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OPTIMAL SYNTHESIS FOR AN INTERMEDIATE
VEHICLE MODEL WITH STATE CONSTRAINTS

E. V. Malykh and O. Yu. Cherkasov

ABSTRACT. The problem of optimal thrust programming for an intermediate
vehicle model is considered. The motion occurs in a vertical plane under a
uniform gravitational field, quadratic resistance friction, and thrust force. The
control variables are the angle of attack and the thrust force. Phase constraints
are imposed on the trajectory inclination angle. It is assumed that the total
fuel consumption for thrust control is negligible compared to the vehicle mass,
the fuel mass variation does not affect the center of mass dynamics, and a
change of the lifting force does not affect the drag force. The region in the
space of initial variables for which the problem is solvable is determined, and
an optimal synthesis is constructed. It is established that within this domain,
the thrust can be maximum, intermediate, or zero. The number and sequence
of trajectory arcs with corresponding thrust values and the number of exits to
state constrains are determined.

1. Introduction

One of the the earliest problems concerning the optimization of the shape of
the trajectory of a point in a vertical plane under the action of gravity is the
Brachistochrone problem [1]. In 1696, Johann Bernoulli formulated the following
problem in the journal Acta Eruditorum: to find the shape of a curve along which
a material point moving in a vertical plane under the action of gravity alone will
move from one given point to another given point in the minimum amount of time.

The classical formulation of the Brachistochrone problem assumed the potential
nature of the forces acting on the point. Subsequent research expanded the prob-
lem formulation to include various friction forces and thrust. Various approaches to
solving the Brachistochrone problem with Coulomb friction are presented in [2-7].
The case incorporating both Coulomb and viscous friction was studied in [8], where
viscous friction was assumed to be nonlinear with respect to velocity, and dry
friction nonlinear with respect to normal pressure force. In [9,10], the Brachis-
tochrone problem with non-linear resistance was investigated, necessary optimality
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conditions were derived, and a qualitative analysis of the optimal trajectories was
conducted. The problem with constant thrust force and linear viscous friction was
analyzed in [11]. The case of quasi-constant thrust force was examined in [12].
Qualitative properties of trajectories in the presence of non-linear resistance and
constant thrust force were established in [13]. In these studies, the point mass was
assumed to be constant.

The presence of state constraints significantly complicates the study of optimal
control problems. The main theoretical results in this field were obtained in the
in [14,15] and were subsequently developed further, for example, in [16,17]. To
solve such problems, numerical methods based on the necessary optimality condi-
tions or the method of penalty functions are used to take these constraints into
account. The fact that no constructive and reliable algorithm has been developed
for solving these problems makes every successfully solved problem of this kind par-
ticularly valuable [18]. An effective solution can be designed if the structure of the
optimal trajectory, the number of times constraints are reached and their sequence
are determined. In [19], the case of state constraints on the trajectory inclination
angle was studied. In [20], the constraints were represented as linear inequalities
of phase coordinates in the vertical plane. In [21,22], problems with constraints
on the reaction force of a support curve and the curvature of the trajectory were
considered, respectively.

The Brachistochrone problem with variable thrust, which acts as a control, and
fuel consumption penalty was considered in [23]. For variable mass particles, it was
analyzed in [24] under the action of Coulomb friction and in [25] under the action
of viscous friction. The optimization of the trajectory shape of the center of mass of
an aircraft in the vertical plane with variable mass, depending on a specified thrust
law, was considered in [26]. This study introduced the concept of an intermediate
vehicle model, where the angle of inclination of the trajectory was taken as control.
Within this model, it is assumed that the lifting force required for trajectory shape
variation does not affect the drag force. This assumption is valid for sufficiently
small angles of attack. In this setup, the lift force in the problem of optimizing the
trajectory shape of a point mass model acts as the reaction force of the support
curve in the Brachistochrone problem for a point mass.

A significant step in the development of optimal control theory was the prob-
lem of programming thrust along the trajectory, in particular, the maximization
of the altitude of a rocket with a given amount of fuel, formulated by R. God-
dard in 1919 [27]. This became one of the first problems requiring optimal thrust
programming taking into account changes in the mass of the aircraft.

The solution to Goddard’s problem was obtained, for example, in [28], where
the author used methods of variational calculus. Two special cases, namely, one
with a linear dependence of resistance on speed, and the other with a quadratic de-
pendence on speed, were considered in [29,30]. It was established that the optimal
program for changing the thrust consists, as a rule, of an arc of maximum thrust,
then an intermediate thrust and ends with a zero thrust arcs. Significant advances
in understanding the structure of singular control were achieved by Kelley [31],
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who developed a necessary condition for singular controls, known as the general-
ized Legendre-Clebsch condition. Jacobson [32] discovered an additional necessary
condition, distinct from Kelley’s condition. It was shown in [33] that these two nec-
essary conditions, in general, are insufficient for optimality. In [34], the problem
of optimal fuel consumption and thrust direction programming for vertical plane
motion without air resistance was solved. For solving the problem, the method of
the first variation of functional, also known as the Lagrange multiplier method for
control problems, was formulated and applied.

Studies [35, 36] revealed the possibility of a second maximum thrust arc ap-
pearing at the end of the intermediate thrust arc under certain boundary condi-
tions. Miele [37-39] was the first to extend previous results to the case with flight
time constraints and indicated the possibility of more complex sequences of tra-
jectory arcs, including those for more sophisticated drag models. In [40,41], an
investigation of Goddard’s problem with a general drag model is presented. The
three-dimensional case is examined in [40]. In [41], it was demonstrated that, under
certain conditions, optimal control may exhibit a more complex switching struc-
ture, primarily due to the possibility of a second maximum thrust arc following a
singular arc.

In [42,43], a two-dimensional Goddard problem was investigated for various
specified laws of changing the angle of inclination of the trajectory. The problem of
simultaneously controlling the trajectory inclination angle and thrust programming
was investigated in [44] for the case of linear viscous drag. In [45], these results
were generalized for arbitrary drag depending solely on velocity.

In this paper, the problem of maximizing horizontal flight range in the case of
quadratic viscous drag is investigated. The optimal synthesis of thrust and attack
angle controls is analytically constructed for a certain region of initial variables,
taking into account the presence of phase constraints on the trajectory inclination
angle. Unlike [24, 25|, we consider thrust force as a control variable alongside
angle of attack control, and unlike [26,42,43], the angle of attack is treated as a
control variable alongside thrust force control. It is assumed, as in [11-13], that
the change in the amount of fuel does not affect the dynamics of the center of
mass of the vehicle, but the fuel available for thrust control is fixed. The amount
of fuel is considered negligible compared to the mass of the vehicle. Additionally,
phase constraints on the trajectory inclination angle are imposed, as demonstrated
in [19]. The numerical solution to the problem with simultaneous control of the
angle of attack and the thrust force is presented in [43]. In [46], it was shown that
the lunar landing site selection problem reduces to the Brachistochrone problem
with constraints on the trajectory inclination angle.

The paper is organized as follows. Section 2 contains the problem statement and
the reduction of the problem with state constraints to a problem with constraints on
the control variable. In Section 3, the maximum principle is applied and the optimal
control problem is reduced to a boundary value problem (BVP). Section 4 presents
the rigorous construction of the optimal control synthesis with simultaneous control
of the angle of attack and the thrust force. In Section 5, the numerical solution
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of the BVP is presented, demonstrating the analytical results of the constructed
optimal synthesis.

2. Problem statement

The motion of a material point in a vertical plane under a uniform gravita-
tional field, quadratic resistance, and thrust force is considered. The objective is
to determine the trajectory shape that maximizes the horizontal coordinate while
moving from a given initial state over a fixed time interval with a specified amount
of fuel. The mathematical model of a rigid body’s center of mass motion in the
atmosphere, incorporating the assumption of thrust directed along the trajectory,
has been employed in various studies (see, for example, [26,42]).

Y

0 X
FIGURE 1. Acting forces and variables.

The equations of motion have the following form [26,42]:

‘Z—X =V cos®b,
=
Y — Vsing,

dr

v _ v? U ;
(2.1) G = —ky7— +co —gsinb,

df 1% 0

o = ko — 9557,

dM _

& =-U

where X,Y denote the horizontal and vertical coordinates of the particle, respec-
tively, V is velocity modulus, m is mass of the particle, M is the amount of fuel, and
U is the thrust force control, which satisfies the inequality 0 < U(7) < U, where U
is the maximum thrust value. The angle of attack ¢ is the second control variable,
for which there are no constraints. The trajectory inclination angle € is subject to
phase constraints of the form § < §(7) < 0, where 0,0 are given constants. Addi-
tionally, g denotes the acceleration of gravity, c is the exhaust velocity of the gas
flow, k, and k¢ are aerodynamic coefficients. The differentiation of the equations
of motion is with respect to the dimensional time 7. We assume the motion occurs
within altitudes where air density can be considered constant, thereby neglecting
the dependence of drag force on altitude. The forces acting are shown in Fig. 1,
where @ is the resistance force, Q = k, V2, P is the propulsive power, P = cU, N
is the aerodynamic force, N = kgppV2.

The boundary conditions for the equations of system (2.1) are specified as
follows:

X(O) = XQ, Y(O) = YQ, Y(Tk) = YT,

(2.2) V(0)=Vo, M(0)=My>0, M(rs)=0
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at the given terminal time 7. The values X (73), V(7%), 6(0) and 6(7) are assumed
to be free.
The objective of the control is to minimize the following functional:
(2.3) J=—-X(1;) — min.
e U
For the subsequent analysis, we introduce dimensionless variables using the
following formulas:

X=Xz, Y=Yy, U=UOu V=Vo,
T=7t, M=DMp, k' =ky,/m, ¢ =c/m,

where X = %/g, Y =¢?/g, U=k, V=¢, 7=¢/g, M =k.,J/*/g are the
scales of the horizontal and vertical coordinates of a point, fuel consumption rate,
point velocity, time, and the amount of fuel, respectively, x,y are dimensionless
horizontal and vertical coordinates of a point, u is dimensionless fuel consumption
rate, v is dimensionless velocity modulus, ¢ is dimensionless time, ;1 is dimensionless
specified amount of fuel. Hereafter, derivatives with respect to the dimensionless
time ¢ will be indicated by a dot.
The dimensionless equations of motion (2.1) can be rewritten as

T =wvcosb,
Yy =wvsind,
(2.4) 0 = —v?4u—sinb,
o= —u,
i v — cosﬁ’
v

where v = kg/k,. In this mathematical model, one of the control variables is
the angle of attack ¢. Following the method presented in [47], it is possible to
perform a system reduction and transition to controlling the trajectory inclination
angle 6. This method is valid for cases where the control variable appears in only
one equation of the system and no constraints are imposed on this control variable.
This approach has been used, for example, in [19] for the Brachistochrone problem,
in [26] for the flight optimization problem, in [48] for the Zermelo’s navigation
problem, in [49, 50] for pursuit-evasion problems, and in [51] for modeling the
movements of a person swinging on a swing. If phase constraints are imposed
on the trajectory inclination angle 0, then, after system reduction, it is possible
to reduce a problem with phase constraints to a problem with constraints on the
control variable.

Since the control ¢ only appears in the equation for the trajectory inclination
angle and there are no boundary conditions for the variable 6, a reduction can be
made by discarding this equation. In the remaining system, v and 6 are regarded
as the control variables.

The following constraints are imposed on these control variables:

(2.5) 0<6<0, 0<u<a,
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where 6, 0, and % are given constants.
The objective of the control is to minimize the following functional:

(2.6) J=—z(T) — rglin.
along the trajectories of the dynamic system:
T =vcosb,
Yy =wvsinb,
2.7
27) v = —0v% 4+ u—sinb,
fi=—u

using the control variables 6 and u, subject to the constraints (2.5) and the bound-
ary conditions:

z(0) = zo, y(0) = yo, y(T) = yr,
v(0) =vo, p(0)=po>0, u(T)=0

at the given terminal time T'. The values x(T") and v(7') are assumed to be free.

(2.8)

3. Necessary condition of optimality

To analyze the given problem, Pontryagin’s Maximum Principle [52] is ap-
plied. The Hamilton-Pontryagin function for the problem (2.5)-(2.8) has the fol-
lowing form:

(3.1) H =vcos01, +vsinf, + (—v* +u —sin ) 1, + (—u) ¥,
In problems with a fixed process end time, in general, H(t) = C # 0, where C

denotes an unknown constant.
The conjugate equations for system (2.7) are as follows:

7/):6 =0,

(3.2) vy =0, .
Py = —cos 01, —sinf vy, + 2v 1,
Y = 0.

From the transversality conditions, the final values for the conjugate variables
are determined:

(3.3) Uo(T) =1, y(T)=a, ¢u(T)=0, $u(T)=5,
where «, 8 are unknown constants.

From (3.2) and (3.3), it follows that on the optimal trajectory ,(t) = 1,
Py(t) =, Pu(t) =B Vte [0, T].

Maximizing function H with respect to the control 6 yields:

0H

(3.4) 55 = —vsind + avcosd — cosO, =0 = ¢, = (acosf — sin6) é.
Taking into account (3.4), we obtain
(3.5) azH——vcosH—owsin@—&—sinQ@/J = —v <0 = cosf >0
’ 002 Y Tcosf '
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A trivial conclusion follows from inequality (3.5): to maximize the range, it is
necessary to move toward increasing the range.

In accordance with (3.4), the extremal control € is a function of the same
smoothness class as the conjugate variable v,,. We obtain the differential equation
for the control 6 by substituting 1, from (3.4) into the third equation of system (3.2)

cos

(3.6) 0 = (1+ (3v® — u)(sinf — acosh))

Let us denote the solution of equation (3.6) by 6*. From (3.3) and (3.4), the
terminal condition for equation (3.6) follows as
&

(3.7 0(T) = — arctan (TU - a)

= arctan(a).
- ()

Given the constraints on the angle 6 specified in (2.5), a case can occur where
the extremal law (3.6) can only be satisfied by surpassing the upper or lower con-
straints on the angle. On such a segment of the trajectory, it is necessary to treat
the constraint as an equality and consider #* = § or 6* = . Then the extremal
control of the angle 6 can be presented in the following form:

0%, 9<0"<0,
(3-8) 0 (t) =0, 0" <9,
6, 60 >0.
The terminal condition for system (3.8) can be expressed as:

arctan(a), 6 < arctan(a) <4,
(3.9 6" (T) = { 6, arctan(a) < 0,
0, arctan(a) > 6.
To maximize the Hamilton—Pontryagin function with respect to the control u,
we represent (3.1) in the form:
(3.10) H = Hy + Hyu,
where
Hy = vcosf + avsind + (—v? —sinf) v, Hy =1, — Wy =1y — B.

The function H; is called the switching function.

The cases H; > 0 and H; < 0 correspond to the regular arcs of the extremal
trajectory. If there exists an interval o C [0, T, such that for any ¢ € o the
switching function is identically zero, i.e., H; = 0, then the corresponding arc is
singular [20,31]. The control us denotes a singular control.

Maximizing function H with respect to the control u leads to the following
control logic:

u, H, >0,
(3.11) u™" = du,, Hy =0,
0, H;<O.
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The following relationships are fulfilled simultaneously on a singular arc:

_ o dd, d*H,
HO:C, L[l:O7 W:O, dt2

If these equations are linearly independent, then from the equation d? H; /dt? =
0, we can obtain a formula for singular control. In such a case, the control is called
first-order singular.

Differentiating relation H; = v, — 8 with respect to time along solutions of
systems (2.7), (3.2), and taking into account (3.4), we obtain the equation:

(3.12) Hy = 1), = —cosf — asin @ + 2v1), = 0, Vteo C|[0,T].

0.

Differentiating relation (3.12) with respect to time along the solutions of sys-
tems (2.7) and (3.2), and taking into account (3.6),

cos 6 2v

leﬂ((siHQfacose) )(sinm‘)facosﬂ):o.

v cos 6
It follows that on the singular arc ¥ = 0, or

(3.13) us = v + sin 6.
For this control, Kelley’s optimality condition [31]
cos 2v
. ing — - ing — > 0.
(3.14) <(sm€ acosf) s 0) (sinf — accosf) >0

Since the control u in problem (2.5)—(2.8) is classified as first-order singular,
the coupling between singular and non-singular arcs must be discontinuous [53].

By substituting (3.12) into (3.6) and taking into account (3.4), we find that on
the singular arc 0=0.

To determine the moment of transition to the singular arc of the trajectory, we
derive the formula for the singular surface. The system of equations, consisting of

(3.15) Hy=C, H =0

is uniquely solvable with respect to two unknown variables v and 6. Consequently,
the singular surface is a line in the space (6,v,u) and proves to be challenging
for analysis because of the unknown constants C' and . For analysis, it is more
convenient to express 1, from formulas (3.4) and (3.12) and set them equal:

202 cosf + asind

(3.16) cosf®  acosh—snb’

The resulting relation will henceforth be referred to as the formula of the set
of singular surfaces G

202 cosf + asin g
3.17 G={v0: = 1
( ) v cosf  acosf —sind
Eq. (3.16) describes the entire set of points obtained from solving system (3.15)
with different unknown constants C' and f.
Thus, the motion on the singular arc is steady-state, where the velocity and

trajectory inclination angle remain constant.
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4. Optimal synthesis

As a result of applying the maximum principle, the optimal control problem
(2.5)—(2.8) is reduced to a boundary value problem (BVP) (2.7), (2.8), (3.8), and
(3.9), which does not contain conjugate variables. The thrust control is determined
according to the rule (3.11).

Assume that the following inequality is fulfilled

20?2 cosf + asinf

(4.1) cosf ~ acosh —sinf’

In this case, the point in the plane (6, v) lies to the right of G (see Fig. 2), and
from (3.12), it follows Hy < 0. Thus, the maximum principle is satisfied only by
switching from the control u = @ to the control w = 0. If the point lies to the left
of G (see Fig. 2), i.e., the inequality

202 cosf 4+ asind

cosf) = acosf —sinf

(4.2)

is fulfilled, then H; > 0 and the maximum principle is satisfied only by switching
from the control v = 0 to the control u = .

The problem is to design optimal synthesis of the thrust, i.e., to find out the
thrust as a function of the initial variables of system (2.7), taking into account the
trajectory inclination angle constraints (2.5).

4.1. The case without phase constraints.

ASSUMPTION 4.1. The motion is considered in the domain of the plane (6,v),
where singular control (3.13) is admissible, i.e., us € [0, @].

— u=0
— u=2.0

-14 -12 -1.0 -0.8 -06 -04 -0.2 0.0
(2]

FIGURE 2. Phase portrait of system (4.3) for different constant
thrust w.

Fig. 2 represents the phase trajectories for the following system:

{1') = —v2 4+ u —siné,

4.3 .
(4:3) 0= (14 (3v? — u)(sin® — cvcos ))<=,
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in the case of a free vertical coordinate y(T") (o = 0,0(T) = 0). A detailed analysis
of system (4.3) is provided, for example, in [9]. It can be proved that the curve
G, represented by a black dashed line, intersects the saddle points for different
thrust values u. The phase trajectories are depicted by blue lines for © = 0 and
red lines for u = 4 = 2. The areas shaded in green, blue, yellow, and orange define
the solvability domain of the problem, allowing the terminal condition (3.7) to be
reached. Assumption 4.1 is not satisfied if the entry to the singular surface occurs
above the saddle point for the system of equations (4.3) for u = @. When « # 0,
the phase portrait of system (4.3) is topologically equivalent to that of the case
where o = 0.

STATEMENT 4.1. If the initial point in plane (6, v) lies to the right of G (Fig. 2),
i.e., inequality (4.1) is satisfied, then u(0) = 4.

PROOF. Suppose (4.1) is satisfied at ¢ = 0 and let u(0) = 0. According to the
optimality conditions, switching from control u = 0 to control w = u is non-optimal.
It can be seen from Fig. 2 that trajectories lie to the right of the vertical separatrix
of the saddle point; thus, reaching the terminal condition (3.7) occurs to the right
of G and does not intersect it. Throughout the trajectory, u = 0, and by the end of
the process, the terminal fuel condition p(7T) = pur cannot be reached. Therefore,
it must hold that «(0) = 4. O

STATEMENT 4.2. If at the initial moment the point in the plane (0, v) lies to
the right of GG, then the motion with u = @ continues until a singular surface is
reached or until the fuel is completely burned out.

ProoF. To the right of G, the optimality conditions are satisfied only by
switching from control v = @ to control u = 0. Let the terminal fuel condition
(reaching p(t) = pr) be fulfilled before reaching G. It is the necessary to switch
from u = @ to w = 0 and proceed with it until condition (3.7) is met. If the final
terminal condition is not satisfied when reaching G, then, similar to the proof of
Statement 4.1, switching to zero thrust is non-optimal, as the terminal fuel condi-
tion remains unmet. Therefore, the motion with w = % continues until a singular
surface is reached. O

STATEMENT 4.3. If during the motion the point reaches the surface G, i.e.,
equality (3.16) is satisfied, the motion on a singular arc continues until the fuel is
completely burned out.

PROOF. Suppose the trajectory begins with an arc of maximum thrust v = @
and, during motion, intersects G to the left of it. Then the motion continues with
u = @ until the fuel is completely burned out. As a result, to the left of G, switching
from v = @ to u = 0 occurs, which is non-optimal according to (4.2). Therefore,
the point cannot intersect G. Once it is reached, switch to the intermediate thrust
u = ug and continue with it until the fuel is completely burned out. In the case
where the trajectory begins with an arc of zero thrust « = 0 and intersects G to
the right of it, the proof is similar. (]
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STATEMENT 4.4. If the initial point in the plane (6,v) lies to the right of G,
then:

a) If the fuel is completely burned out before reaching G, the optimal trajectory
of the problem (2.5)—(2.8) consists of two arcs: the maximum thrust arc u(t) = @
at the beginning and the zero thrust arc u(¢) = 0 at the end. (This area is shaded
in yellow and orange in Fig. 2.)

b) If G is reached before the fuel is completely burned out, the optimal tra-
jectory of the problem (2.5)—(2.8) includes three arcs: the maximum thrust arc
u(t) = @ at the beginning, then the intermediate thrust arc u(t) = us, and the zero
thrust arc u(t) = 0 at the end. (This area is shaded in green in Fig. 2.)

PROOF. Suppose the trajectory begins with © = @ and reaches the surface
G. Then, according to Statement 4.3, once G is reached, switch to intermediate
thrust v = us and continue with it until the fuel is completely burned out. The
motion continues until the fuel is completely burned out, and then the thrust re-
mains at zero v = 0 until the boundary condition for the trajectory inclination
angle (3.7) is met. O

STATEMENT 4.5. If the initial point in the plane (6,v) lies to the left of G
(Fig. 2), i.e., inequality (4.2) is satisfied, then the optimal trajectory of the prob-
lem (2.5)—(2.8) consists of three arcs: the zero thrust arc u(¢) = 0 at the beginning,
then the intermediate thrust arc u(t) = us, and the zero thrust arc u(t) = 0 at the
end. (This area is shaded in blue in Fig. 2.)

The proof is similar to the proofs of Statements 4.1, 4.2, and 4.4.

STATEMENT 4.6. In the absence of resistance case, the optimal trajectory of
the problem (2.5)—(2.8) consists of two arcs: the maximum thrust arc u(t) = @ at
the beginning and the zero thrust arc u(t) = 0 at the end.

PROOF. Without resistance, from (3.12) we have H; = —cosf — asinf < 0.
Therefore, there is no arc with intermediate thrust, and only switching from v = @
to u = 0 satisfies the necessary optimality conditions. O

4.2. The case with phase constraints. Next, we consider cases where the
angle 6 (2.4) reaches its constraints during motion. Note that while moving along
G, 0 = 0 is satisfied. Therefore, the f-constraint can only be reached during motion
with © = @ or v = 0 and cannot happen while moving along G with v = us. The
number of exits to the 6 constraint during motion with the corresponding thrust «
can be determined by analysing (3.1), (3.4). Substituting (3.4) into (3.1), the first
integral has the form

(44) f(v) = (acosd —sinf)v® — (u(acosd —sin ) + 1)v + (C + uf) cos§ = 0.

The solutions of equation (4.4) are the phase curves of system (4.3). By specify-
ing the parameter C, a specific phase curve of system (4.3) can be obtained. When
the constraint § = @ or # = 6 is specified, the number of exits to this constraint
matches the number of roots obtained when solving equation (4.4) with respect to
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v. By analyzing all possible values of the parameter C', the maximum number of
exits to the € constraint can be determined.

Consider (4.4) to determine the maximum number of exits to the 6 constraint
for u =0 and u = @. For v > 0, from f'(v) = 0, it follows that (4.4) has at most
one extremum, v = /u + (a cos § — sin ). Since the motion occurs in the domain
0(t) < 0(T) = arctan(«), it follows that f”(v) = 6v(sin@ — acosf) < 0. Therefore,
the extremum is a maximum. When 6 is constant, equation (4.4) yields at most
two positive roots v. Therefore, the optimal trajectory reaches each constraint at
most two times with v = 0 and u = .

If the trajectory reaches G while moving along the phase constraint § = 8 or
6 = 0, then according to Statement 4.3, it is necessary to switch to the intermediate
thrust u = us at that moment. Otherwise, the necessary optimality conditions for
thrust control will not be satisfied.

STATEMENT 4.7. If the initial point moves with «(0) = @, and the velocity
during motion is less than the velocity at the saddle point for system (4.3) with
u(t) = @ (see Fig. 2, green and yellow areas), then the upper phase constraint § =
can be reached at most once before the fuel is completely burned out.

PROOF. On the surface G, v = 0 and 6 = 0 are satisfied. In the domain to the
right of G, where the velocity during motion is less than at the saddle point for
system (4.3) with u(t) = 4, it follows that 6 > 0. Thus, the upper phase constraint
6 = 0 can be reached at most once before the fuel is completely burned out. O

STATEMENT 4.8. If the initial point moves with u(0) = 0 (see Fig. 2, blue area),
then the lower phase constraint § = # can be reached at most once before the fuel
is completely burned out.

PROOF. On the surface G, v = 0 and 0 = 0 are satisfied. Therefore, to the left
of G, O < 0 is satisfied. Thus, the lower phase constraint § = 6 can be reached at
most once before the fuel is completely burned out. O

REMARK 4.1. If at the end of the process §(T) = arctan(a) > 0, then 8(T) = 6.
In this case, it is necessary to solve a direct maximization problem on the set of
phase trajectories leading to the terminal state (3.9), within a fixed time interval T,
to find 6(0) = 6y that minimizes the functional (2.6). If (0) = 6, it is also necessary
to determine the time interval during which the initial arc of motion occurs at the
lower angle constraint 6 = 6.

After solving the optimal control problem for the reduced system, the control
law for the attack angle ¢ can be obtained from equation (3.6) and the last equation
of system (2.4):

cos 6

(4.5) © = (2+ (3v* —u)(sin — acosh)) R

5. Numerical simulation

This section presents the results of the numerical solution of the BVP for
system (2.5), (2.7), (2.8), (3.8), and (3.9) with thrust control (3.11) and (3.13). The
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results provided are intended to demonstrate the analytical conclusions of Section 4.
The simulation is conducted using dimensionless variables. The boundary values
for the variables and other parameters were selected to obtain the desired control
structures. For considered cases, the following initial conditions are assumed at the
initial time: x(0) = 0, y(0) = 0. The control of the angle of attack was determined
in accordance with (4.5), where v = 30. Let us consider the following cases:

A) The initial point lies to the left of G. The set of boundary values and
constants is as follows: v(0) = 0.55, u(0) = 0.75, T = 2, w = 1, 8 = —0.6,
6 = 0.025. The value of yr is considered free, therefore, in accordance with (3.3),
« = 0. The simulation results are presented in Fig. 3. The structure of the extremal
thrust is as follows: v = @ = v = us — w = 0. The structure of the trajectory
inclination angle includes one transition along the lower boundary 6 = 6.

B) The initial point lies to the right of G. The set of boundary values and
constants is as follows: v(0) = 1.3, u(0) =1, T =31, a=1,0 = —0.5, § =
—0.025. The value of yr is determined, and in accordance with (3.3), we assume
6(T) = arctan(o) = —0.1 to demonstrate the desired behavior of the point. In this
case, yr = —1.373. The simulation results are presented in Fig. 4. The structure
of the extremal thrust is as follows: © = 0 — v = ugy — v = 0. The structure of
the trajectory inclination angle includes one transition along the lower boundary
f = 6, during which the point transitions to a singular surface.

C) The initial point lies to the right of G. The set of boundary values and
constants is as follows: v(0) = 0.65, u(0) = 0.5, T = 3, w = 1, § = —0.545,
6 = —0.53. yr is considered free, & = 0. The simulation results are presented in
Fig. 5. The structure of the extremal thrust is as follows: © =@ — u = us — u = 0.
The structure of the trajectory inclination angle includes two transitions to each
boundary. The transition to the singular surface occurs when moving along the
upper boundary 6 = 6.

In Figs. 3, 4, and 5, the following notation are used: plot (a) illustrates motion
in the plane (z,y); plot (b) represents motion in the plane (6,v); plot (¢) depicts
the change in the trajectory inclination angle 6 over time ¢; plot (d) depicts the
change in the control of the angle of attack; plot (e) presents the change in the
amount of fuel p over time ¢; plot (f) shows the change in the thrust control u over
time ¢. In the (,v) plane, red dashed lines indicate the separatrices of the saddle
point of system (4.3) when u = @, and blue dashed lines when u = 0. The surface
G is indicated with an orange line, black dashed lines denote phase boundaries 6,
and red dots indicate thrust control switching moments. In the (u,t) plane, the red
dashed line presents the maximum thrust value v = %. In Figs. 4b and 4c, purple
dashed lines indicate the condition §(T") = arctan(a) # 0.

In Cases A and B, the BVP was solved using the shooting method. In Case A,
the objective is to identify Tj, the period when the motion occurs along the lower
angle boundary # = 6, so that the condition §(T) = 0 < 0 was satisfied. In
Case C, the condition §(T) = 0 > 6 was met, so the problem was solved by directly
maximizing the functional (2.6) over the set of trajectories (2.5), (2.7), (2.8), (3.8),
and (3.9) utilizing the thrust control law (3.11) and (3.13) to determine the only
unknown parameter Tj.
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FIGURE 3. Simulation results for (Case A).
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FIGURE 4. Simulation results for (Case B).

The parameters obtained from the numerical simulation are summarized in a
table. Ty indicates the moment of exit from the lower angle boundary 6 = 6, T3
and T, are the moments of entering and exiting the singular surface, and u is the
constant value of the intermediate thrust on the singular arc.

Kelley’s optimality condition (3.14) was verified for the provided simulation
results. In Figs. 3f, 4f, and 5f, the corresponding control jump according to the
coupling conditions can be clearly observed.

The simulation results demonstrate that the angle of attack ¢ (4.5) for the
extremal trajectories lies within an acceptable range.
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FIGURE 5. Simulation results for (Case C).

TABLE 1. Numerical Simulation Results.

Set TO T1 T2 Tk Usg
A 0.133175 0.583017 0.849988 2  0.609219
B - 0.350055 2.109974 3.1 0.558164

C 0.119721 0.225032 1.369964 3 0.231484

6. Conclusion

The problem of maximizing horizontal range within an intermediate model of
an aircraft, where the fuel mass is negligible compared to the aircraft mass, has
been studied. The motion occurs in a vertical plane under a uniform gravitational
field and quadratic resistance friction. The controls are the angle of attack and
the thrust force. Phase constraints were imposed on the trajectory angle. In the
study of this problem, the reduction was done, enabling the transition from a prob-
lem with phase constraints to a problem with constraints on the control variable.
This allowed for an analytical investigation and the construction of the optimal
synthesis in the entire domain where the problem is solvable. After reduction, the
trajectory inclination angle was considered as control instead of the attack angle.
A law for changing the angle of attack, allowing the realization of the determined
trajectories, has been obtained. It was shown that, despite the phase constraints
on the trajectory inclination angle, the thrust control law qualitatively corresponds
to the classical solution to the Goddard problem. In the presence of resistance, ar-
eas of variables are indicated for which only the following combinations of arcs are
possible: maximum-zero, maximum-intermediate-zero, and zero-intermediate-zero.
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CUHTE3A OIITUMAJIHOT YIIPABJBAIHA
JIETEJINITE CA OTPAHUYEIBIMA CTAIBA

PE3UME. Pazmatpa ce mpobiem oapehuBamba ONTHMAJIHOT YIIPAB/baha JIETETHUIIE.
Kperame ce opuja y BEpTUKAJIHO] PABHU Yy XOMOI'€HOM I'DABUTAIMOHOM IIOJBY, Ca
KBaJI[PATHUM OTIIOPOM CPEJIMHE U CHJIOM IIOTHUCKA. Y IPaB/baduKe BeJIMIUHE Cy HAIIAI-
HU yrao u cuiia nmotucka. PazHa orpaHmdema Cy HAaMETHYTa Ha yrao Haruba myTarbe.
IIpernocrassba ce Ja je YKyIHA MOTPOINHA MACce TOPUBA 38 YIIPAB/bAHE IIOTUCKOM
3aHeMap/buBa y mopebhemy ca MacoM BO3WJIA, IIPOMEHa Mace ropuBa He yTHde Ha
JIMHAMUKY IIEHTPa Mace, a IIPOMEeHa CHJIe IOTUCKA He yTude Ha cuity ormopa. Ojpe-
Dena je obsacT y HpOCTOpPY NMOYETHHX HPOMEHJBHBUX CTama 3a KOjy je mpobsem
pemmuB u ypaheHa je cMHTe3a ONTUMAJHOI yIIpaB/bakba. ¥ TBPDEHO je Ja yHyTap
oBe 00JIaCTH MOTHCAK MOXKe OUTH MaKCHMaJiaH, mpomMeHspbuB mwin Hyna. Onpeben je
O6poj m pemociesl Ae0Ba IMyTamhe ca OAroBapajyhmm BpeaHOCTHMA MOTUCKA U OpOj
n3Ja3aKa Ha IPaHUIly (hasHUX OrpaHuYeHa.
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