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NIPPING ANALYSIS OF A TWO-LEAF
SPRING STRENGTHENED BY AN

ADDITIONAL FULL-LENGTH LEAF

Vlado A. Lubarda and Marko V. Lubarda

Abstract. Nipping analysis of a rectangular two-leaf spring strengthened by
an additional full-length leaf is presented. Closed form expressions are derived
for the initial gaps between the leaves which make the maximum stresses in
all the leaves within the clamped cross-section of the loaded spring equal to
each other. The derived expressions are general in the sense that they apply
for any values of the introduced leaf-length and thickness parameters. Two
initial gaps between the pairs of consecutive leaves are needed to achieve the
desired stress reduction. The required gaps can be either positive or negative,
depending on the values of introduced spring parameters. For some combina-
tion of length and thickness parameters, nipping is not an effective means of
stress reduction. There is a particular combination of parameters for which
the maximum stresses in all critical cross-sections of leaves become equal to
each other. The presented analysis and obtained results may be useful for
multi-leaf spring design and related optimization studies.

1. Introduction

Leaf springs are used in the vehicle industry to provide support for heavy
loads and absorb vibrations due to road irregularities [1–3]. They are made of
graduated-length leaves placed one below the other and kept together by clips
and bolts (Fig. 1). Leaf springs are initially arc-shaped in such a way that they
straighten out under the maximum expected load. Since the length of a leaf spring
is much greater than its width and thickness, a loaded spring can be considered
as a simply supported mildly-curved beam under the central load. Each half of
such a beam acts as a cantilever beam carrying one-half of the total load. Since
initial curvatures of leaves are sufficiently small (their radii of curvature being much
greater than the leaf lengths), the stress and deflection analysis can be performed
by considering the spring configuration with straight leaves and by using the Euler–
Bernoulli beam theory. From such an analysis it follows that for leaf springs with a
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uniform width and equal thickness of all leaves, the contact forces between the leaves
are different, with the greatest contact force occurring between the two bottom
leaves. The bottom-most leaf has the maximum bending moment and thus the
greatest bending stress.

To increase the strength and the load capacity of the spring, additional full-
length leaves are commonly placed atop the master leaf of the graduated-length
portion of the spring (Fig. 1). For a uniform width and equal thickness of all leaves,
the maximum stress in such a strengthened spring is still in the bottom-most leaf,
while the maximum stress in the added full-length leaves is substantially higher than
the maximum stress in the master leaf of the graduated-length portion of the spring.
For example, if there are two added full-length leaves atop six graduated-length
leaves of length L and the length decrement L/6, the maximum stress in the added
full-length leaves is 40% higher than the maximum stress in the master leaf [4],
assuming the same width and thickness of all leaves. At the same time, it is about
5% smaller than the maximum stress in the bottom-most leaf. From the design
point of view, it is of interest to explore the means to decrease the maximum stress
in the bottom-most leaf and the added full-length leaves. This can be accomplished
by an appropriate choice of the leaf-thicknesses and the length decrements of the
graduated-length portion of the spring, or by using leaves with different initial
curvatures. In the latter case, upon closing initial gaps between leaves by fastening
them with bolts and clamps (referred to as nipping), the leaves become pre-stressed,
and, if initial gaps are properly selected, this pre-stress reduces the maximum total
stress in the loaded spring during its service. In this paper, we present such a
nipping analysis by considering a two-leaf spring stiffened by an added full-length
leaf, with all leaves having the same uniform rectangular cross-section. The lengths
of two bottom leaves are L1 and L2 = λL1, and their thicknesses are h1 and
h2 = γh1. The length of the added leaf is L1 and its thickness is ha = αh1. The
values of 0 < λ < 1 and (α, γ) > 0 are restricted so that the Euler-Bernoulli
beam theory can be applied to each considered segment of the spring. The same
material is used for all leaves. Two initial gaps are needed to achieve the desired
stress reduction, a gap between the two bottom leaves and a gap between the added
leaf and the master leaf of the graduated-length portion of the spring. These gaps
are determined from the nipping condition that the maximum bending stresses at
the clamped ends of all leaves are equal to each other. The closed-form expressions
derived for stresses in terms of (λ, α, γ) may be valuable for the optimization study;
for example, if the minimum weight of the spring is an objective function, under
the constraint of a prescribed strength or stiffness of the spring [5–7].

In the available literature, we did not find an analysis of nipping-induced
stress reduction in leaf springs with rectangular leaves having uniform cross-section
throughout their lengths, in contrast to the well-known nipping analysis in the case
of leaf springs with triangular endings of leaves (uniform-strength leaves) [8, 9].
For such springs, and for uniform length-decrement and the same leaf-thickness,
the maximum stress in the added full-length leaves is 50% higher than in the
graduated-length leaves below. Only one initial gap is needed to achieve the stress
reduction: a gap between the added full-length leaves and the master leaf of the
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Figure 1. A semi-elliptical leaf spring consisting of the mas-
ter leaf and four graduated-length leaves beneath. An additional
full-length leaf is placed atop the master leaf. The depth of the
semi-elliptical shape in the preloaded state is such that the spring
becomes nearly straight under maximum applied load. The center
of the spring is attached to the rear axle of the vehicle. The eyes of
the spring are attached to the frame of the vehicle; each eye takes
the load F transmitted to the spring by the frame of the vehicle.
The upward reactive force from the axle is 2F .

graduated-length leaves below. Such one-gap nipping, however, does not in general
lead to a desired stress reduction for springs with leaves of uniform rectangular
cross-section throughout their lengths, which has motivated our double-nipping
analysis presented in this paper.

2. A two-leaf cantilever spring

Figure 2a shows a two-leaf cantilever spring. Both leaves are made of the same
material with the modulus of elasticity E, and both have the rectangular cross
section of the same width b. The length of the upper leaf is L1 and its thickness
is h1. The length of the lower leaf is L2 = λL1 and its thickness is h2 = γh1,
where 0 < λ < 1 and γ > 0. If the applied end load on the upper leaf is F , the
force FC develops between the two leaves at the point of their contact (Fig. 2b,c).
The contact force FC is determined from the condition of equal deflections of two
cantilever beams at point C,

vC =
FL2

2

6EI1
(3L1 − L2)−

FCL
3
2

3EI1
=

FCL
3
2

3EI2
,

with I1 = bh3
1/12 and I2 = bh3

2/12 as the cross-sectional moments of two leaves.
This gives

(2.1) FC =
1

λ
f(λ, γ)F,
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Figure 2. (a) A two-leaf cantilever spring made of the upper
leaf of length L1 and thickness h1, and the lower leaf of length L2

and thickness h2. The applied force at the end of the upper leaf
is F . (b) and (c) The free body diagrams of two leaves with the
indicated contact force FC .

where

(2.2) f(λ, γ) =
1

2
(3− λ)

γ3

1 + γ3

is a conveniently introduced geometric parameter, which is always positive (f > 0).
The normalized contact force FC/F has a monotonically increasing dependence on
γ, and a monotonically decreasing dependence on λ. For example, if λ = 1/2 and
γ = 1, (2.1) gives FC = 5F/4 = 1.25F , while for γ = λ = 1, (2.1) gives FC = F/2.

The maximum deflection is at the end of the upper leaf,

vmax =
FL3

1

3EI1
− FCL

3
2

3EI1
− FCL

2
2

2EI1
(L1 − L2) =

[
1− 1

2
λ(3− λ)f

]
v1, v1 =

FL3
1

3EI1
.

The scaling parameter v1 is the end deflection of a single cantilever leaf of length L1

under the end force F . The spring constant k2 of the two-leaf spring is defined by

(2.3) k2 =
F

vmax
=

k1

1− 1
2 λ(3− λ)f(λ, γ)

, k1 =
F

v1
=

3EI1
L3
1

,

where k1 is the spring constant of a single cantilever leaf of length L1. For example,
if λ = 1/2 and γ = 1, (2.3) gives k2 = (64/39)k1 = 1.641k1, while for λ = 1/2 and
γ = 2, the spring stiffness is approximately double i.e., k2 = (36/11)k1 = 3.273k1.
For γ = λ = 1, (2.3) gives k2 = 2k1.

2.1. Maximum bending stresses. The (downward) bending moments at
the clamped ends of the upper and lower leaves are

M1 = FL1 − FCL2 = [1− f(λ, γ)]M∗,

M2 = FCL2 = f(λ, γ)M∗,
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where M∗ = FL1 is a scaling factor. The bending moment in the cross-section of
the upper leaf above the contact point C is

MC = F (L1 − L2) = (1− λ)M∗,

independently of γ. The corresponding maximum bending stresses (being tensile
at the upper-most points of the cross-sections) are

(2.4) σ1 =
M1h1

2I1
= [1− f(λ, γ)]σ∗, σ2 =

M2h2

2I2
=

1

γ2
f(λ, γ)σ∗,

and

(2.5) σC =
MCh1

2I1
= (1− λ)σ∗.

The introduced normalizing stress factor

(2.6) σ∗ =
M∗h1

2I1
=

FL1h1

2I1
represents the maximum stress in a single cantilever leaf of length L1 and thickness
h1, loaded at its end by the force F .

The variations of the maximum bending stresses σ1, σ2, and σC versus γ for
λ = 1/2 and λ = 2/3 are shown in Fig. 3. While σ1 is monotonically decreasing
with γ at any λ, the stress σ2 reaches the maximum at γ = 3

√
3/4 = 0.909, with its

value being approximately equal to 0.26(3− λ)σ∗. Beyond γ = 0.909, both σ1 and
σ2 decrease with γ. Such an increase of the thickness of the lower leaf is beneficial
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Figure 3. The variations of stresses σ1, σ2, and σC with γ for:
(a) λ = 1/2, and (b) λ = 2/3. The normalizing stress is σ∗ =
FL1h1/2I1. The variations in maximum stresses at the clamped
ends are also presented σnip

1 = σnip
2 = σ∗/(1 + γ2) in the case of

nipping (dotted curve), considered in section 3. The dotted curve
intersects the horizontal line σC/σ∗ = 1−λ at γ = [λ/(1−λ)]1/2, at
which point all three maximum stresses become equal to each other.
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for the strength of a two-leaf spring because it decreases its maximum stresses.
However, it also increases the stiffness and the weight of the spring, which may not
be desirable for damping of vibrations. The variations of σ1, σ2, and σC versus
λ, at a given γ, are linear, as can be recognized from the structure of expressions
(2.4) and (2.5).

2.2. Location of the maximum stress. While σ2 > 0 for all (λ, γ), the
stress σ1 can be either positive, zero, or negative. It is positive semi-definite (σ1 ⩾
0) if f ⩽ 1, i.e., from (2.2), if (1−λ)γ3 ⩽ 2. For example, for λ = 1/2, σ1 is positive
if γ < 1.587. Furthermore, the magnitude of the maximum stress in the upper leaf
can be either in the cross-section of the clamped end, or above the contact point
C. If σ1 > 0, the condition σ1 > σC gives f < λ, i.e., 3(1 − λ)γ3 < 2λ. Thus,
if σ1 > 0, the maximum stress in the upper leaf is σ1 if 3(1 − λ)γ3 < 2λ, or σC

if 3(1 − λ)γ3 > 2λ. On the other hand, if σ1 < 0, the condition −σ1 > σC gives
f > 2− λ, i.e., (1− λ)γ3 < 2(λ− 2), which is never satisfied for λ < 1. Therefore,
if σ1 < 0, the maximum stress in the upper leaf is always σC = (1 − λ)σ∗. Recall
that the condition for σ1 < 0 is (1− λ)γ3 > 2.

We next discuss the conditions for the magnitude of the maximum stress in the
upper leaf to be greater than in the lower leaf. If σ1 > 0, i.e., (1 − λ)γ3 < 2, the
maximum stress in the upper leaf is σ1, provided that 3(1 − λ)γ3 < 2λ, and the
condition σ1 > σ2 is fulfilled if (1−λ)γ3+(3−λ)γ−2 < 0. For example, if λ = 1/2,
the above inequalities are all satisfied for γ < 0.724. On the other hand, if σ1 > 0,
but the maximum stress in the upper leaf is σC , which is the case for 3(1−λ)γ3 > 2λ,
the condition σC > σ2 is fulfilled if 2(1−λ)γ3−(3−λ)γ+2(1−λ) > 0. For example,
if λ = 1/2, the above inequalities are all satisfied for 1.32 < γ < 1.587. Finally, if
σ1 < 0, i.e., (1 − λ)γ3 > 2, the maximum stress in the upper leaf is σC , and the
condition σC > σ2 is fulfilled if 2(1 − λ)γ3 − (3 − λ)γ + 2(1 − λ) > 0. In the case
where λ = 1/2, this implies that γ > 1.587. In summary, for λ = 1/2 the maximum
stress is in the lower leaf, being equal to σ2, if 0.724 < γ < 1.32; otherwise, it is in
the upper leaf, being equal to either σ1 or σC , as previously specified.

Examples. For λ = 1/2 and γ = 1/2, the stresses are σ1 = 0.861σ∗, σC =
0.5σ∗, and σ2 = 0.556σ∗, i.e., the maximum stress (σ1) in the upper leaf is about
55% greater than that in the lower leaf. For λ = 1/2 and γ = 3/2, the stresses
are σ1 = 0.036σ∗, σC = 0.5σ∗, and σ2 = 0.429σ∗, i.e., the maximum stress (σC)
in the upper leaf is about 16.6% greater than that in the lower leaf. On the other
hand, for λ = 1/2 and γ = 1, the stresses are σ1 = 0.375σ∗, σC = 0.5σ∗, and
σ2 = 0.625σ∗, i.e., the maximum stress (σC) in the upper leaf is 25% smaller than
that in the lower leaf. It also follows that for equal thicknesses of two leaves (γ = 1),
the maximum stress for any λ < 1 is always in the bottom leaf.

3. Nipping analysis of a two-leaf spring

The objective in this section is to determine the decrease of the maximum
stress in a two-leaf spring produced by nipping if the leaves are made with different
initial curvatures before their fastening into a leaf spring (Fig. 4). For simplicity,
but without loss of generality, we consider that the upper leaf is initially straight.
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Figure 4. The initial shape of the lower leaf with (a) a central
gap δ0, and (b) two side gaps δ0, relative to the upper leaf. Both
leaves are of uniform width b. The length of the upper leaf is L1

and its thickness is h1; the length of the lower leaf is L2 = λL1

and its thickness is h2 = γh1. The gap δ0 ≪ L2 and the width and
heights are sufficiently small relative to the lengths of the leaves
that the Euler-Bernoulli beam theory can be used in the stress and
deflection analysis of the spring.
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Figure 5. (a) If there is an initial gap δ0 between two leaves,
the internal force F ′

C is required to close the gap. (b) The de-
formed prestressed spring configuration with a closed gap δ0. The
residual deflection left upon clamping two leaves from part (a)
at the contact point x = L2 is δ20 = γ3δ0/(1 + γ3), while
δ10 = δ20(3− λ)/(2λ) ≡ (f/λ)δ0 at the end x = L1.

The shape of the lower leaf in the case shown in Fig. 4a may be specified by
v0(x) = δ0[1 − (x/L2)

2], where δ0 ≪ L2 is the initial central gap between two
leaves, which ensures that the two leaves do not overlap upon their fastening into
a leaf-spring.

The prestresses in two leaves produced by closing the gap δ0 using the central
and lateral clamps have opposite signs in cases (a) and (b) of Fig. 4. Therefore, it
is sufficient to consider only one of these two cases and we conveniently choose case
(b), with two side gaps δ0 (Fig. 4b).

Upon closing these gaps, the internal forces develop as indicated in Fig. 5a.
The shown cantilever spring represents the right-half of the symmetric spring from
Fig. 4b. The internal force F ′

C is determined from the closing-of-gap condition,

F ′
CL

3
2

3EI1
+

F ′
CL

3
2

3EI2
= δ0,
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which gives

(3.1) F ′
C =

3EI1
L3
2

γ3

1 + γ3
δ0.

For the latter purposes, (3.1) can be conveniently rewritten as

(3.2) F ′
C = F

1

λ3

γ3

1 + γ3

δ0
δ1

, δ1 =
FL3

1

3EI1
,

for any value of external force F , to be applied upon assembling the spring.
The bending moments at the clamped ends of two leaves, due to F ′

C , are

M ′
1 = −M ′

2 = F ′
CL2 =

Eh1δ0
L2
1

1

λ2

γ3

1 + γ3
= M∗

1

λ2

γ3

1 + γ3

δ0
δ1

.

The downward moment is considered positive, to be consistent with the convention
used in section 2. The corresponding maximum stresses are

(3.3)
σ′
1 =

3

2

Eh1δ0
L2
1

1

λ2

γ3

1 + γ3
,

σ′
2 = −3

2

Eh1δ0
L2
1

1

λ2

γ

1 + γ3
,

the negative sign indicating a compressive stress. Equivalently, (3.3) can be ex-
pressed as

(3.4)
σ′
1 = σ∗

1

λ2

γ3

1 + γ3

δ0
δ1

,

σ′
2 = −σ∗

1

λ2

γ

1 + γ3

δ0
δ1

.

3.1. Total stresses. If the assembled spring is loaded by two downward end
forces F , balanced by an upward force 2F in the middle of the spring, the total
stresses are the sum of the stresses (2.4) due to external load F , and the prestresses
(3.4). Thus, the maximum stresses at the uppermost points of the clamped ends
are

σT
1 = σF

1 + σ′
1 = σ∗

[
1− f(λ, γ) +

1

λ2

γ3

1 + γ3

δ0
δ1

]
,

σT
2 = σF

2 + σ′
2 = σ∗

[ 1

γ2
f(λ, γ)− 1

λ2

γ

1 + γ3

δ0
δ1

]
.

(3.5)

The normal stress in the cross-section above the contact point is unaffected by
nipping, i.e., σT

C = σF
C = (1− λ)σ∗, as given by (2.5).

The total contact force between the upper (master) leaf and the shorter leaf
below, due to both nipping and external load, is

FT
C = FF

C − F ′
C =

fF

λ
− F

λ3

γ3

1 + γ3

δ0
δ1

,

where expression (2.1) is used for FF
C , and (3.2) for F ′

C .
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3.2. Nipping condition. The initial gap δ0 can be specified from the nipping
condition that the maximum bending stresses at the clamped end of two leaves are
equal to each other,

(3.6) |σT
1 | = |σT

2 |.

There are two cases when (3.6) is satisfied. The first one is σT
1 = σT

2 . Upon using
(3.5) we obtain

(3.7)
δ0
δ1

= λ2
[3− λ

2
− 1 + γ3

γ(1 + γ2)

]
, δ1 =

FL3
1

3EI1
.

The corresponding bending stress is obtained by substituting (3.7) into (3.5),

(3.8) σnip
1 = σnip

2 =
σ∗

1 + γ2
.

The second case is σT
1 = −σT

2 , which can occur if and only if γ < 1. This gives

δ0
δ1

= λ2
[3− λ

2
+

1 + γ3

γ(1− γ2)

]
,

with the corresponding bending stress

σnip
1 = −σnip

2 =
σ∗

1− γ2
.

However, the magnitude of this total stress is greater than that in (3.8), because
γ > 0, and the second nipping condition is of no practical interest. Therefore, (3.7)
and (3.8) specify the initial gap δ0 and the corresponding maximum stresses at the
clamped ends of two leaves.

3.2.1. Making maximum stresses equal to each other. There is a unique re-
lationship between λ and γ for which all three maximum stresses in the loaded
pre-nipped configuration of the spring are equal to each other. From (2.5) and
(3.8), this is

(3.9) σnip
1 = σnip

2 = σnip
C = (1− λ)σ∗ ⇔ γ2 =

λ

1− λ
.

For example, for λ = (1/3, 1, 2/3), (3.9) gives γ = (
√
2/2, 1,

√
2). The pairs of

values (λ, γ) satisfying the condition γ2 = λ/(1 − λ) are optimal regarding the
strength (equal maximum stress in both leaves) and the weight of the spring. For
γ > [λ/(1− λ)]1/2, the stresses σnip

1 = σnip
2 decrease below the maximum stress in

the spring σC = (1− λ)σ∗, but the spring becomes stiffer and heavier (Fig. 3).
While nipping reduces the greatest stress in the spring (e.g., σT

2 ), it increases
the other maximum stress (σT

1 ), depending on the values of λ and γ, as can be seen
from the plots shown earlier in Fig. 3. Figure 6a shows the variation of the initial
gap δ0/δ1 with γ for several values of λ, obtained from (3.7). The variation of δ0/δ1
with λ for several values of γ is shown in Fig. 6b.

Other nipping conditions could also be considered. For example, we have ex-
amined three additional nipping conditions: i) σC = σT

2 , ii) |σT
1 |+ σC = 2σT

2 , and
iii) FT

C = F (leading to pure bending of the upper leaf from the clamped end to
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the contact point), but have found all of them to be less effective for the maximum
stress reduction than the condition σT

1 = σT
2 .
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Figure 6. (a) The variation of the initial gap δ0/δ1 with γ for
several values of λ, required by the nipping condition σT

1 = σT
2 . (b)

The corresponding variation of δ0/δ1 with λ for several values of γ.

4. A two-leaf spring strengthened by an additional leaf

Additional full-length leaves are commonly placed on top of the master leaf of
the graduated-length portion of the leaf spring to increase its strength and load
capacity [10–12]. Figure 7a shows a two-leaf cantilever spring with an additional
full-length leaf, having the thickness ha = αh1 (α > 0) and thus the cross-sectional
moment of inertia α3I1, assuming the same width as for the two leaves below.
All three leaves are made of the same material with the modulus of elasticity E.
If the end-applied load at the top of the added leaf is F , the contact force FA

develops between the added and the master leaf, as shown in Fig. 7b,c. This force
is determined from the condition of equal deflections of two leaves at the contact
point A,

(4.1) vA =
(F − FA)L

3
1

3α3EI1
=

FAL
3
1

3EI1

[
1− 1

2
λ(3− λ)f

]
.

Expression(2.3) for the spring constant k of a two-leaf spring was used to write
the expression on the right-hand side of (4.1), with f = f(λ, γ) defined by (2.2).
Solving (4.1) for FA gives

(4.2) FA =
F

g
, g = 1 + α3

[
1− λ

2
(3− λ)f

]
.

The parameter g = g(λ, γ), expressed in terms of f , is conveniently introduced.
The maximum deflection is consequently

vmax =
g − 1

α3g
v1, v1 =

FL3
1

3EI1
,
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and the spring constant of a strengthened spring becomes

k̄2 =
F

vmax
=

α3g

g − 1
k1,

k1 =
3EI1
L3
1

.

This expression can also be derived from the expression for the equivalent
spring constant of the parallel connection of the two-leaf spring and the added full-
length leaf, i.e., from the sum of the spring constant k2 given by (2.3) and α3k1
(k̄2 = k2 + α3k1).

The maximum bending stresses (tensile at the upper-most points of the cross-
sections) are

(4.3)
σa =

g − 1

α2g
σ∗, σ1 =

1− f

g
σ∗,

σ2 =
f

gγ2
σ∗, σC =

1− λ

g
σ∗.
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Figure 7. (a) A full-length leaf of thickness ha = αh1 is placed
atop the leaves of length L1 and thickness h1, and length L2 =
λL1 and thickness h2 = γh1. The applied force at the end of
the uppermost leaf is F . (b) and (c) The free-body diagrams of
the added full-length leaf and two graduated-length leaves below
showing their contact force FA. (d) and (e) The free-body diagrams
of the bottom two leaves showing their contact force FC .
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Figure 8. The variations of the maximum stresses (4.3) with γ
for: (a) λ = 1/2, α = 1, and (b) λ = 2/3, α = 2/3. Also shown are
the variations of the maximum stresses σn

1 = σn
2 = σn

a and σn
C in

the case of nipping (red curves), obtained from (5.10) and (5.11).

In deriving (4.3), expressions (2.4) and (2.6) were used for σ1 and σ2, with FA

acting on the two-leaf spring in Fig. 7c, rather than F as in Fig. 2. The contact
force FC between the two bottom leaves, shown in Fig. 7d,e, is given by FC =
(f/λ)FA = fF/(λg), which follows from (2.1) by replacing F with FA. When this
is substituted into σC = FC(L1 − L2)h1/(2I1), the expression for σC in (4.3) is
obtained. The variations of the stresses σa, σ1, σ2, and σC versus γ are shown in
Fig. 8 for λ = 1/2, α = 2, and λ = 2/3, and α = 2/3. This figure also shows the
variation of the maximum stress in the case when the load is applied to the pre-
stressed spring, created by the process of nipping considered in section 5 (dotted
curves).
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5. Nipping analysis of a strengthened two-leaf spring

The objective in this section is determine the initial gap between the bottom
two leaves (δ0) and the initial gap (δa) between the added full-length leaf and
the two fastened leaves below (Fig. 10), in order that, upon nipping and external
loading of the assembled spring, the maximum stresses at the clamped ends are the
same in all three leaves. The gap δa depends on the initial gap δao of the added
full-length leaf relative to the horizontal direction (corresponding to a given initial
curvature of the added leaf, which is to be determined), and the residual gap δ10 left
upon fastening of the two bottom leaves, which is given in Fig. 5. Thus, referring
to Fig. 10,

(5.1)
δa = δ10 − δao,

δ10 =
3− λ

2λ

γ3

1 + γ3
δ0.

To close the gap δa, the internal force F ′
A is applied and its value determined from

the closing-of-gap condition

(5.2)
F ′
AL

3
1

3α3EI1
+

F ′
AL

3
1

3EI1

[
1− λ

2
(3− λ)f

]
= δa.

The expression for the spring constant k2 of the two-leaf spring from (2.3) is used
to write the second term on the left-hand side of (5.2). Thus,

(5.3) F ′
A =

3α3

g

EI1δa
L3
1

,

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 9. The variations of the maximum bending stresses (4.3)
with α for: (a) λ = 1/2, γ = 1, and (b) λ = 1/2, γ = 3/2. The
variations of the maximum stresses σn

1 = σn
2 = σn

a and σn
C are also

shown in the case of nipping (red curves), obtained from (5.10)
and (5.11).
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d
0

L1 L2

dao

d10F
A da

L2

�

Figure 10. The residual end deflection of a pre-nipped two-leaf
spring is δ10, corresponding to the initial gap δ0 between the two
leaves. The added third leaf has a pre-curvature, so that its initial
gap relative to the horizontal reference level is δao. The total initial
gap between the added leaf and the nipped two leaves below is
δa = δ10 − δao. To close this gap and assemble the spring, a pair
of opposite internal forces F ′

A is applied, as shown.

with g defined in (4.2). The maximum stresses in three leaves corresponding to F ′
A,

in analogy with (4.3), are

(5.4)
σ′
a =

1

α2
σ•, σ′

1 = −(1− f)σ•,

σ′
2 = − f

γ2
σ•, σ′

C = −(1− λ)σ•,

expressed in terms of the stress parameter

σ• =
F ′
AL1h1

2I1
=

3α3

2g

Eh1δa
L2
1

.

Because the bottom two leaves have already been fastened, they carry additional
stress (prestress) corresponding to their initial gap δ0. By denoting them as σ′′

1 and
σ′′
2 , they are given from (3.3) by

(5.5)
σ′′
1 =

3

2

Eh1δ0
L2
1

1

λ2

γ3

1 + γ3
,

σ′′
2 = −3

2

Eh1δ0
L2
1

1

λ2

γ

1 + γ3
.

The total internal stresses in the assembled spring are the sum of (5.4) and (5.5). If
the so-assembled three-leaf spring is then loaded by an external force F at the end
of the added (upper-most) leaf, additional stresses arise, which are given, according
to (4.3), by

(5.6)
σF
a =

g − 1

α2g
σ∗, σF

1 =
1− f

g
σ∗,

σF
2 =

f

gγ2
σ∗, σF

C =
1− λ

g
σ∗.

5.1. Total stresses. The total stresses in the assembled spring are the sum
of the stresses from the external load F and the prestresses due to double-nipping.
Consequently, the maximum stresses at the clamped ends of three leaves and in the
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middle leaf above the contact point C are

σT
1 = σF

1 + σ′
1 + σ′′

1 , σT
2 = σF

2 + σ′
2 + σ′′

2 ,

σT
a = σF

a + σ′
a, σT

C = σF
C + σ′

C .

Upon using (5.4), (5.5) and (5.6), these become

σT
1

σ∗
=

1

λ2

γ3

1 + γ3

δ0
δ1

+
1− f

g

(
1− α3 δa

δ1

)
,

σT
2

σ∗
= − 1

λ2

γ

1 + γ3

δ0
δ1

+
f

gγ2

(
1− α3 δa

δ1

)
,

σT
a

σ∗
=

1

α2

[
1− 1

g

(
1− α3 δa

δ1

)]
,

σT
C

σ∗
=

1− λ

g

(
1− α3 δa

δ1

)
,

(5.7)

where the identity was conveniently implemented,

3

2

Eh1δ1
L2
1

≡ σ∗, δ1 =
FL3

1

3EI1
.

5.2. Nipping condition. The nipping-induced stress reduction depends on
the imposed nipping condition used to specify the initial gaps δ0 and δa. We
examine in this section the nipping condition which requires that the maximum
stresses at the clamped ends of all three leaves are equal to each other, i.e., σT

1 = σT
2

and σT
2 = σT

a . From (5.7), the following system of linear algebraic equations for
δ0/δ1 and δa/δ1 is then obtained

g

λ2

γ(1 + γ2)

1 + γ3

δ0
δ1

+ α3
(
f − 1 +

f

γ2

)δa
δ1

= f − 1 +
f

γ2
,

g

λ2

γ

1 + γ3

δ0
δ1

+ α
(
1 +

fα2

γ2

)δa
δ1

=
1

α2
(1− g) +

f

γ2
.

(5.8)

A closed-form solution to (5.8) is

(5.9)
1

λ2

γ

1 + γ3

δ0
δ1

=
f − (1− f)γ2

γ2(1 + α2 + γ2)
, α3 δa

δ1
= 1− (1 + γ2)g

1 + α2 + γ2
.

When (5.9) is substituted into (5.7), the maximum stresses at the clamped ends
become

(5.10) σnip
1 = σnip

2 = σnip
a =

σ∗

1 + α2 + γ2
.

This is a remarkably simple generalization of the expression for the maximum stress
σ∗/(1 + γ2) in the pre-nipped and loaded two-leaf spring, given by (3.8) of section
3.2, because in the case α = 1, (5.10) reduces to σ∗/(2+ γ2). The maximum stress
in the middle leaf above the contact point C is

(5.11) σnip
C =

(1− λ)(1 + γ2)

1 + α2 + γ2
σ∗.
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The plots of (5.10) and (5.11) versus γ are shown in Fig. 8 (red curves). This
figure also contains the plots of the maximum stresses (σ1, σ2, σa) in the absence
of nipping, quantifying the magnitude of the maximum stress reduction for various
values of (λ, α, γ) achieved by double-nipping. From the practical point of view, the
most appealing combination of the parameters (λ, α, γ) is that for which all four
maximum stresses are equal to each other (σT

1 = σT
2 = σT

a = σT
C). This is because

to the right of the γ-value corresponding to the intersection of the two nipping
stress curves (red curves in Fig. 8), the stress σT

C is increased, and to the left the
stress σT

1 = σT
2 = σT

a is increased, relative to their values at the intersection point
γ = [λ/(1− λ)]1/2 (see section 5.2.1 below).

Having determined δa, the value of δao due to initial curvature of the added
leaf, follows from (5.1) as δao = δ10 − δa. Thus, upon using (5.9), the two required
gaps for the described double-nipping are

(5.12)
δao
δ1

=
1− (1/α) + [1− λ(3− λ)/2]γ2

1 + α2 + γ2
,

δ0
δ1

=
λ2(1 + γ3)[f − (1− f)γ2]

γ3(1 + α2 + γ2)
.

Figure 9 shows the variation of the nipping stresses with α at given values of
λ and γ. From Fig. 9a it can be seen that for λ = 1/2 and γ = 1, the nipping
stress decreases with α and in this particular case all four stresses are equal to each
other (σT

1 = σT
2 = σT

a = σT
C), for any α. While the increase of α decreases the

maximum nipping stress, thus increasing the strength of the spring, it also increases
its stiffness, which may not be desirable regarding vibration considerations. On the
other hand, from Fig. 9b we see that for λ = 1/2 and γ = 3/2, the nipping is not
an effective means of stress reduction, because for α greater than about 0.8, σT

C

is greater than all stresses in the spring without nipping, while for smaller values
of α, the stress σT

C is barely smaller than σC . Also, the stress σT
C is greater than

σT
1 = σT

2 = σT
a for all values of α, provided that γ > [λ/(1 − λ)]1/2. One can

similarly examine the nipping effectiveness with respect to α for any other values
of λ and γ.

5.2.1. Making maximum stresses equal to each other. There is a unique rela-
tionship between λ and γ for which all four maximum stresses in the pre-nipped
and loaded configuration of the spring become equal to each other. From (5.10)
and (5.11), this is

(5.13) σnip
1 = σnip

2 = σnip
a = σnip

C =
σ∗

1 + α2 + γ2
⇔ γ2 =

λ

1− λ
.

For λ = 1/2, (5.13) gives γ = 1 (Fig. 8a,c,d), while for λ = 2/3 it gives γ =
√
2 ≈

1.4142 (Fig. 8b). The corresponding nipping stresses in the four cases shown in
Fig. 8 are σnip = σ∗/3, 9σ∗/31 ≈ 0.29σ∗, 9σ∗/22 ≈ 0.409σ∗, and 4σ∗/17 ≈ 0.235σ∗,
respectively. The required normalized gaps (δao, δ0)/δ1 for this stress reduction
follow from (5.12) and are equal to (0.125, 0.042), (−0.016, 0.103), (−0.051, 0.051),
and (0.167, 0.029). Other nipping conditions could also be examined, similarly to
the analysis from section 3, but the nipping condition considered in this section
appears to be the most effective for the stress reduction in the spring.
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5.3. Total contact forces. The total contact forces FT
A (between the added

leaf and the master leaf below), and FT
C (between the master leaf and the shorter

leaf below), due to double nipping and applied external load, are

(5.14) FT
A = FF

A − F ′
A, FT

C = FF
C − (F ′

C + F ′′
C) =

fFF
A

λ
−

(fF ′
A

λ
+ F ′′

C

)
.

Using (4.2) for FF
A , (5.3) for F ′

A, (2.1), corresponding to FF
A and F ′

A, for FF
C and

F ′
C , respectively, and using the right-hand side of (3.2) for F ′′

C , we obtain from
(5.14),

(5.15) FT
A =

F

g

(
1− α3 δa

δ1

)
, FT

C =
F

λ

[f
g

(
1− α3 δa

δ1

)
− 1

λ2

γ3

1 + γ3

δ0
δ1

]
.

The contact forces F ′
C and F ′′

C are shown in Fig. 11. They can be used to reproduce
the previously derived stress expressions by substituting (5.14) into

(5.16)

σa =
Mah1

2α2I1
, Ma = (F − FT

A )L1,

σC =
MCh1

2I1
, MC = FT

A (L1 − L2),

σ1 =
M1h1

2I1
, M1 = FT

AL1 − FT
CL2,

σ2 =
M2h2

2I2
, M2 = FT

CL2.

It is also noted that expressions (5.16) can be used to determine both FT
A

and FT
C from them, if these contact forces were not previously determined, by

imposing the nipping condition σa = σ1 = σ2, and then using (5.15) to calculate
the corresponding gaps δa and δ0. Numerical values for the contact forces are given
in Table 1. In an early study of nipping in multi-leaf springs [13], the gaps were
assumed to exist between all leaves, but they were arbitrarily prescribed from the
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��
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Figure 11. (a)–(c) The contact forces F ′
A and F ′

C due to gap δa.
(d)–(e) The contact force F ′′

C between the bottom two leaves due
to gap δ0.
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Figure 12. The variation of initial gaps: (a) δ0/δ1, and (b) δao/δ1
with γ for several values of λ, as required by the nipping condition
σT
1 = σT

2 = σT
a .

outset of the analysis, rather than being determined from the introduced physical
conditions, such as equalizing the maximum stresses in leaves, as done in the present
paper. A detailed nipping analysis of multi-leaf springs with two to five leaves of
uniform length decrement and uniform thickness, strengthened by an additional
full-length leaf of the same thickness, has been recently presented in [14].

Table 1. Contact forces for α = 1 and different (λ, γ)

(λ, γ) FF
A /F F ′

A/F FT
A /F FF

C /F F ′
C/F F ′′

C/F FT
C /F

(1/3,2/3) 0.5363 -0.0546 0.5909 0.4904 -0.0499 -0.0052 0.5455
(1/3,1) 0.5870 -0.0797 0.6667 1.1739 -0.1594 0.3333 1.0000

(1/3,3/2) 0.6481 -0.1166 0.7647 2.0000 -0.3597 0.7714 1.5882
(1/2,2/3) 0.5490 -0.0419 0.5909 0.3137 -0.0239 -0.0260 0.3636
(1/2,1) 0.6214 -0.0453 0.6667 0.7767 -0.0566 0.1667 0.6667

(1/2,3/2) 0.7157 -0.0491 0.7647 1.3802 -0.0946 0.4160 1.0588
(2/3,2/3) 0.5579 -0.0331 0.5909 0.2231 -0.0132 -0.0364 0.2727
(2/3,1) 0.6467 -0.0200 0.6667 0.5659 -0.0175 0.0833 0.5000

(2/3,3/2) 0.7692 0.0045 0.7647 1.0385 0.0061 0.2382 0.7941

Figure 12a shows the variation of δ0/δ1 with γ, as determined by (5.12) in the
case α = 1, for several values of λ. Similarly, Fig. 12b shows the variation of the
initial gap δao/δ1 with γ, also following from (5.12), for several values of λ and
α = 1. The required gap δ0 can be either positive or negative, depending on the
values of (λ, γ) (second column of Table 2). Correspondingly, the nipping contact
force F ′′

C can be positive or negative, as can be seen from column 7 of Table 1.
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Furthermore, in all but one case listed in Table 1, the value δa < 0, which means
that δ10 > δao. Accordingly, the value of the nipping contact force F ′

A in these
cases is negative, as shown in column 3 of Table 2.

Table 2. Nipping parameters for α = 1 and different (λ, γ)

(λ, γ) δ0/δ1 δa/δ1 δao/δ1 δ10/δ1

(1/3,2/3) -0.0008 -0.1018 0.1010 -0.0008
(1/3,1) 0.0247 -0.1358 0.1852 0.0494

(1/3,3/2) 0.0370 -0.1798 0.2941 0.1143
(1/2,2/3) -0.0142 -0.0763 0.0682 -0.0081
(1/2,1) 0.0417 -0.0729 0.1250 0.0521

(1/2,3/2) 0.0674 -0.0685 0.1985 0.1300
(2/3,2/3) -0.0471 -0.0593 0.0404 -0.0189
(2/3,1) 0.0494 -0.0309 0.0741 0.0432

(2/3,3/2) 0.0915 0.0059 0.1176 0.1235

6. Conclusions

Nipping analysis of a two-leaf spring strengthened by an additional full-length
leaf is presented, valid for any permissible values of the introduced length and
thickness parameters (λ, α, γ). Two initial gaps between the pairs of consecutive
leaves are needed to achieve a desired nipping-induced stress reduction. These gaps
are determined from the nipping condition that the maximum stresses in all the
leaves within the clamped cross-section of the loaded pre-nipped spring are equal
to each other (σT

1 = σT
2 = σT

a ). The closed-form expressions for δ0 and δao are
given by (5.12), with the corresponding nipping stress given by (5.10). In the case
α = 1 (the same thicknesses of upper two leaves), the nipping stress is σ∗(2 + γ2),
which represents a simple generalization of the expression σ∗(1+γ2) for the nipping
stress in the absence of additional full-length leaf. The corresponding initial gap
δ0 is specified by (3.7). The introduced normalizing stress factor σ∗ is defined by
(2.6). The required initial gaps for the stress reduction may be either positive or
negative, depending on the values of introduced geometric parameters (λ, α, γ). In
some cases, nipping is not an effective means of stress reduction, because one leaf in
the loaded and pre-nipped spring may have a higher stress than the maximum stress
in the loaded spring produced without nipping. There is a particular relationship
between λ and γ for which the maximum stresses in all critical cross-sections of the
pre-nipped and loaded spring are equal to each other (σT

1 = σT
2 = σT

a = σT
C). This

is γ2 = λ/(1− λ), as given by (5.13), independently of α. Expressions for the total
contact forces between the leaves are derived and discussed. The generalization of
the presented analysis to leaf springs with more than three leaves is conceptually
straightforward, albeit more tedious because of additional length and thickness
parameters that need to be introduced. The presented analysis and results may be
useful for multi-leaf spring design and corresponding optimization studies involving
considerations of spring geometry, material selection, and weight.
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АНАЛИЗА ПРЕДНАПРЕГНУТЕ ЛИСНАТЕ ОПРУГЕ
ОJАЧАНЕ ДОДАТНИМ ЛИСТОМ ПУНЕ ДУЖИНЕ

Резиме. У раду jе изложена анализа преднапрегнуте дволисне опруге оjачане
додатним листом пуне дужине. Сви листови су од истог материjала и истог
правоугаононг попречног пресека. Изведени су изрази за почетне зазоре изме-
ђу листова чиjим се затварењем изjедначуjу максимални напони у уклеште-
ним попречним пресецима свих листова оптерећене опруге. Ови изрази важе
за све комбинациjе уведених геометриjских параметара дужине и дебљине ли-
стова. У зависности од величине ових параметара, почетни зазори неопходни
за снижење максималног напона могу бити позитивни или негативни. За одре-
ђене комбинациjе уведених параметара, коришћење листова различите почетне
кривине не доводи до смањења максималног напона у опрузи, независно од ве-
личине почетних зазора. С друге стране, за опруге са листовима исте дебљине
чиjа се дужина смањуjе равномерно, максимални напони у свим критичним
пресецима опруге постаjу исти. Изложена анализа и добиjени резултати могу
бити од интереса за конструисање лиснатих опруга и њихову оптимизациjу у
односу на геометриjу, избор материjала и тежину.
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