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ON CUSPS OF CAUSTICS BY REFLECTION
IN TWO DIMENSIONAL PROJECTIVE

FINSLER METRICS

Serge Tabachnikov

Abstract. Given a projective Finsler metric in a convex domain in the pro-
jective plane, that is, a metric in which geodesics are straight lines, consider
the respective Finsler billiard system. Choose a generic point inside the table
and consider the billiard trajectories that start at this point and undergo N
reflection off the boundary. The envelope of the resulting 1-parameter family
of straight lines is the Nth caustic by reflection. We prove that, for every N ,
it has at least four cusps, generalizing a similar result for Euclidean metric,
obtained recently jointly with G. Bor.

1. Motivation and previous results

In the posthumously published “Lectures on Dynamics”, Jacobi claimed that
the conjugate locus of a non-umbilic point of a triaxial ellipsoid has exactly four
cusps. This is known as the Last Geometric Statement of Jacobi. The conjugate
locus of a point is the envelope of the geodesics that emanate from this point.
These geodesics have the second, third, etc., envelopes; they are also called the
first, second, etc., caustics.

The Last Geometric Statement of Jacobi was proven relatively recently [14].
Conjecturally, each next caustic also has exactly four cusps, see [18]. One also
has a theorem, attributed to C. Carathéodory by W. Blaschke in his differential
geometry textbook: The conjugate locus of a generic point on a convex surface has
at least four cusps. See [20] for a recent proof.

One may consider a billiard version of this problem: instead of a closed surface,
take a billiard table in the Euclidean plane bounded by an oval (smooth strictly
convex closed curve), and instead of the pencils of geodesics, consider the pencil of
billiard trajectories starting at a point inside the billiard table. After n reflections
off the boundary, one obtains a 1-parameter family of lines, and their envelope is
the nth caustic by reflection. One may use the language of geometrical optics: the
point is a source of light and the boundary curve is an ideal mirror.

2020 Mathematics Subject Classification: 78A05; 37C83, 53A04.
Key words and phrases: caustic, Finsler billiards, projective Finsler metrics.

1

https://doi.org/10.2298/TAM250109004T


2 TABACHNIKOV

This billiard problem was studied in two recent papers [7,8]. We proved that for
every oval, every n ⩾ 1, and a generic source of light the nth caustic by reflection
has at least four cusps. We provided some evidence toward the conjecture that
this number is exactly four for all n if the billiard table is elliptic and proved this
conjecture in the case when the boundary curve is a circle, see Figure 1. The context
for these results is the famous 4-vertex theorem and its numerous variations and
generalizations; see, e.g., [5].

Figure 1. First three caustics by reflection in a circle.

In this note we extend this four cusps result to Finsler billiards in the special
case of a projective Finsler metric, a (not necessarily symmetric) Finsler metric in
which the geodesics are straight lines.

2. Finsler metrics and Finsler billiards

From the point of view of geometrical optics, Finsler geometry describes the
propagation of light in an inhomogeneous anisotropic medium M : the velocity of
light depends on the point and the direction.

As usual, one has two descriptions of this process, the Lagrangian and the
Hamiltonian ones. From the Lagrangian perspective, Finsler metric is defined by
a field of indicatrices Ix ⊂ TxM , the unit sphere subbundle of the tangent bundle
of M . These indicatrices are unit level hypersurfaces of the Lagrangian function
on TM that defines the metric. The indicatrices are smooth and strictly convex
hypersurfaces but, in general, not necessarily origin-symmetric.

The dual Hamiltonian description provides a field of figuratrices Jx ⊂ T ∗
xM ,

the unit cosphere subbundle of the cotangent bundle of M . The indicatrices and
figuratrices are related by the Legendre transform D : Ix → Jx (the polar duality):

Ix ∋ v 7→ w ∈ Jx if Kerw = TvIx and w(v) = 1.

A Finsler geodesic is a curve that extremizes the Finsler length (or optical path
length) between its endpoints. The Finsler geodesic flow is defined similarly to the
Riemannian case: the foot point of a Finsler unit tangent vector moves with the
unit speed along the Finsler geodesic that it defines, and the vector remains unit
and tangent to this geodesic.

We refer to any of the numerous textbooks on Finsler geometry or to the
surveys [2,10].
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Finsler billiard reflection was defined in [13] similarly to the usual, Riemannian
one, by a variational principle. Let M be a Finsler manifold with boundary S, a
billiard table, let a and b be two points in M and x be a boundary point. One
says that the Finsler geodesic ray ax reflects to the ray xb if x is a critical point of
the Finsler distance function F (x) = dist(ax)+dist(xb). Note that, in general, the
reflection is not reversible: it is not necessarily true that bx reflects to xa.

Finsler billiard reflection can be described geometrically. This description is
especially nice in dimension 2, which is the subject of this note. We continue to
refer to [13].

Figure 2. Finsler billiard reflection.

Consider Figure 2. The red oval is the indicatrix at the reflection point x ∈ S,
and u and v are the incoming and outgoing unit velocity vectors. The reflection
law states that the tangent lines to the indicatrix at points u and v and the tangent
line to the boundary S at point x are concurrent (this includes the case when the
three lines are parallel).

In the Euclidean case, the indicatrix is a circle, and this reflection law becomes
the familiar “the angle of incidence equals the angle of reflection”.

A popular example of a Finsler billiards is a Minkowski billiard. In Minkowski
geometry, the indicatrices are parallel translation copies of each other and the
geodesics are straight lines. A Minkowski billiard is defined by two ovals, the
indicatrix and the billiard table. These billiards were studied in connection with
the Viterbo conjecture in symplectic topology and its relation with the Mahler
conjecture in convex geometry, see [6].

Concerning Minkowski billiards, also see [16].
Consider another example: the indicatrix is a focus-centered (Kepler) ellipse,

see Figure 3. A theorem of elementary geometry states that ∠AOC = ∠BOC,
see [4], Theorem 1.4 (this is known as “Le second théorème de Poncelet”, see the
Wikipedia page “Théorème de Poncelet”).

This result implies that the respective Finsler billiard reflection satisfies the
same law of equal angles as the usual, Euclidean, one. This applies to another
popular billiard model, the magnetic billiards. We follow the discussion in [19].

A magnetic field exerts a force on a moving charge that is perpendicular to the
direction of motion and is proportional to the speed (Lorentz force). In particular,
the speed of the charge remains constant.
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Figure 3. The indicatrix is a Kepler ellipse.

A magnetic field in the plane is a given by a differential 2-form B(x1, x2)dx1 ∧
dx2, where the function B is the strength of the magnetic field. Choose a differential
1-form α such that dα = −B(x1, x2)dx1 ∧ dx2. The Lagrangian for the motion of
a charge in this magnetic field is

L(x, v) =
1

2
|v|2 + α(x)(v)

(the 1-form α is not unique, but the freedom of its choice does not affect the
dynamics).

Following the Maupertuis principle, one replaces the Lagrangian by a homoge-
neous of degree one Lagrangian

(2.1) L(x, v) = |v|+ α(x)(v)

which extremals are the trajectories of the charge moving with the unit speed. In
particular, if the magnetic field is constant,

L(x, v) = |v|+ 1

2R
det(v, x),

and the trajectories are counterclockwise oriented circles of (Larmor) radius R.
We assume that the magnetic field is sufficiently weak, so that L(x, v) > 0 for

v ̸= 0 in the domain under consideration. More precisely, we assume that |α(x)| < 1
for all x.

Lemma 2.1. Let L(x, v) be as in (2.1). Then, for every x, the indicatrix
L(x, v) = 1 is a focus-centered ellipse.

Proof. The equation of a focus-centered axes-aligned ellipse in the (v1, v2)-
plane is

(2.2)
(v1 + c)2

a2
+

v22
b2

= 1 with a2 = b2 + c2.

We need to show that the equation L(x, v) = 1 has this form.
Rotating the v-plane if needed, we may assume that α(x)(v) = tv1 with |t| < 1.

Then √
v21 + v22 + tv1 = 1,

which is rewritten as

(1− t2)2
(
v1 +

t

1− t2

)2

+ (1− t2)v22 = 1.
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Therefore, setting

a =
1

1− t2
, b =

1√
1− t2

, c =
t

1− t2

yields the desired equation (2.2). □

Thus the indicatrices of the magnetic Finsler metric are Kepler ellipses.
Magnetic billiards model the motion of a charge in a magnetic field with spec-

ular reflection off the boundary of the domain, so that the angle of incidence equals
the angle of reflection, see Figure 4. Due to the “second theorem of Poncelet”,
Figure 3, and Lemma 2.1, magnetic billiards are a specific case of Finsler billiards,
with the metric defined by the Lagrangian (2.1).

Figure 4. Magnetic billiard: the angle of incidence equals the
angle of reflection.

We find it important to mention a multidimensional generalization of these
results due to Akopyan and Karasev [3].

Theorem 2.1. Let K be a smooth convex body in Rn containing the origin,
and let K1 be its convex image under a projective transformation that preserves,
with orientation, every line passing through the origin. Then the Minkowski billiard
reflection law in the space with the norm K is the same as in the space with the
norm K1.

Such maps are given by the formula

x 7→ tx

1 + ℓ(x)
, t > 0,

where ℓ is a linear function. They send the origin-centered spheres to the focus-
centered ellipsoids, in particular, origin-centered circles to Kepler ellipses.

We conclude this section by adressing the symplectic properties of Finsler bil-
liards. These properties do not play a major role in the present note, so we will
present only an overview. Assume that the space of oriented non-parameterized
Finsler geodesics of M is a smooth manifold. The Finsler billiard reflection de-
fines a transformation of this space, known as the billiard ball map. This space
of geodesics carries a symplectic structure constructed as follows. Identify tangent
and cotangent vectors via the Legendre transform. The cotangent bundle T ∗M has
a canonical symplectic structure, and its restriction to the unit cosphere bundle has
a 1-dimensional kernel at every point. The integral curves of this field of directions,
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i.e., the characteristics, are identified with the oriented non-parameterized Finsler
geodesics of M . As a result, the space of characteristics carries a symplectic struc-
ture obtained from that in T ∗M by restriction to the unit cosphere bundle and
factoring out the kernel. This construction is well-known in the Riemannian case,
but it extends without change to the Finsler one. A fundamental feature of Finsler
billiards is that the billiard ball map preserves the symplectic structure of the space
of oriented non-parameterized geodesics. It is important to note that this invariant
symplectic form does not depend on the shape of the billiard table and is solely
determined by the ambient Finsler metric. We refer to [13] for details.

3. Projective Finsler metric in two dimensions

In this section, we mostly follow the exposition in [1]. See [9, 15] for more
details.

Hilbert’s fourth problem asks to construct and study the geometries in which
the straight line segment is the shortest connection between two points. We interpret
this problem (in dimension two, which is our concern in this note) as a question
to describe Finsler metrics in convex subsets of the plane in which geodesics are
straight segments. These types of metrics are referred to as projective.

The first examples are provided by Riemannian metrics of constant curvature:
the Euclidean, spherical, and hyperbolic ones. The Euclidean case needs no expla-
nation.

Consider a round sphere and project it from the center to a plane. This central
projection takes great circles to straight lines, and it defines a projective metric in
the plane that has a constant positive curvature.

A similar construction works for the hyperbolic plane presented by a hyper-
boloid of two sheets in Minkowski space: the central projection takes one sheet
of the hyperboloid to the open unit disc, sending geodesics to straight lines. This
yields the projective (Beltrami–Caley–Klein) model of the hyperbolic plane.

According to a Beltrami theorem, a projective Riemannian metric is a metric
of constant curvature, so the above examples exhaust the Riemannian cases.

b
a x y

Figure 5. Hilbert’s and Funk’s metrics.

A Minkowski metric is an example of a projective Finsler metric. The projective
model of the hyperbolic plane generalizes to Hilbert’s and to Funk’s metrics in a
convex domain in the projective plane, see Figure 5, given by the formulas

dH(x, y) =
1

2
ln
( |y − a||x− b|
|y − b||x− a|

)
, dF (x, y) = ln

( |x− b|
|y − b|

)
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(Hilbert’s metric is symmetric, while Funk’s metric is not). See [11] for a study of
Funk billiards.

Let us introduce coordinates in the space L of oriented lines in R2. Choose
an origin O. An oriented line is determined by its direction α ∈ S1 and its signed
distance p ∈ R from the origin, see Figure 6. Thus L is an infinite cylinder.

Figure 6. Coordinates in the space of oriented lines.

The symplectic structure on L, invariant under the billiard ball transformation
and described at the end of Section 2, is given by the 2-form dp ∧ dα. Up to a
factor, this is the unique area form on the space of lines that is invariant under
isometries of the plane. We denote by dA the respective area element.

We briefly describe a construction of symmetric projective Finsler metrics due
to H. Buseman.

Recall the Cauchy-Crofton formula. Let γ ⊂ R2 be a piecewise smooth curve.
Define a piecewise constant function on L to be the number of intersection points
of a line with the curve. Then

length(γ) =
1

4

∫
ℓ∈L

#(ℓ ∩ γ)dA.

Let f : L → R be a positive smooth function. Replace the area element dA with
f dA; then an analog of the Cauchy–Crofton formula defines a symmetric projective
Finsler metric in the plane. We refer to [2] for more information.

4. The four cusps theorem

Finally, we address the main result of this note.
Let U be an open plane domain with a projective (not necessarily symmetric)

Finsler metric, and let γ ⊂ U be an oval, the boundary of a Finsler billiard table.
Let O be a point inside γ (the source of light). Consider the 1-parameter family of
billiard trajectories, starting at O and undergoing n Finsler billiard reflections.

Theorem 4.1. For every n ⩾ 1, the envelope of this 1-parameter family of
lines in RP2 (the nth caustic by reflection) has at least four cusps.

We need to comment on this formulation. Taken literally, it assumes that the
nth caustic by reflection is a piecewise smooth curve, with smooth arcs connecting
distinct generic (semi-cubic) cusps, that is, this caustic is sufficiently generic. Of
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course, the caustic may degenerate, even to a point: for example, this is the case if
point O is a focus of an ellipse in the Euclidean plane.1

To include possibly degenerate caustics, one can reformulate the statement of
the theorem as follows: there exist at least four distinct oriented lines through point
O that, after n Finsler billiard reflections, pass through singular points of the nth
caustic by reflection.

This is similar to the classic 4-vertex theorem: one common formulation is that
the evolute of an oval (the envelope of its normals) has at least four cusps, but a
more precise statement is that the curvature of this oval has at least four critical
points. We prefer the former formulation as it is more graphical.

Proof of Theorem. The phase space of the billiard ball map is the subset of
L consisting of the lines that intersect the curve γ; the boundary of this phase
cylinder are the two curves comprising the oriented lines tangent to γ. We consider
of L to be the vertical cylinder in R3, with its axis passing through the origin.

The space L carries a 2-parameter family of curves comprising the lines passing
through fixed points. Using the language of the projective duality, we call these
curves “lines”. In the (α, p)-coordinates, such a “line” is the sine curve

p = a sinα− b cosα,

where (a, b) is the respective point. These “lines” are the intersections of the cylinder
L with the planes through the origin.

Let Cn ⊂ L be the curve consisting of the lines that started at point O and
made n Finsler billiard reflections. This curve is projectively dual to the nth caustic
by reflection. The cusps of the nth caustic by reflection correspond to the second-
order tangencies of the curve Cn with “lines”. These are “inflections” of Cn.

The curve Cn goes around the phase cylinder once. Indeed, this is true for the
original pencil of lines through point O, and hence for its consecutive images under
the billiard ball map.

Consider the central projection of the phase cylinder to the unit sphere. The
“lines” become great circles, and the “inflections” of the curve Cn become the spher-
ical inflections of its projection to S2. We need to show that there are at least four
such inflections.

We use a theorem of B. Segre that states that if a simple closed spherical curve
intersects every great circle, then it has at least four inflection points, see [17].2

Thus we need to show that Cn intersects every “line”.
If a point A lies inside the billiard table, this asserts the existence of an n-

bounce Finsler billiard shot from O to A. Consider n points x1, x2, . . . , xn ∈ γ, and
let F (x1, . . . , xn) be the Finsler length of the polygonal path Ox1 . . . xnA. This
function has a maximum, and due to the triangle inequality, at this maximum one
has xi ̸= xi+1 for all i. Hence the polygonal path Ox1 . . . xnA is the desired billiard
trajectory.

1 One can construct an analog of ellipse in Finsler geometry as the locus of points in which the
sum of distances to two fixed points is fixed. Such a curve shares the optical property of ellipse.

2 This implies Arnold’s “tennis ball theorem”: a simple smooth closed spherical curve that
bisects the area has at least four spherical inflections.
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If a point B lies outside or on the boundary of the billiard table, the statement
holds for a topological reason: the “line”, dual to point B, connects the two bound-
aries of the phase cylinder, and it must intersect the non-contractable curve Cn.
See Figure 7.

Figure 7. The curve Cn intersects every ”line”.

This concludes the proof (which is a variation of one of the arguments given
in [7]).

Let us remark that there exist at least n+1 n-bounce billiard shots from O to
A; this follows from a slight modification of a theorem of M. Farber [12].

Let us finish with a problem: Does a 4-cusp result, similar to Theorem 4.1,
hold for more general Finsler billiards?

For example, consider a constant weak magnetic field in an oval. The billiard
trajectories are arcs of a circle of radius R, and the weakness of the field means
that the minimal curvature of the oval is greater than 1/R (hence the trajectories
cannot touch the oval from inside). The caustic by reflection is the envelope of a
1-parameter family of circles of radius R, and it has two components. See Figure 8
and 9 for the first and second caustics by reflection in a circle.

Figure 8. The first and second caustics by reflection (courtesy of
G. Bor). The inner component of the caustic has four cusps, while
the outer one is smooth. The green curve is the curve of centers of
the Larmor circles, an analog of the curve Cn.
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Figure 9. Same billiard with a different choice of the initial point
O located farther from the center of the disc.
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О ВРХОВИМА КАУСТИКА У ДВОДИМЕНЗИОНАЛНИМ
ПРОJЕКТИВНИМ ФИНСЛЕРОВИМ МЕТРИКАМА

Резиме. Размотримо билиjарски систем дефинисан у у конвексноj области у
проjективноj равни са Финслеровом метриком у коjоj су геодезиjске линиjе уо-
бичаjене праве. Изаберимо општу тачку унутар области и размотрите путање
билиjара коjе почињу у овоj тачки и имаjу N одбиjања од границе. Енвело-
па резултуjуће 1-параметарске породице правих линиjа jе N -та каустика по
одбиjању. Доказуjемо да за свако N каустика има наjмање четири врха, уоп-
штаваjући сличан резултат за Еуклидску метрику, добиjен недавно заjедно са
Г. Бором.
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