Bergman—Schiffer [51] and Vekua [52], several
physics and engineering problems (mainly in elasticity) are taken for motivation.
For n = 2, together with Lipman Bers, these authors established the theory of
pseudoanalytic functions, intrinsically connected with quasi-conformal mappings.
Lipman Bers legacy stands high. His 1977 review [53] remains particularly illumi-
nating. There is also a review by Henrici [54] of Vekua’s work. Some references:
From late 40’s throughout 50’s, [55-61]. From the 60’s to early 80’s, [62-65]. A
book by Rodin [66] was perhaps the first with the Riemann surfaces viewpoint.
From the 1980’s to the early 2000’s, the interest somewhat subsided; however,
there is a renewed interest, perhaps motivated by Al and image processing. Three
recent treatises are available: [67-69]. Specially exciting is the statement in the lat-
ter: “any solution becomes harmonic after a quasi-conformal change of coordinates”.

5. Green functions near the diagonal. An open question

All operators act on the first slot.
DEFINITION 5.1. The Green function for (4.1) is defined by

LaGa(z,y) =6y(x) z,ye DCR"
Ga(z,y) =0 when y is in the boundary and G4 (z,y) = Ga(y, x).

For lake equations (n = 2), one needs information about the Green function
(that we denote G} or Gp,) for the elliptic operator L4 with isotropic conductivity
A = diag{1/b}.

If the vortices are sufficiently far from boundaries and the bathymetry changes
smoothly, with smaller variations compared with their mutual distances, it seems
reasonable to use the dominant term of the Green function near the diagonal.

For b =1, it is common knowledge that Gp(z,() ~ ®o(z — ) with

1
(5.1) Dy(z) = 5 log |z|.

For the general (4.1), the authors of [70, 71] propose the singular+regular

decomposition

det(A(z) ™12 + det(A(y) /2 o (Tm + T
0

GA(Iay) = 9 9

(I - y)) + SA(Ilf,y),
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where T, (T 1) = A(x). They claim that although the regular part Sa(x,y) is
only continuous at the diagonal, S (z,x) is C*° smooth.
For A = diag{1/b} this becomes

b(z) +b b(x)'/2 + b(y)/?
( )2 (y)%( (z) : () (Ify))

In [20], an alternative expression for the singular part is provided (Proposi-
tion 3.1):

where Gp is the Green function for the usual Laplacian (b = 1) with Dirichlet

boundary conditions. These expressions are similar, but they are not identical.
Which one to use?

(5:2) Gy(z,y) ~

6. Changing the operator L, to Ay

It seems to us that the results in [72] favor the choice (5.3) more than (5.2).
The authors consider the operator

(6.1) Ayt = _%x) div(a(xz) V)

= —-Ay —Vloga- V.

on a bounded domain D C R™, n > 2 with Dirichlet boundary conditions, where
a(x) is strictly positive and smooth. A is the Euclidean Laplacian and A, can be
seen as a perturbation of A (look for more below).

By definition, the Green function G = G, for A, satisfies

AG(z,y) =d,(x) z,y€D
G(z,y) =0 when y is in the boundary.

and the authors state that the symmetry condition becomes

(6.2) a(y)G(z,y) = a(x)G(y,z) = Y (,y) = 9(y, v).

Let @, be the fundamental solution of the Euclidean Laplacian in ™. For
n = 2 is given by (5.1). They provide a recipe for a recursive expansion in x for
the regular part H(z,y) defined by

H(z,y) = G(x,y) — Po(x —y) (symmetry does not hold for H).
Here, we do not need the details of the expansion. H satisfies
1 _
—A.H(z,y) =Vioga(z) - VO,(x —y) = —%Vlog a(x) - ﬁ
Although, in general, H ¢ C'(D x D), results about elliptic regularity imply that
it is at least C°. Remarkably, the Robin function H(x,x) is C°.

REMARK 6.1. Inverting an elliptic operator has a smoothing effect and solution
of a Poisson equation is two derivatives more regular than the source [73]. When
reviewing the literature for lake equations, one must first determine which specific
equation is being considered, (3.1) or (6.1).
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For our purposes, it is enough to posit that near the diagonal, no matter what
anisotropy function a(zx) is present, one can take the approximation

(6.3) Gal@,y) ~ Doz — ).

7. Speculations

We take a = 1/b in (6.1). Since Ay, = bLy, with Ly, given by (3.1), we get the
important information that

by ()
b(x)

To recover the stream of a vorticity w(z), one uses the area form dA = b(x)dz dy:

/ G (2 Cw(C)dA.

This implies, as it seems reasonable to us, that a unit vortex stream function
could be defined alternatively to G, of (3.1), (3.2) taking

P(x) = b(xo)él/b(x,xo).

Let us discuss the underlying reasons. We are in two dimensions so we compute
the circulation of the vector field V+1)/b around a closed curve v bounding a small
region R containing z,:

fv%p/b dl = b(wo)j{vlél/b(x,xo)/b(x) -dl

Lbéub(ﬂ?,y) =

= b(wo) //R(f dive Vél/b(x,mo)/b(x))d:v dy

= b(x,) // (Lt)oG1)p(z, 20)da dy

b(zo // z)dzx dy = b(xo)b(io) =1
This means that, as the vortices (:1:1, ...,xy) are allowed to move around the
domain by elements of sDiff, the family of stream functions
N ~
Y@z an) =Y (Tb(2)Gryp(, ;)
j=1

is isovorticed with zero background vorticity. This ansatz is close enough to (5.3).

An alternative Hamiltonian description to (3.5), now using G /b, should be not
too difficult to produce. For this, the modified symmetry relation (6.2) would be
instrumental.

Proposed gross approximation. In view of (6.3), we suggest the approxi-
mation

(& "~ gy L)
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for the fluid flow produced by nearby vortices 1, ...,z . For the vortex dynamics,
one would take the interaction terms plus each of Richardson’s self velocities.
We hope the above considerations makes sense.

8. Toy example: Vortex pair on a sloping beach

In the so-called rigid lid model, it is tacitly assumed that the momentum of the
onshore flow by the surface waves [74,75] is averaged and transferred to alongshore
currents, which then recirculate via the rip currents.

Let us consider two opposite vortices on a sloping beach b(y) = ay initially at
(£, Yo). The motion will keep symmetry with respect to y-axis, so we can focus
on the right vortex with negative vorticity. The pair will move offshore as they
approach. Then (7.1) gives

T2 T2
= = =
where p = |loge|/27 is a phenomenological parameter. We posit p = p(a) in a

decreasing fashion, so that p — 0 as o — 0.

It is readily seen that, in finite time, x(¢) attains zero while y(t) — oco. Thus
rip currents can go very far.

A interesting (and more sophisticated) problem could be vortez sheets on the
lake equations. Possibly [76] and [77] about Birkhoff-Rott may help.

For amusement, we give information on rip currents. Not quite an amusement:
rip currents cause most deaths on beaches. There is a large oceanography liter-
ature [78-83] and some modeling by fluid mechanicists with various degrees of
sophistication, [84-89)].

“Peregrine [85] presents evidence for vortex structures arising from
along-shore currents and argues that, in particular, rip currents
arise from the pairing of opposite signed vortices in the form of

a propagating dipole. ... for typical parameter values, vortices
evolve with length scales of O(100 m) and time scales of O(100s).”
(from [86]).

FIGURE 3. Rip currents periodic pattern [85]. Clearly visible are
the necks and heads. The wide head of the currents indicates the
merge of eddy couples.



10 KOILLER

9. Three examples of Green functions in (more or less) closed form

Linear profile. In the introduction, we discussed the analogy with vortex rings.
Among the references, we highlighted the surveys [16,17] and the research articles
[37-40]. From the latter, only changing notation,

. OH . OH
Ljy;a; = oy Ljyii = =5~
J J

L T TR
;éhryl{()gej4}+ (xlvyla"'axl\/',yN)'
For the lake equations, one should only replace the self term by the expression given
by Richardson. The interaction energy is U = - > i LiliG (@i, yis 5, y5) with

Glory o' y) = vy 2 cos 6 df .
Am Jo  /(z —2')2 +y2 +y? — 2yy cos b
G can be traced back to Dyson 1893 [26]. See Lamb’s Hydrodynamics [27].

The authors of [39] mention the work of Vasilev in 1913 [90] as the first with
the Hamiltonian description. The integral can be evaluated explicitly in terms of
elliptic functions, equations (1.2, 1.3), page 36. The expression they use for the
self-velocity, equation (1.7), page 37, is the one given by Saffman [30].

REMARK 9.1. For axisymmetric generalizations in higher dimensions, see [91]
and [92]. For the Geometric Mechanics viewpoint, see [93,94].

Ezponential profile. These are sometimes used in physical oceanography [95].
Inverting the notation of [96], let = be alongshore (—oco < x < o0) and y pointing
offshore (0 < y < c0). The profile was given by

) — {bl expls(y ~ 0]

o 0<y <y,
biexpls(yo — )], Y > Yo-

The Green function G was first evaluated by applying a Fourier transform in y.
The transformed G could be found explicitly. However, certain approximations
were required for the Fourier inversion.

Composite materials conductivity. Suppose the function a(z) in (6.1) is formed
by a number of piecewise constant indicator functions in D,

N

a(x) =Y kexB, +XB,: ke >0,
(=1

where the By are disjoint regions inside D and
N

In [97], the problem with two balls is examined. The Green function is (more or
less) explicitly constructed (Proposition 2.3) and derivative estimates are provided.
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10. Numerical methods for elliptic PDEs in inhomogeneous media

Numerical analysis of elliptic PDEs is a much developed area, see e.g. [98].
Here, we just take from the lecture notes from a class at MIT by S. Johnson, [99].
He refers to the Euclidian Laplacian as governing “empty space” on a domain D,
and assumes that its Green function G, can be constructed.

One considers the equation Ly = f with La given by (4.1) in the isotropic
situation A = diaga. For us, a = 1/b. In electrostatics, \/a is proportional to
the refractive index; in a stretched drum, a is proportional elasticity; a could be a
diffusion coefficient or a thermal conductivity.

His approach is to make the problem look as an empty space one, rewriting it as

—Ay = 5 +Vioga-Vy
Formally
_ &) | o /
vie) = [ Gole [ L8 + T 0ga(6)) - vu()] dvol(e
This is a volume integral equation for ¢). One may rewrite the VIE as
. _ 1)
v=do+Bu. 6= [ GlaolEave),

sz/ G,V'loga - V'ypdvol.
D

One can think of the inhomogeneous solution as the sum of “homogeneous”
solutions using G, with right-hand-sides f(£)/a(&) plus a “scattered” solution due
to inhomogeneities of a. There are well-established numerical methods for solving
“VIE” problems. There are situations in which the problem simplifies. For instance:

Piecewise homogeneous media. This is the third example in the previous
section. Suppose a = a1 in a subdomain 2 C D and a = as outside. Then Va is a
delta function at the interface, multiplied by log(as/ai). The VIE becomes a SIE
which can be handled numerically more easily.

This seems promising for the lake equations, taking a number of level curves of
the bathymetry, and assuming constant values between them.

Born—Dyson approximation. When the operator B has some norm < 1,
the functional equation (I — B)¢ = ¢, can be solved via

(I-B)'= f:B’“.
k=0

This trick is so common in mathematics that there is no name for it. In physics it
is called the Born—Dyson expansion. For nearly homogeneous a, one can take

Y ~ 1, + B, (this is another way to justify (6.3)).

QUESTION. Taking for f a delta function, so ¥, = G,, perhaps one could
produce useful approximations for the Green function of A,.
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11. Orthogonal (Hodge) decomposition for multiply connected domains

When the domain has islands, the stream function (3.4) is incomplete. In order
to enforce prescribed boundary circulations, another term is needed
N
(11.1) Y(z,t) = Z LrGy(z, 21) + Yeire (251, - - - apg)
k=1
This was called “outside agency” by C. C. Lin [6], but it is a bona fide internal
entity of the flow. The vortices are driven by .., but in feedback they change
eire dynamically. The process is described in [15] when b = 1. We now emulate
these results for the lake equations. We aim to show that the two terms in (11.1)
form an orthogonal decomposition with respect to the area form dA = bdz dy.

The first term: 1 vanishing in all boundaries. Let L; act on C*° func-
tions with constant (perhaps all different) values on the boundaries. We use Green’s
first identity

/ div(yX)dx dy = / (YdivX + X - Vy)dedy = (X -n)dl
D D oD

Consider two functions ¢, that vanish on all boundaries (or at infinity). Let
X4 = V¢/b. Interchanging the roles of ¢ and ¢, it follows that

/ W div(V/b)dA — / 6 div(Ve/b)dA
D D
:f ;%(qu/bﬁ)dé—f SV /b i)dl = 0.
oD oD

So L; is symmetric at least for functions v, ¢ that vanish on all boundaries.
Now take only ¢ vanishing at all boundaries. Green gives for X4 = V¢/b that

—/[)@bdiv(?)dazdy: D%-V¢dwdy=/]3¥~¥bdwdy

(in the inner products we can replace V by V+ and the formulas remain valid).

VL(b vlw
AP = AP = [ —-
/Dw odx dy /qu Y dxdy /D 5 b bdx dy

This is the inner product of b-divergence free vector fields, when the stream function
of at least one of them (say, ¢) vanishes on all the boundaries 9D. With ¢ vanishing
on all the boundaries

(Lptp, 1) =I/Dwwadxdyz/wa/bedxdy

which is twice is the kinetic energy of the vector field V11 /b. Notice the presence
of the area form dA = bdz dy.

REMARK 11.1. Any % vanishing on all boundaries can be described with the
Dirichlet Green function Gj from its vorticity w, (3.2). The first term in (11.1)
corresponds to this situation, but with concentrated vorticities. Lacking a better
name, we call these functions pure vorticity type.
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The second term t¢irc(z): They are the b-harmonic functions. Let D
be bounded with internal curves ~;,1 < 7 < ¢ and external 7,. The kernel of L
has dimension g. This follows from Fredholm theory? or invoking a continuation
starting from b = 1.

DEFINITION 11.1. A function ¢ is b-harmonic when both d¢ (obviously, being
exact) and x, d¢/b are closed 1-forms (see (3.3)). The b-harmonic functions extend
to the complex domain as pseudoanalytic functions.

One can take for basis the b-harmonic measures my,1 < k < g, the functions
in the kernel of L; that value 1 in each one of the inner boundaries and zero on the
others. As in the Euclidean Laplacian, 0 < my < 1 in the interior of D, and

My +mq+---+mg = 1.
For any ¢ € Ker(L;) we call X = %VLQS an harmonic flow.

ProroOSITION 11.1. Relative to dA = bdxdy, the pure vorticity and the b-
harmonic functions are orthogonal.

Recall : ppp =0 = [(¢divY +Y - Vo)dedy = §,, (Y -7)dl = 0.
Let 1 vanish in all boundaries and Y = %ng), with ¢ b-harmonic: div(Y') = 0.

It follows that )
/DY : (va)bdacdy —0

and we can replace V by V+.

DEFINITION 11.2. Electrostatic capacity matrix P? of the b-harmonic measures:

b b

They are the coefficients of the kinetic energy of the harmonic part,

(11.2) Pb, = / Vi vmebda:dy (1<K, £<g; The L’s can be omitted).
by

g
1
circ = kMg Tlarzf Pb T.
Yeire(2) K§:1Cm(2), i ;CPC

12. Reduction

The C,, = Ci(t) evolve in time coupled with the N vortices dynamics z;(t).
Making use of the Helmholtz conservation of circulations on the g inner boundaries,
it should be possible to eliminate the C; and obtain a dynamics just for the vortices.
One would amend the Hamiltonian (3.5) with the capacities (11.2).

1 . 1
H =) TiltGr, (2, %) + 5 D T3 Richy(2)) + Thar,  Thar = 5CP'CT
i<k J

Q= ijb(zj)dxj A dyj.
J
provided we could determine the row vector C = C(z1,...,2y) in terms of the
boundary circulations, which are constants of motion.

2y. Guillemin, Elliptic operators https://math.mit.edu/” vwg/classnotes-spring05.pdf.
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Determination of the amended term. The following mimics [15] for the
usual situation b = 1 and is congenial to the results in [20, eqgs. (2.2) to (2.7)].
(i) Consider the pseudoharmonic closed 1-forms 8; = x,d¢; /b, where

g
(12.1) ¢ =Y _(P);'m;.
j=1
CramM: {fh,..., By} are dual to the inner boundary curves {v1,...,74}.
Bj = dij-
Vi

We put the proof on hold for a moment.
(ii) Let us rewrite the decomposition pure vorticity+b-harmonic (11.1) as

N g
Y(z,t) = > TwGo(z,21) + Y B
k=1 =1

and compute the circulations. For a single unit vortex z,, the circulation around
the boundary -, is

*,d
pe = f]{ 4 = 7% *xdGy(2,2,)/b+By =  Be=pe—my(zo)
Ve b e

me(z,,)

For b = 1, the underbraced equality is well known by experts and explained in [15].
It should be valid in general:

_f %1 dGy (2, 7) /b = ma(z0)

For N vortices, each with its corresponding strength I'y:

N
By =pe— Zij[(zj)

j=1

To finish, one relates the vectors B and C. This is elementary linear algebra. Let
m = (mi,...,myg) and ¢ = (¢1,...,¢4) in (12.1) be seen as column vectors of
functions: m = P%¢. Since ¥y = Cm = Bé, it follows that CP = B, with C' and
B regarded as row vectors. Thus

PRropPOSITION 12.1.
1 1
Thar = 5CPbOT = 5BQbBT , Qb= (PHL

DEFINITION 12.1. We call Q® = (P®)~! the hydrodynamical capacity matrix
with respect to the dual 1-forms 3 = {f1,..., 8,4} to the curves {y1,...,74}.
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In order to verify (i), we invoke Green’s first identity in the third line:

fofof g v
7.7'7 ‘ A/jbani  Jop b On

{=1

g9 . g )
:ZP.gl/ Vm; - Vime vmfd:cdy:ZPgl/ vm; mebdzdy
= I b o I b b

g
= Z Pz}lpfj =0;; (for clarity, the superscript b in P? has been removed)

13. “Planet equations”. Pseudo-harmonic forms on Riemann surfaces

In [15], the study of point vortices on multiply connected planar domains was
included in the general setting of Riemann surfaces. If the domain has ¢ internal
boundaries and one external, one takes the mirror image to form the Schottky
double, a closed Riemann surface of genus g.

In so doing, the classical results of C. C. Lin [6] were reinterpreted in terms
of Hamiltonian reduction, & la Marsden and Weinstein. The harmonic part can
be incorporated to the Dirichlet Green function, yielding the hydrodynamic Green
function as in [10].

We now introduce a proposal to extend the lake equations to a closed Riemann
surface ¥ with a metric in its conformal class, given a bathymetry b. Since the
letter g will be used to denote the underlying metric, the surface genus will be
denoted k. We plan to develop this program in a future study. This project may
look outrageous for a true fluid-dynamicist, since many factors are disregarded.
For instance, we are making the rigid lid assumption (no surface waves) and taking
constant density (no gravity effects and inhomogeneities), which was already the
case in the lake equations.

However, there is also a mathematical neglect, even worse perhaps. “Tube”
effects [100] are ignored in the equations that will live in the rigid lid X, a curved
manifold bounding an ambient of one more dimension (the depth).

At any rate, we are sure of the mathematical interest, since the main object is
the the elliptic operator on functions in the Riemann surface

1

Ly = div (5 grad 1/)) (where div and grad pertain to the metric g).

Let us denote § = bg. As before, the relevant area form is ji = bu, where p is
the area form of g. Our vector fields will belong to sDiff;. The Euler equation is
written with V,v, the covariant derivative of g.

Given any function ¢, the vector field %gradJ‘ ¢ € sDiff;. The operation L
is to rotate-90 degrees in the tangent plane, which is well defined by the complex
structure. However, recall that in order to define the ‘curl’ of a vectorfield v, it
is necessary to take its musical v = v° (always with respect to g) and define the
vorticity as the two form w = dv.



16 KOILLER

REMARK 13.1. Divergence of a vector field with respect to a measure f.
Lyfi := [divy v]fi.

In dimension 2, L,fi = d(iyj1) + 0 = d(ipft).

Pure vorticity flows.

DEFINITION 13.1. The Green function G = Gy, for L, satisfies

LyGy(s,r)u(s) =: _d5<* %(S’T))

= (4,(s) — E w(s), V= [ u (xis the Hodge star)
(-1~ 7) .

A “pure vorticity” stream function is recovered with

Po(8) = / Gp(s,m)w(r)u(r) (note that we use the area form of g)
b

Lytbo(s) = w(s) — @, @ = %/Ew(s)ﬂ(s).

“Pure vorticity” (PV) vector fields are constructed with stream functions

1
v, (8) = b0s) gradj Y (s) € PV C sDiff; .

and i
d( - *T) — — div,(grad, /by, = —APPp,.
However, they are not enough to represent all elements of sDiff ;.

Pseudo-harmonic 1-forms and pseudo-potential flows. The operator L,
in functions can be extended to act on differential forms, as in Hodge theory for
the ordinary Laplacian A = — divgrad. Its kernel has dimension 2x. Such forms
7 € ker L, are characterized by dn = d(*n/b) = 0.As already pointed out by Lipman
Bers in the 1950’s, these conditions are preserved when ¥ is conformally changed.

To any canonical homology basis, there corresponds a dual cohomology basis
{a B} of 2k pseudoharmonic forms. They correspond to the pseudopotential flows

1 1
S, By

that interact dynamically with the pure vorticity flows.

14. Orthogonality between pure vorticity and pseudo-potential flows

Here, we present one preliminary result in this direction. We claim that the
L5-orthogonal complement with respect to the area form /i inside sDiff 5 of the pure
vorticity vector fields is given precisely by the pseudo-potential flows. Flats and
sharps will be always for the g-metric; we omit the subscripts.

Let us try to characterize the vector fields v € sDiff; such that

/E <}15 grady t,(s), v>g(i5u) =0, YweC®(%).
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This is the same as
[ trad, (o), v = [ vty =0
We need this Lemma: di,, (v )p = dip, A v’
PROOF. g = a(x,y)(dz?+dy?). If v = v10, +v2dy then v” = a(vidr+vady). O
Thus the condition is [y, dy, A v’ =0, Yw € C=(X). Now,
Ay AV = d(P,0”) — Yu,dv”

Since ¥ does not have a boundary, the condition rewrites as
/ Yodt” =0, YVweC®(8) = dv” =0 (and n=1").
b
We also need to impose the § incompressibility of v = 7.
We use i, = xv” (see Appendix A of [15, eq. (A.4)]). Then for v = nt:
0=Lyi = diy(bp) = d(biyu) = d(b*v") = d(xbn) =0

Summarizing, the decomposition is of the form

diy,
1/:7*%@77 with dn = d(xbn) = 0.

Alternatively, we introduce
7] =«bn sothat n=—%7/b.

The orthogonal decomposition rewrites as

—*dwTw]@[—*%] with dij = d(*7/b) = 0.

and dv = w since the pseudoharmonic part drops out.

v=|

The task. In order to emulate the results in [15], one needs to extend the
Riemann relations for a canonical homology basis, but now using the dual basis
of pseudoharmonic forms, and then compute the circulations of the flow on the
homology generators. With this in hand, it should be a royal road to get the
coupled dynamics between the vortices and the pseudopotential flows.

15. Final comment: A desideratum

We hope that the extension of [15] to the lake equations and its generalization
to the ‘planet’ equations, as outlined above, could proceed uneventfully.

We also aimed to point out the direct connection of lake equations to the theory
of pseudo-analytical functions and quasi-conformal mappings. Perhaps a good way
to conclude is by quoting Lipman Bers [59]:

“Riemann surfaces were introduced by Riemann as a tool in the
investigation of multiple-valued analytic functions. The ideas
and methods of Riemann’s function theory can also be used in
studying multiple-valued solutions of linear partial differential
equations of elliptic type.”
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BPTJIO3UW JEJHAYVHA JE3EPA

(npernen ca nuramuMa U cHeKyJanujama)

PE3UME. “Jesepcka jemnatnna’ y JBOAMMEH3UOHAIHO] obiacTu D ca pyHKITHjOM
nyoune b(x,y) nara je ca dyu + (u - grad)u = —gradp, div(bu) = 0, tue je u
u || OD. Jennaunna je 100po nocraB/beHa Kao IapiujasiHa JudepeHnujasna jeji-
HAYUHA, aJd KaJa je b # const, ompasiaBambe MOJe/Ia TAYKACTUX BPTJIOTA 3aXTEBa
JgonatHy juckycujy. Mu ce dokycupaMo ce Ha acreKkTe TeOMeTPUjCKe MEXaHWKe.
Motusupajyhu mpumep je “cTpyja Kujgama’ KOjy MpOuU3BOJIe MapoBU BPTIOra O3y
obajie. 3a 0basLy ca jeJHOJIMKAM HArHOOM IOCTOJU CaBpIeHa aHaJjoruja ca Tom-
COHOBHM BPTJIOKHUM IpcTeHoBUMa. DyHKIHja CTPyjamba KOjy HPOU3BOIU BPTJIOT
nedbunucana je kao ['punosa dyuxiuja oneparopa — div(grad ¢ /b) ca dupuxieo-
BUM IDAHUYHUM yCJIOoBUMa. Kao U y elacTUIHOCTH, je3epeKe jeHadnHe JTOBOE 0
[ICEYIOAHAATHIKIX (DYHKIN]ja U KBA3UKOH(MOPMHUX IIPECIUKABAbA. Y HUPOPMHO
eJIUITUIHE jeJHAYNHE Ha OJUCKUM PHUMAHOBUM IOBpIIMMa MOTJIe OH ce Ha3BaTH
“naHeTapHe jeHadHHE .
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