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WELL POSEDNESS AND STABILISATION
FOR A FLEXIBLE MECHANICAL SYSTEM
UNDER DISTRIBUTED DELAY

Billal Lekdim

ABsTRACT. In this paper, we investigate the boundary control of flexible me-
chanical systems characterized by bending deformation, torsion deformation,
and distributed delay. We establish the existence of solutions using the Faedo-
Galerkin approach along with energy estimates. Under appropriate assump-
tions on the delay weight and the proposed control, we demonstrate the expo-
nential stability of the solution via the Lyapunov method.

1. Introduction

This paper focuses on studying the vibration control problem concerning a class
of flexible mechanical systems characterized by bending deformation and torsion
deformation, considering the presence of distributed delay in the bending equation
and the torsion equation. The dynamics model involves coupled vibration defor-
mation [28], expressed as:

T2

My = MePt — kbytzz:cz - Ebyml‘zw - / 7717(3)%(%?5 - S)dsa

T1

T2
I‘Ptt = MeYtt + ka‘rotwm + Ea‘pacx - / 77a,(8)<ﬂt(55, t— 5)d57 T e (Oa L)7 > 07
T1

1.1 ¥(0,t) = 42 (0,t) = yuu (L, 1) = 0, (0,2) =0,
kaie(L,t) + Eqp(L,t) — Co(t) = 0, t>0,

y(x,O) :y()(x)7 yt(xvo) :yl(x)v yt(xa_t) :yB(Ivt)a
99(1:70) = 900(90)7 wt(‘rv 0) = 991(35)7 @t(l‘v 7t) = 993(1‘71:)7 T e (Ov L) X (037_2)7
where y and ¢ represent the bending and torsion deformation. The subscripts in z

and t denote partial derivatives. The parameters m, ,me, ky, Ep, I, ko, Fo, T1, T2
and L are positive constants related to the characteristics of mechanical systems,
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where 7y < 79. Additionally, 1, and 7, represent the weight of the delay, C, and
Cy for boundary control.

The boundary control of flexible systems has garnered significant attention in
recent years due to its unique characteristics and extensive applications. The pri-
mary objective of controlling these systems is to achieve the desired stability rate
with minimal internal dissipation (see, for example, [5-7,14-16,19,20]). Perturba-
tions often arise from irregular material properties, external forces, or the presence
of a delay factor. To achieve stability, researchers typically depend on the inter-
nal dissipation of the system. Boumaza and Boulaaras [4] established asymptotic
stability results for systems utilizing internal frictional dissipation mechanisms.
Al-Mahdi et al. [1] derived general decay results under the influence of nonlinear
damping, demonstrating the system’s adaptability to varying damping characteris-
tics. In their paper [3], Al Mahdi et al. specifically relied on frictional dissipation to
achieve stability, while in [2], they extended their analysis to systems incorporating
viscoelastic dissipation, highlighting the versatility of such damping mechanisms to
enhance system stability. However, when these internal dissipations are insufficient
to achieve the desired rate of energy decay, boundary control presents a viable
solution (we refer to [25,26,31]).

Previous research has established that the delay term can introduce distur-
bances and contribute to instability (see [29]). To mitigate the negative effects of
delay, a viscous dissipation coefficient is relied upon [23,24,30]. Feng [10] analyzed
a wave equation incorporating distributed delay, addressing its dynamic behavior
under such influences. Gheraibia and Boumaza [13] extended this analysis to a
wave equation featuring Balakrishnan-Taylor damping coupled with a non-linear
delay, providing insight into the interaction of these factors. Meanwhile, Choucha
et al. [6] focused on a coupled system that included both distributed delay and
viscoelastic terms, highlighting the combined effects of delay and material memory
on the stability and dynamics of the system. Kelleche and Tarar [17] studied the
effect of distributed time delay on the stabilization of a Kirchhoff moving string.
Related results can also be found in [11,18,21].

The system (1.1), excluding the delay term, has previously been studied in [12]
using adaptive control. In addition, numerous control problems have been explored
based on boundary control (see [28]).

To the best of our knowledge, there are no results in the literature that address
the stability of system (1) with a delay distributed across both equations with two
different weights. Additionally, we also mention the simultaneous appearance of the
acceleration of bending and twist deflections in both equations. This complexity
made our work particularly challenging, especially in proving well-posedness, as it
necessitated setting the condition:

(1.2) min {m, I} > me.

The remainder of the paper is organized as follows: Section 2 introduces key
assumptions and lemmas that are essential for proving our main result. Section 3
addresses the well-posedness of the problem. Section 4 is dedicated to starting and
proving the stabilization result.
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2. Preliminary

In this section, we will outline the assumptions and materials necessary to
illustrate our main results.
(H1) : We assume that for i € {a,b}, ;: [1 7] — Ry is a bounded
function, such that

T2 k., T2 ks
/T Na(s)ds < 32 and /7—1 m(s)ds < Y7

1

which implies that there exists a positive constant ¢, and ¢, such that

ka T2 Cq kb 2 Cp
_ - > —_— — — > 0.
572 /T (na(s)+ 2)ds/O and 574 /T1 (nb(s)—i— 2)d3/0

1

The energy associated to system (1.1) is

L L L L
E I E,
(2.1) e(t) = @/ yidr + *b/ Yaoda + */ pidr + */ pad.
2 0 2 0 2 0 2 0

This expression represents the usual classical energy, where the first two terms
account for kinetic energy, while the remaining terms account for potential energy.
To stabilize the system (1.1), we propose the control:

(2.2) Cp(t) = —apye(L,t) and  Cu(t) = —agp(L, t),
where «y and «, are positive control gains.

LEMMA 2.1. The energy (2.1) satisfies

L
(2.3) e(t) = me/0 [yer0r + yrore)da + Co(t)ye (L, t) + Co(t) i (L, t)

L L T2
- kb/ yfmdx - / ye(z, 1) / Mo (8)ye(x,t — s)dsdx
0 0 T

L L 172
- ka/ 2 dx — / i (z, t)/ Na(8)e(z,t — s)ds dx.
0 0 T1

PROOF. The combination of derivation of energy and the equations in (1.1)
yields:

L T2
6l(t) = / Yt |:me()0tt - kbytwajmw - Ebyxxww - / nb(s)yt($7t — S)d8:| dx
0

T1

L L
+ Ep / yxacytxxdfp +E, / Wﬂc‘ﬁtxdx
0 0

L T2
+ / Ot [meytt + koWize + Ea@on — / Na(8)pt(x,t — s)ds] dx.
0

T1

By integrating by parts, we find

L
el(t) = Me / [ytt‘pt + yt@tt]dx - [kbytmmw(La t) + Eby;vww (L7 t)}yt([ﬁ t)
0
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L
+ [kapia (L, t) + Eape (L, t)]@e(L,t) — kb/ thxacdx - ka/ ‘ngdz
0 0

L T2
—/ yt/ m(s)ye (x, deﬂ?—/ (Pt/ Na(8)pt(x,t — s)dsdx.

In view of the boundary condition in (1.1), we get (2.3).
To include the distributed delay term into the energy of the system (1.1),

introduce the modified energy as follows:

L L L L
E I E,
t) = %/ yida + 717/ Y2 dr + 5/ ordx + 7/ 2 dx
0 0 0 0
1 L T2 1 )
+ */ / s[np(s) + c) / (ye(x,t — ps))°dpds dx
/ / s[na(s) + Ca]/ (i(x,t — ps))?dpds da.

LEMMA 2.2. There exists a positive constant a; such that

L
e / repr + yeoedlde + Colt)ye( L t) + Calt)pe(Ls )

0
kb L 9 kb T2 Cb L 9
- 5 ytwwd‘r - LA - /7—1 (77b(5) + §)d8 /0 Ye du

0
k T2 Ca L
K «:mdz i [+ D] [t

1

// (ye(z,t — s)) dsd;v——// gotxt—s)dsdx

PROOF. According to Lemma (2.1), the modified energy E(t) satisfies

L
e / rer + yeedldz + Co()ye(Lt) + Calt)pe( Ly )

(2.4)

(2.5) E'(t) <

(2.6) E'(t)=

T2

L L
— kb/ yfmdx —/ yt(x,t)/ m(8)ye(z, t — s)ds dx
0 0 T1

T2

L L
—k, / gotrdx / i (x, t)/ Na(8)t(x,t — s)ds dx

/ / s[m(s) + ¢ / ye(z,t — ps)yu(z,t — ps)dpds dx
0
/ / slm(s) + ca]/ pi(x,t — ps)pu(x,t — ps)dpds dx.
0

Applying Young’s inequality to the fifth and seventh terms of the equation (2.6)

we obtain
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wt

/OL () / (.t — s)dsda

1

<3( [ wiors) [Cntetzas s 7" ot - s

/L @¢(x,t) /Tl Na(8)i(x,t — 8)ds dx

0 T1

< ([T mos) [Cotworas sy [7 [ morate -

For the last two terms, we can simplify as follows

and

1 1
/ e (2, t — ps)y(z,t — ps)dp = —s~* / Ye(x,t — ps)yp(x,t — ps)dp
0 0
-1

= [t~ )~ (o )]

and

1 1
(2.7) /sot(ﬂcvt—pS)%t(x,t—pS)dpz—s_l/ (2, t — ps)pip(x,t — ps)dp
0 0

-1

= 2 [t - 9)? — (el ))?).

By combining results (2.6)—(2.7), we get

L
E@<m/ﬁW%+mmm+&mmww+@mwwn
0

L L
- kb/ yfwxd‘r - ka/ ngdw
0 0

+ /T2 [ () + cp/2)ds /OL yidr + /Tz [Ma(8) + ca/2]ds /OL prdr

T1 T

1
Ch L p7o ) Ca L 7o )
-3 (ye(z,t — s))“dsdx — ) (pi(z,t — s))*ds dx,
0 T1 0 T1

The proof is concluded by substituting the proposed control (2.2) and applying
Poincare inequality. O

3. Well posedness

Here, to establish the well-posedness result using Faedo-Galerkin method, we
will need to change the following variable:

Z(I’,p,LS) = yt(xat 7p$)7 (OvL) X (O’ 1) X R-i— X (7—177—2)3
¢($,p, ta S) = QOt(fE,t _p8)7 (OvL) X (071) X RJr X (T177—2)7
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Subsequently, problem (1.1) becomes

MYt — MePrt + kbytacx:cac + Eby:cacxac + f:;z nb(s)yt (ZIJ, t— S)dS = 0,
I@tt — MeYtt — ka@tmx - Eaﬁpfcm + f:? na(s)SDt(SU,t — S)dS =0,

ze(z,p,t,s) + s 1zp(z,p,t,8) =0,

be(x,p,t,8) + s Lop(z,p,t,5) =0,

(31)  qy(0,t) = yx(0,t) = yuu(L, 1) =0, (0,t) =0,
kyYtzwe (Lst) + EpYeee (L, ) + Cy(t) = 0,
kaia(L,t) + Eqpz(L,t) — Cqo(t) = 0,

y(xvo) :yo(x)v yt(xvo) :yl(x)v z(ac,p70,s) :y3(x7ps) = 20,
(p(.’lﬁ,O) = (po(x)v (pt(xao) = 901(1:)? (b(x’paovs) = 903(1‘71)5) = ¢o,

for all (z,p,t,s) € (0,L) x (0,1) x Ry X (71, 72).
We introduce the Hilbert spaces

U'={f e H*0,L), f(0)=f'(0)=0}, U*={feU'nH0,L), f'(L)=0},

Vi={feH(0,L) f(0) =0}, Z'=L*0,L;H'(0,1), i=12
The existence and uniqueness result is stated as follows.
THEOREM 3.1. Assume that (H1) hold. Then given (yo, o, 20, ¢o) € U2 xV?x

72 x ZY and (y1, 1) € UL x V1, there exists a unique weak solution (y, ¢, z, ) of
the problem (3.1) such that

(y.0) € W22(0,T;U") x W»>(0,T; V'),
2,0 € WH(0,T; L*((0, L) x (0,1) x (11,72))).

PrOOF. We employ the Galerkin method to construct a solution. Let T" > 0
be fixed, and denote W,, = span{w,ws,...,w,} and V,, = span{vi,va,..., v},
where the sets {w; }ien and {v;}ien form bases for U2 and V2, respectively. Then,
we give the sequence {u;(z,p)}o<i<n and {x:(z,p)}ocicn as follows:

ui(z,0) = wi(z) and  x;(x,0) = vi(z).

Next, we extend u;(z,0) by u;(x,p) and x;(z,0) by x;(x,p) over L2((0, L) x (0,1))
and denote by Z2 = span{u1,us,...,u,} and Z} = span{x1, X2, - - - , chiy, }. where
the sets {u; }ien and {x;}ien form bases for Z2? and Z!, respectively.

We search the approximate solutions

yn(.’t,t) = Zwl(x)fzn(t)a Zn(xvpv t) = Zui(x’p)h?(t)7
i=1 =1

n n

P (@) = Y _vil@)gl (1), " (@,pit) = Y xilx, p)k] ().

i=1 =1
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That satisfy the following system:

(mygy — meypy, wi) + (koYiae + EvYge, Wiza)

+ L7 m(s) (2" (2, 1, 8), wy)ds + apyp (L)w; = 0,
(3.2) (Ingt - meyghvj) + (katpry + Ea(pgvvjﬂﬁ)

+ [ ma(8)(6(x,1,4),v;)ds + aap (L)vj = 0,
(zf + s‘lz uj) =0,

(¢t+571 Zan) 0, 1<j<nm,

with initial conditions (y™(0),¢"(0), 2" (0), ¢"(0)) = (yi, ¥5» 20+ ¢5) — (Yo, o, 20, o)
in U2 x V? x Z% x Z" and (yt (0), 91(0)) = (y7', 1) = (y7', 1) n U x VI

According to the standard theory of ordinary differential equations, the finite
dimensional problem (3.2) has solution f7*(¢), g*(t), h?*(t) and k(t) on [0,t,). The
a priori estimates that follow imply that ¢, = T.

First estimate: Multiplying the first two equations in (3.2) by (f7')" and (g7)’,
respectively, then summing respect to j, we get

1d

L
33) 55 [ G+ B2 + 1) + Bulel))da

L L
[k ek [ (0L + aulaf (1) + aulel ()
0 0
T2

+f () (1,0, u ) ds + [ o 10, epds

1 T1
d [L
me£ / Yoy de.

Now, multiplying the last two equations in (3.2) by (1.(s) + co)h} and (7(s) +
cp))k}, respectively, and summing respect to j, then integrating over (0,1) x (1, 72),

we obtain
{/ +Cb)/ol(zn)deds+/T:2(na(s) +Ca)/ol(¢n)2dpd8:| da

il
/ ) +en)d )/OL(Q?)%— %/OL /:(nb(s)+Cb)(z”(1,s))2dsdx
+5(/ﬁ (n ()+Ca)d)/OL(SD?)le'—;/OL/T:Q(%(S)+ca)(¢"(1,s))2dsdaz.

By summing (3.3) and (3.4), and by applying Young’s inequality to the last two
terms from the left side of equation, we find

L L
GE O+ by [P+, [ () s+ 067 (D) + u(er (1))

// "(1,s)) dsdx—|—f// (¢"™(1,8))%ds dz
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S </TIT2 (mu(s) + C;)ds) /OL(yf)de
" (/:(n“(SHC;)ds)/O er ) deme o / Yoy de,

where E™ is the energy given by (2.4), for the solutions (y™, ™, 2™, ¢™).
Then Integrating over (0,t), we obtain

t L L
+ / oy / (yfon)2d + Ky / (o) 2d + ap (0 (L))? + aal (L) dt

/// "(1,5)) dede*/// (¢"(1, 5))2ds dz dt
([Tt D) [ [ ([ ) [ [

+me/ yi o dr — m/ yrprdr + E"(0)
0 0

After simplifying this expression and taking it into account (1.2), we can arrive at

t L
[ e + etz < a
0 JO

Where d; is a positive constant that depends only on the initial dates.

Second estimate: First, we estimate yy(t = 0) and ¢ (t = 0). Similarly to
the first estimation, we multiply the first two equations in (3.2) by (f}')" and (g7)",
respectively and summing respect to j, then taking t = 0 we obtain

L L
- m n 2 T -m n 2 T
(m — m,) / (ypy(0))%dx + (T — m,) / (3 (0))2d

(kbyltx;vww + EbyOwwm;ﬂ + /

T1

nb<s>z3ds7yz<0>)

+ (kag@?lltacx + angxac - / na(s)¢gd57 <P77€1t>
T
Since the initial data is smooth enough, from Young’s inequality, we obtain

y1(0), ¢i(0) € L*(0, L).
Deriving the system (3.2) with respect to ¢, then multiplying by (f7")", (¢7)",
(Ma(s)+ca)(R})" and (my(s)+cp))(k})" respectively and summing with respect to j,
we get

1

(3.5) 5%/0 (m(ytt)2 + Eb(ytm)2 + I(‘Ptt)2 + Ea(@tz)2)dm + kb/o (yttzz)de

T2

L
Tk / () 2d + Pyl (L) + aaglily (L) + / n(8) (2 (2, 1, £), ) ds
0

T1
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T2 d L
[ oids = me g [ it

1

56 g [ [ [ n)dedH/m( (o) +en) [ dpas] o
:%/T:Q(nb(s)—i—cb)ds/ % / /ﬁ m(s) + ) (20 (1, 5))2ds d

‘: /:(na@nca)ds / i) / / (na(s) + o) (67 (1, 8))ds da

Taking the sum of (3.5) and (3.6), and integrating over (0,t), then following the
same steps as in first estimation we find

L
! / (m()? + By(yhn)? + T()? + Ea(olh)?)da
0

2
LT ) + e 1( ")2dp ds + Tz(na()+ca) (opVdpds]| da
2 0 T1 0

/ / ko (Yitaa) >+ kg (@tm) dz di

< /( /:wb() s ) / P + / (na(s) + s | (onydedr

L t
+me / yrtde — / vyl (L) — g (L)dt + dy
0 0

where dy = da (yi', 0 20> 905 ¥1, @1 Vi (0), 1 (0)).
Using Young and Poincare’s inequalities, and taking the first estimate into
account, we conclude

213 2
OébL n 2 kb n O5(1-[/ n 2 ki n
L ) + Ry + S + )

E tt
L
<di+ / ko (Uhan)® + ka (P da.
0

avyi Y (L) — capr piy (L) <

By combining the aforementioned last two outcomes, we obtain

L
/O ((m = me)(yii)? + Ep(yien)® + (I = me)(0)* + Ba(0f,)?) da

/OL /:(7717(8) + ) /Ol(zt")zdpdsdx + /OL /:(na(s) +Ca)/01(¢?)2dpds do:

t L
4 / / B (fhn)? + k(o) 2
0 0

t L
0 Jo
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Let’s apply Gronwall’s lemma on the last inequality. We estimate

L L L L
/ (42 + / (v, 2da + / (o0)2da + / (¢p)2da
0 0 0 0
t L L T2 1
+ / / (Y2 dt + / / (ms) + ) / (=) 2dp ds de
0 0 0 T1 0
t L L 7o 1
+ / / () 2da dt + / / (7a(5) + ca) / (0)2dpds e < ds,
0 0 0 T1 0

where dg is a positive constant independent of n.
From the first and second estimates we conclude that

y™,y"  are bounded in L>(0,T;U"),

yr  is bounded in L>(0,T; L*(0, L)) N L>(0,T;U"),
©", " are bounded in L*°(0,T; V1),

¢p, s bounded in L>(0,T; L*(0, L)) N L>(0,T; V1),
2",z are bounded in L (0,T;L*((0,L) x (0,1) x (11,72))),
¢", ¢y are bounded in L™ (0,T; L*((0,L) x (0,1) x (11,72))).

We can obtain subsequences of (y™), (¢™), (2™) and (¢™), which will still be
denoted as (y™), (¢™), (™) and (¢™), respectively, such that

y" =y, y — y¢ weak star in L>=(0,T;UY),
Yl — yy weak star in L>(0,T; L*(0, L)) N L*(0,T;UY),

" = v, pp — @ weak star in L>=(0,T; V1Y),
o — oy weak star in L>=(0,T; L*(0, L)) N °°(0 T;Vh,

2" =z, z{' — z; weak star in L™ (O7T; LQ((O,L) (0,1) X (11,72 )),
" — ¢, ¢ — ¢y weak star in  L>°(0, 75 L*((0,L) x (0,1) x (71, 72))).

We can now take the limit in the approximate problem (3.2) to obtain a weak
solution to the problem (3.1) (see [27,32]).

For the sake of uniqueness, we will use the standard approach by assuming the
existence of two distinct solutions. By following the same procedure used in the
second estimation, we demonstrate that the two solutions are identical, thereby
proving that the problem (3.1) has a unique solution. See [8,9,22]. O

4. Stability

Drawing from Lemma 2.2 and the suggested control (2.2), we are unable to
deduce the decay of energy. Consequently, we will employ the Lyapunov method
and introduce the following Lyapunov function:

L(t) = E(t) + W(t) +V (1),

where
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L To 1
W(t) = /0 /T1 s[mw(s) + cb}/o e %P5 (y,(z,t — ps))2dpds dx

L To 1
+ / / s[na(s) + ¢a] / e 2% (py(x,t — ps))?dpds dx,
0 T1 0

L L
V(t) =/ (my: — me<pt)ydx+/ (Ipr — meys)pda
0 0

Ky ka /L 5 me /L

— d — de — — d
+20ym$+20<ﬁz$ ’yoyt%x
and 7 is a positive constant.

PROPOSITION 4.1. There exist two positive constants a and b, such that

(4.1) aE(t) <a(E(t)+W(t)) < L(t) <b(E@R)+W(), Vt=0
ProoF. Utilizing Young’s inequality on the functional V(¢) and under the
assumption that +y is sufficiently small, we readily obtain relation (4.1). O

THEOREM 4.1. Assume that (H1) holds, then the energy E(t) of system (1.1)
satisfies
E(t) <de ™, t>0,
where § and \ are positive constants.

PrOOF. The differentiation of W(t) yields
(4.2) / / s[nw(s —|—cb]/ 2™y, (z,t — ps)yu (2, t — ps)dp ds dx
+ / [ stn) + / 262 04 (1, — ps)puu(a, t — ps)dpds d
0 T 0
L T2 1 s 8 9
:—/ / [nb(s)—l-cb]/ e psa—p(yt(:v,t—ps)) dpdsdx
_ops O
/ / [Ma(s +Ca/ e a (oi(z,t — ps))’dpds dzx
T2 L
— [l + ailas / vidot [ (o) +calds [ s
T 0 T1 0
L
[
L
-, [
) 9 T2 L 5
< [l + s / vidat [ o)+ culds [ gtda
T1 T1

e 7 /OL /: s[nw(s) + cb) (ye(z, t — s))2ds dx

s) + cple *(ye(z,t — 8))°ds dz

)+ cale” > (i (z,t — 5))°ds dz — 2W (t)

67272

L prr
/0 / 8[na(s) + ca)(t(x, t — 5))°ds dx — 2W (t).
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Now, let’s derive the function V'(¢) and utilize the equations in (1.1) to find

L .
VI(t) = — / (kvYtzwes + EvYzees + / ny(8)ys(z,t — s)ds)y dx
0 T

1

L T2
+ / (kaSDta::r + Ea‘pzz - / 77(1(8)9015(56; t— S)dS)(pd:)S
0 T

1

L L
+/ (myr — mewy)yrda +/ (Ios — meys)peda
0 0

L L L
me
+ kb/ Yo Ytaadr + ka/ Prpradr — 7/ (yerpr + yepre)de.
0 0 0

Integration by parts yields

L L L L
(4.3) V() = —Eb/ yixdx—Ea/ cpidx—km/ yfdx—k[/ idx
0 0 0 0

L L T2
Me
Nl (Yeepr + yror)da — / y/ M (8)ye(z,t — s)dsdx
0 0 T1

L To L

- / o / na(3)pr(,t — )ds dz — 2m, / oupeds
0 1 0

+ Cb(t)y(Lv t) + Ca(t)gO(L7 t)

To estimate terms with varying signs, we can employ Young and Poincare’s in-
equalities as follows

/L y(z,t) /T2 M (s)ye(z,t — s)ds dx

0 T1

T2 2L40' L 1 I -
< (/ nb(s)dS) —/ yixdx—i- —/ / (yt(%t—s))zdsdx,
T 2 0 20— 0 .

/OL o(x,t) /:2 Na(8)pi(z,t — s)ds dx

1

T2 2L20 L 1 L 7o
< / Na(s)ds —/ soida:Jr—/ / (i(x,t — 5))%ds dz,
T 2 Jo 20 )0 Jn
L

L L
2m6/ pryrdr < me/ ytzdx—i—me/ gofda:
0 0 0

and
(4.4) Co(t)y(L,t) + Ca(t)p(L,t) = apys (L, t)y(L, t) + capi(L, t)p(L, t)
apLio [ 9 ap o
< ; —y; (L,

a.Lo [* o
—a=" d 202 (L.t
+ 2 A Som‘r+20_§0t( 7)7
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where o > 0 constant.
By combining (4.3)-(4.4), we obtain

T2 2L4 LS L L
V() < <Eb — (/ nb(s)ds> TU — 0452 U)/o yfmd:ch (m+me)/0 ytzdz
T1
T2 2L2 L L L
_ (Ea — (/ na(s)ds) TG — aaz U)/ ©idr + (I+me)/ idx
T1 0 0

L
(yttsﬁt + Yrpre)do + 7/ / (ye(z,t — s))*ds dx

m

// gpt;vt—s)dsda:—&-—yt(Lt) 20 ©?(L, ).

Utilizing the estimates (2.5), (4.2), and (4.5), we obtain
TN 7
(4.5) L'(t) =y (1 20) )+ aa(l )gpt (L,t)
k L 2 L4 L3 L
-2 yfzrrd‘r - (Eb - </ nb(s)d5> 70— - & U)V/ szdI
2 O LIS - 2 2 O rr

k 7 3 o
g [ Cmte)+ 2vds = o] [ aia
T 0

1

ke [ ™ ’L%¢  auLo L
- ?/ Prpdr — (Ea - (/ Ua(s)d3> - T 3 >’Y/ pade
0 T1 0

ke, 2 3¢, L 9
_ PE —/T (2n4(s) + 7)ds — (I—i—me)v] /0 pidx

- L T2
_[e_ 7 _5))2
B 20}/ / (ye(x,t — 8))°ds dx

f—f—// (i(x,t — 5))%ds dx

_7_272 /o /T1 sim(s) + o) (ye(z,t — 5))*ds dz

6—27'2

/0 /72 $na(5) + cal (p1(, £ — 5))2ds da — 2W (1),

We have the flexibility to choose extremely small values for the constants 3, «,

and ¢, guaranteeing that the coefficients in the previous relation become negative.
Then, we deduce that

L'(t) < —c(Et)+ W(t), Vt=0.
Applying the equivalence relation (4.1), we get

L'(t) < =ML(t), Vt=0
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where A = . By multiplying both sides of the above inequality by e, we obtain

d
%{C(t)e”} <0, Vt=0.

Now, by integrating this inequality over (0,t), we find

L(t) < L0)e ™, Vt>0.

Once again, by employing the equivalence proposition 4.1, we have

E(t) <de ™, t>0,

where § = @. O
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JOBPO IIOCTABJBAIBE 1 CTABNJIN3AIINJA
DOJIEKCUBMNJIHOT MEXAHNYKOTI' CUCTEMA
CA PACIIOAEJBEHVUM KAIITEBEIBEM

PE3UME. ¥ oBOM pajy MCTpPakyjeMO T'PAHUYIHO YIpPaB/baibe (HDJICKCHOMIHIM Me-
XAHUYKAM CHCTEMEUMa Koje KapakTrepwuiie jpedOopMalyja CaBUjama, TOP3UOHA JIe-
dopMaImja n pacoe/beHO Kalllibemhe. ¥ TBPhyjeMo mocTojame pelrema kopucrehn
Qaeno-T'anepkunos npuctyn 3ajemaHo ca nporenama emepruje. [lox ogrosapajyhum
[IPETIIOCTABKAMa O TE€XKUHU KAIIbeIha U IIPEJIO?KEHOM YIIPABJbAIbY, II0Ka3yjeMO eK-
CHOHEHIMjaIHy CTabUIIHOCT pellema myTeM JbalyHoB/beBe MeTojIe.
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