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UNUSUAL PROPERTIES OF ADIABATIC
INVARIANCE IN A BILLIARD MODEL

RELATED TO THE ADIABATIC
PISTON PROBLEM

Joshua Skinner and Anatoly Neishtadt

Abstract. We consider the motion of two massive particles along a straight
line. A lighter particle bounces back and forth between a heavier particle
and a stationary wall, with all collisions being ideally elastic. This is one of
canonical models in the theory of adiabatic invariants. It is known that if
the lighter particle moves much faster than the heavier one, and the kinetic
energies of the particles are of the same order, then the product of the speed
of the lighter particle and the distance between the heavier particle and the
wall is an adiabatic invariant: its value remains approximately constant over a
long period. We show that the value of this adiabatic invariant, calculated at
the collisions of the lighter particle with the wall, is a constant of motion (i.e.,
an exact adiabatic invariant). On the other hand, the value of this adiabatic
invariant at the collisions between the particles slowly, linearly in time, decays
with each collision.

The model we consider is a highly simplified version of the classical adia-
batic piston problem, where the lighter particle represents a gas particle, and
the heavier particle represents the piston.

1. Statement of the problem

Consider the motion of two particles along a straight line. Denote m and M
masses of these particles. We assume m < M . We examine the case where the
lighter particle bounces back and forth between a stationary wall and the heavier
particle, undergoing elastic collisions with both. We refer to the lighter particle as
the “gas particle” and the heavier particle as the “piston”, due to the connection of
this model to the classical adiabatic piston problem [3] (Fig.1).

Take stationary wall as the origin of the coordinate line. Let the particles move
in the positive half-line. Denote x and X coordinates of the gas particle and the
piston, respectively. Thus, 0 ⩽ x ⩽ X, and X is the distance between the stationary
wall and the piston. Denote v and V velocities of the gas particle and the piston,
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respectively. We assume that |v| > |V |. Thus, the gas particle moves faster than the
piston. Denote I = |v|X. It is known that if m ≪ M , |v| ≫ |V |, and the kinetic
energies of the particles are of the same order, then I is an adiabatic invariant,
meaning its value remains approximately constant over long time intervals. This
is one of canonical examples in the theory of adiabatic invariants (see, e.g., [4],
Problem 13.8(a)). Total number of collisions in this problem is calculated in [1,2].
We aim to study the behavior of I in more details.

Figure 1. Diagram displaying the interaction between the piston
and gas particle

2. Values of adiabatic invariant at collisions with the stationary wall

Let the gas particle collide with the stationary wall at a certain moment of
time. Denote by v0 the velocity of the gas particle immediately after this collision,
v0 > 0. Denote by V0, X0 the piston’s velocity and coordinate (i.e. the distance
between the stationary wall and the piston) at the time of this collision. The value
of the adiabatic invariant I at this collision is I0 = v0X0.

The time interval between this collision and the subsequent collision of the gas
particle with the piston is

∆t1 =
X0

v0 − V0
.

The distance between the stationary wall and the piston at the time of the collision
of the gas particle with the piston is

X1 = X0 + V0∆t1 =
X0

v0 − V0
v0.

The velocities of the gas particle and the piston before this collision are still v0, V0.
Denote by v1, V1 the velocities of the gas particle and the piston immediately after
this collision. According to the standard formulas for ideally elastic collisions:

(2.1) v1 =
(m−M)v0 + 2MV0

M +m
, V1 =

(M −m)V0 + 2mv0
M +m

.

The gas particle will then collide with the stationary wall after the time interval

∆t2 =
X1

−v1
.
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The distance between the stationary wall and the piston at this collision is

X2 = X1 + V1∆t2 = X1 +
V1X1

−v1
= X1

v1 − V1

v1
.

The value of the adiabatic invariant I at this collision is I2 = −v1X2. We have

I2 = −v1X2 = −v1X1
v1 − V1

v1
= −X1(v1 − V1) = − X0

v0 − V0
v0(v1 − V1) = −I0

v1 − V1

v0 − V0
.

According to (2.1)

v1 − V1 =
(m−M)v0 + 2MV0

M +m
− (M −m)V0 + 2mv0

M +m
= −(v0 − V0).

Thus, I2 = I0. One can repeat these calculations for any two consecutive collisions
with the stationary wall. Therefore, the adiabatic invariant I retains the same
value at any collision with the stationary wall. In the terminology of [5], the value
of I at collisions with the stationary wall is an exact adiabatic invariant.

3. Values of adiabatic invariant at collisions with the piston

Let the gas particle collide with the piston in some moment of time. Denote by
v1, V1 velocities of the gas particle and the piston immediately after this collision,
v1 < 0. Denote by X1 the piston’s coordinate (i.e., the distance between the
stationary wall and the piston) at the time of this collision. The value of the
adiabatic invariant I at this collision is I1 = −v1X1.

The gas particle will collide with the piston again after a time ∆t3 which can
be found from the equation

X1 + V1∆t3 = (−v1)∆t3 −X1.

Thus,

∆t3 = − 2X1

V1 + v1
.

The distance between the stationary wall and the piston at this collision is

X3 = X1 + V1∆t3 = X1 − V1
2X1

V1 + v1
.

The velocity of the gas particle just after this collision is

v3 =
(m−M)(−v1) + 2MV1

M +m
.

We assume that v3 < 0. Thus, the particle moves to the stationary wall after
this collission. The value of the adiabatic invariant I just after this collision is
I3 = −v3X3. We have

I3 = −v3X3 = − (m−M)(−v1) + 2MV1

M +m

(
X1 − V1

2X1

V1 + v1

)
.

This can be simplified to

I3 = I1 +
2X1(MV 2

1 +mv21)

(M +m)(V1 + v1)
.
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Thus, the change of the value of the adiabatic invariant I calculated at the times
of collisions of the gas particle and the piston is

∆I3 =
2X1(MV 2

1 +mv21)

(M +m)(V1 + v1)
.

Calculate the rate of this change

k =
∆I3
∆t3

= − (MV 2
1 +mv21)

(M +m)

But (MV 2
1 + mv21)/2 is the kinetic energy of the system. It does not change at

collisions. Thus, the value k is the same for all collisions. Therefore, the value
of the adiabatic invariant at the collisions between the gas particle and the piston
linearly in time decays with each collision. However, in an adiabatic situation,
where |v1| ≫ |V1| and m ≪ M , this decay occurs very slowly. Indeed, the case of
interest is when the kinetic energies of the gas particle and the piston are of the
same order and are of order 1: MV 2

1 ∼ mv21 ∼ 1. We can take v1 ∼ 1,m ∼ 1, V1 ∼
ε ≪ 1,M ∼ 1/ε2, X ∼ 1. Then I1 ∼ 1 and k ∼ ε2.

4. Numerical Illustrations

This section is dedicated to numerical illustrations of the dynamics in the con-
sidered problem. We assume the masses of the particle and piston to be m = 1 and
M = 10000, respectively. The initial velocities of the particle and piston are v0 = 1
and V0 = −0.01. Thus, the piston initially moves towards the stationary wall. The
initial positions of the particle and piston are x0 = 0 and X0 = 1.

Fig. 2 illustrates the main finding of this paper: the values of the adiabatic
invariant I at the collisions between the particle and the stationary wall remain
constant (represented by the horizontal line in Fig. 2), while the values at the
collisions with the piston decrease linearly in time (represented by the inclined
line in Fig. 2). As seen in Figs. 3 and 4, the piston initially moves towards the
stationary wall. Due to the approximate conservation of the adiabatic invariant,
as the distance between the piston and the stationary wall decreases, the particle’s
velocity increases, resulting in a rise in pressure on the piston. Consequently, the
piston eventually comes to a stop and begins moving in the opposite direction,
with its velocity increasing after each subsequent collision. Figure 5 describes the
evolution of the pistons velocity and position after each collision with the piston.
As can also be seen in Figures 3 and 4, the piston travels towards the stationary
wall until a turning point is reached, at which the piston halts and travels away
from the stationary wall, increasing in speed after further collisions. The piston
velocity begins to plateau as the piston moves further away due to the particle
having less kinetic energy to transfer to the piston as they collide.
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Figure 2. Graph depicting the change in the adiabatic invariant
I as the system evolves in time

Figure 3. Graph depicting the position of the piston as the sys-
tem evolves in time
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Figure 4. Graph depicting the velocity of the piston as the sys-
tem evolves in time

Figure 5. Trajectory of the piston in the phase plane
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5. Conclusions

The problem considered is a slow-fast Hamiltonian system with two degrees of
freedom and elastic collisions. In this system, the fast degree of freedom corresponds
to the gas particle, while the slow degree of freedom corresponds to the piston. In
such systems, the expected behavior of the adiabatic invariant is that its value
oscillates with a small amplitude around some constant value. However, in the
problem examined, the behavior of the adiabatic invariant is somewhat unusual.
Specifically, its value at the collision of the gas particle with the stationary wall
remains constant, while its value at the collision of the gas particle with the piston
linearly in time decays from collision to collision.

Acknowledgment. The authors would like to thank A. P. Veselov for useful
discussions.
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НЕУОБИЧАJЕНЕ ОСОБИНЕ АДИJАБАТСКЕ ИНВАРИJАНТЕ
У БИЛИJАРНОМ МОДЕЛУ ПОВЕЗАНОМ СА ПРОБЛЕМОМ

АДИJАБАТСКОГ КЛИПА

Резиме. Разматрамо кретање две материjалне тачке (честице) дуж праве ли-
ниjе. Лакша честица се одбиjа напред-назад између теже честице и непокрет-
ног зида, при чему су сви судари идеално еластични. Ово jе jедан од канон-
ских модела у теориjи адиjабатских инвариjанти. Познато jе да ако се лакша
честица креће много брже од теже, а кинетичке енергиjе су им истог реда,
онда jе производ брзине лакше честице и растоjања између теже честице и
зида адиjабатска инвариjанта: њена вредност остаjе приближно константна
током дужег периода. Показуjемо да jе вредност ове адиjабатске инвариjан-
те, израчуната при сударима лакше честице са зидом, константа кретања (тj.
тачна адиjабатска инвариjанта). С друге стране, вредност ове адиjабатске ин-
вариjанте при сударима између честица полако, линеарно у времену, опада са
сваким сударом.

Модел коjи разматрамо jе веома поjедностављена верзиjа класичног адиjа-
батског проблема клипа, где лакша честица представља честицу гаса, а тежа
честица представља клип.
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