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BLOW-UP PHENOMENA FOR A
DAMPED WAVE EQUATION WITH
LOGARITHMIC SOURCE TERM
AND VARIABLE-EXPONENTS

Mohammed Y. Trigui and Mohamed Saadaoui

ABsTrRACT. This paper investigates the wave equation with variable-exponent
nonlinearity and logarithmic source term, given by the following:
wir — A+ aug|ug |72 = bu|uPO) "2 1n |ul,

where a and b are positive constants, and the functions m(-) and p(-) satisfy
certain required conditions. Using the energy method and several inequality
techniques, we establish a finite-time global nonexistence result for specific
solutions with positive initial energy, under appropriate conditions. This type
of equation has significant applications in various fields, including fluid dy-
namics, electrorheological fluids, quantum mechanics, nuclear physics, optics,
and geophysics.

1. Introduction

2

018T

Let © be a bounded domain in R™ with a smooth boundary 02 and a,b > 0

are constants. We consider the following initial-boundary value problem:

g — Au+ aug|ug ™2 = bulu[PO2In|ul, in Qx (0,7)

(1.1) u(z,t) =0, on 002 x (0,T)
u(z,0) = up(x), u(x,0)=wui(x), in Q,
where the exponents m(-) and p(-) are given measurable functions on 2 satisfying
2n
2<p1 < p(x) <o < , for n >3,
(1.2) n—2
2 <1 < p(x) < @ < 400, for n <2,

with

o1 = essinfreq (), 2 1= esssup,eq p(2),
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and the log-Hdélder continuity condition:

13) o) — o) < ——

log |z — y|’
with 0 <d <1 and A > 0.
In the case of constant nonlinearity, considerable effort has been dedicated to
studying problems associated with (1.1). For instance, concerning the nonlinearly
damped wave equation, the following equation:

for a.e. z,y € Q, |z —y| <0,

ugy — Au+ auglug|™ = bululP,  in Qx (0,T), m, p=0.

has been extensively studied and many results concerning global existence and
nonexistence have been proved. Precisely, we know that the nonlinear source term
bu|u|P(p > 0) causes finite time blow up of solutions with negative initial energy in
the absence of the damping term au;|us|™ (see [5,17]). In the absence of the source
term, the damping term assures global existence for arbitrary initial data (see [13,
16]). Levine was the first to examine the interaction between the damping and the
source terms (see [17,25]). He addressed the case where m = 2 and demonstrated
the finite-time blow-up of solutions with negative initial energy. Georgiev and
Todorova [10] extended Levine’s result to the case m > 2 by employing a distinct
approach. Levine et al.[18] expanded the previous results to unbounded domains,
demonstrating that any solution with negative initial energy blows up in finite time
if p > m. Similarly, Messaoudi [20] established the finite-time blow-up of negative-
initial-energy solutions under the same condition p > m.

Recently, significant attention has been given to the study of mathematical
nonlinear models involving hyperbolic, parabolic, and elliptic equations with vari-
able exponents of nonlinearity. These models have been used to describe vari-
ous physical phenomena, such as the flow of electro-rheological fluids, fluids with
temperature-dependent viscosity, nonlinear viscoelasticity, filtration processes in
porous media, and image processing. Further details on these applications are
available in [1-4,8,15,19]. However, the literature on equations with variable ex-
ponents of nonlinearity remains relatively sparse. Messaoudi et al.[21] investigated
the following nonlinear damped wave equation:

ugr — A+ aug|ug ™72 = buluPO=2, in Q x (0,T)
u(z,t) =0, on 09 x (0,T)
u(z,0) = up(x), ug(z,0) = uy(x), in Q,

where a,b > 0 are constants and {2 is a bounded domain in R™ with a smooth bound-
ary 0f). Using the Faedo—Galerkin method, the authors established the existence
of a unique weak solution under appropriate conditions on the variable exponents
m and p. Furthermore, the finite-time blow-up of solutions was established, and
a two-dimensional numerical example was presented to demonstrate this blow-up
behavior. Rahmoune [24] studied the problem (1.1) with @ = b = 1. Combining Ba-
nach’s fixed point theorem and Faedo-Galerkin techniques, the author proved the
well-posedeness theorem and investigated the global nonexistence of solution with
negative initial energy. This type of problems with logarithmic source term arises in
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many branches of physics such as nuclear physics, optics, geophysics and quantum
field theory. More details on these problems can be found in [6,7,11,12,14,22].

In this article, we extend the work in [24] to the cases with positive initial
energy. This paper is organized into two sections, in addition to the Introduction. In
Section 2, we recall the definitions of the variable exponent Lebesgue space LP()(Q)
and Sobolev spaces W#?()(Q), along with some of their properties, followed by a
well-posedness theorem. In Section 3, we state and prove our blow-up theorem for
certain solutions with positive initial energy.

2. Mathematical background

In this section, we provide some preliminary pieces of information and facts
about Lebesgue and Sobolev spaces with variable exponents. Let p: Q@ C R" —
[1,00] be a measurable function.We denote by LP()(Q) all the real measurable
functions u: Q — R such that [, |\u(x)|P®)da < oo, for some \ > 0.

The variable-exponent Lebesque space Lp(‘)(Q) equipped with the following
Luxemburg-type norm
p(z)
dr <15p,

llullLoc 1=inf{,\>0;/ ‘@
ol A

is a Banach space.
The Banach variable-exponent Sobolev space W12()(Q) is defined as follows:

WhPO(Q) = {u € LPV(Q) : Vu exists and |Vu| € LPO(Q)}.

with respect to the norm

[ullwrro @) = lullpey + [Vullpe)-

In addition, we define Wol’p(')(Q) as the closure of Cg°(Q) in W'PL)(Q). As
well as in the classical Sobolev spaces, W~1'()(Q) is defined as the dual of

Wol’p(')(Q), where X X

p() P
LEMMA 2.1 (Poincaré’s inequality [9]). Let Q@ C R™ be a bounded domain and
p(+) satisfies (1.3). Then

=1.

[ullpey < ClIVullpey, for all we Wy (9),
where the positive constant depends on ), p1, and pa. As a direct result, the space

WP(Q) has an equivalent norm given, by Hu||W01,p(-)(Q) = [ Vullpe-

LEMMA 2.2 ([9]). If p: Q — [1,00) is a measurable function and
2n
-9’
2<p <plx) <p2 <400, n<2
Then the embedding H}(Q)

2<P1<?(¢)<P2<n n> 2,

— LPC)(Q) is continuous and compact.



4 TRIGUI AND SAADAOUI

LEMMA 2.3 (Young’s inequality [9]). Let h,i,j > 1 be measurable functions
defined on € such that

1 1 1
——=—+——, forae yeq.

hy) ily)  (y)
Then for all a,b > 0,
h(.) i(.) 30
(@' _ @, 00
h(.) i(.) ()
LEMMA 2.4 (Holder’s Inequality [9]). Let h,i,j > 1 be measurable functions
defined on ) such that

L b

( ) (y) i)’

If f € I'O(Q) and g € LI (Q), then fg € L") (Q) and
1 glln < 2[[fllllgll;-

DEFINITION 2.1 (Weak solution). u = u(x,t) is called a weak solution of prob-
lem (1.1) on Q x [0,7), if u € L>(0,T; H} () with u; € L?(0,T;L*(Q)) and
satisfies the problem (1.1) in the weak sense, i.e.

(s, v)2 + (V, V)o + (ugfue ™72, 0)2 = (ufulPO 2 In jul, v),,

for any v € H}(Q), t € (0,T), where u(0,7) = ug(z) € H}(Q), us(x,0) = uy(z) €
L*(2), and (-,-)2 means the inner product (-,-)r2(q).

for a.e. yeQ.

By using Faedo—Galerkin method with the help of Banach’s fixed point theo-
rem, Rahmoune [24] proved the following well-posedness theorem:

THEOREM 2.1. Let m(-) and p(-) satisfy (1.2) and (1.3). Moreover, p(-) satis-
fies
-1
—5 for n >3,
2 <p; <plx) <p2 < +oo, for n<2

2 <p <p(x) <p2

Then, for any given (ug,u1) € HE(Q)x L2(Q), it exists T > 0 and a unique solution
u of the problem (1.1) on (0,T) such that

ue C((0,T), Hy(2)) N C*((0,T), L*(2))
ug € L2((0,T), H*(Q)).

LEMMA 2.5. Let u be the solution of (1.1), then the modified energy functional
E(t) associated with the problem (1.1), defined as

21) B() = 5 lu®l-+ 51 Vu®l + |

satisfies

b b
2 )|u|p(x)dx—/ ﬁ|u|p(x) In |u|dz,
px 0 Pz

(2.2) E'(t) = —a/ lug|™®dx <0, a.e te(0,T).
2
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PROOF. Multiplying equation (1.1) by u; and integrating over {2 easily we
obtain

d(1 1 b b
afr el 2 P(®) 4y — / b
{31+ 519u01 + [ s [ s

= —a/ | de. O
Q

3. Blowup result

In this section, we demonstrate the blow-up for specific solutions with positive
initial energy. To state and establish our result, let B be the optimal constant of
the Sobolev embedding H} (Q) — L7(Q) with

2n
- ifn>3
P2 < 0 < Omax;  Omax = {-T—Oi) 1fn<27

and determine

e (PR e (e

(3.1) H(t) = By — E(t),

L(t) = H' 7 1) + 5/ wug(z,t)de,
Q

where ¢ > 0 and 0 < A < 1 will be determined later. We now present some useful
lemmas, where a generic positive constant is denoted by C.

LEMMA 3.1 ([21]). Suppose the conditions of Lemma 2.2 hold. Then there
exists a positive C' > 1, depending on 2 only, such that

lully, < CUVullz + [lulb),
for any u € HE () and 2 < s < p1.

LEMMA 3.2 ([21]). Let u be the solution of (1.1) and assume that

2n
(32) 2 < mi g m(a:) < ma <p1 gp(x) <p2 < m, fOT n 2 37
2<my <mx) <Kmo <p1 <pz) <p2 <400, for n<2

holds. Then,
/Q @ da < Ol + Jul2).

LEMMA 3.3. For any u € H}(Q), there exist two positive constants Cy,Cq > 0
depending on 2 only such that

/ 1uP@) In [ulde < Cy|[Vullg + Ca, £ > 0.
Q
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PRrROOF. We set
Qp={xeQ||u/>1} and Q_={zx € Q||u| <1}

Using the properties of the logarithmic function, we obtain

/|u|p(m)1n|u|dx:/ |u\p(z)1n|u|dx+/ |u[P®) 1n u|dz
Q Q4 Q

1 - 12|
< |u|”de + —
e(o — pa2) Q4 ep1

B° 02
g A« B oy L o
e(o — p2) e(o —p2) ep1

LEMMA 3.4 ([23]). Let u be the solution of (1.1). If

<

lullg +

E(O) < FEi and ||VUO||§ > (517
then there exists 09 > 81 such that
(3.3) [Vu(t)||5 = da,t > 0.

LEMMA 3.5. Let the assumptions in Lemma 3.4 be satisfied, then we have

bC bC:
0<H(0) < H(t) < 1||V I5 +—=.
Proor. Using (2.1), (2.2) and (3.1), we obtain
1 b
0< H(0 = dx+7/ VuZdQH—/up(z)dx]
)< [2 2 Q‘ | QP2($)| |
/ LMP(Z) In |u|dz
o (@)

and, from (3.3), we get

y e g [ vutan s [ ot
Ey—|= | «?dz+ = | |Vul?dz + ulP@dg
! {2 Q ' 2 Q| | QP2($)||

1 52 61 51
<Ei - 5<Ei-—-<E-5<-—+—-—<0, Vt>0.
1= 5lIVully < By = 5 15 T im <0, Vt=0
Hence
bC bC.
0< H(0) < H(t) < 1||v ||2+J, VE >0
by virtue of Lemma 3.3. (]

The following theorem presents the primary result of this article:

THEOREM 3.1. Let the conditions of Lemma 3.4 and (3.2) be satisfied. Then,
the solution of problem (1.1) given by Theorem 2.1 blows up in finite time.
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PROOF. We define the auxiliary function as follows:

(3.4) L(t) == H™*(t) + s/ wug(z, t)de,
Q
where € > 0 small enough to be chosen later and

p1—2 2(p1 —ma) }
2p1 T opi(mg —1)

(3.5) 0<ac< min{

Utilizing equation (1.1) and differentiating the auxiliary function (3.4), we obtain
the result

(3.6) L'(t) = (1 —a)H “(t)H'(t) +€/ [u? — |Vul?]dx
Q
+ Eb/ |u[P®) In u|dz — as/ g |ug M@ 2 dg.
Q Q
The result of subtracting and adding £(1—n)p1 H(t) to the right-hand side of (3.6) is

L3 (1 — o) B H'(t) + e(1 — )p H(2) + abn/ﬂ P n [ulde

L b p(z) (1 n)p1 2 (1—n)p
7/ ul dx+6( 1)||ut||2+5( 5 )HVUHZ
—as/ wg w2 dz — e(1 — n)p1 By
Q
From Lemma 3.5, we deduce
p%/ \ul”(””)da:</ [u|P®) n |u|d,
P2 Ja Q
and from it, we have
eb,
PO > (- B @) + o1 - B0 + B [ upas
1-— 1—n)p
*5(% 1)l “(% - 1)”W“5

- as/ wtg|ug[™ 2 da — e(1 — n)p By
0
It implies that for 0 < n < %?2’
(87) L'(t)> (- a)H' (O H'(t) + B[H () + |ull}! o,

el 4 V2] - ae / sy 2,
Q

where 3 = mln{ (I=n)p1, bpl, (1_2")“ +1, ((1—;7);;1 —1) 52_61 } > 0 and |Jul/?* b, =

fQ+ |u[Prdz. We estimate the last term in (3.7) using Young s inequality as follows:

/\ut\mm—wdxg i/ 9m<$)|u|m(”)dm+m27_l/ 6~ 7T |uy [, WO > 0.
Q mi Ja ma Q
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With 6 selected, so that
m(z)
0" m@-T =k-H %(t), k>0,

we obtain
(3.8) /\u,\m(z)’lm‘dxg i/ =) [y rem@ =D () dg 4 2= DE gy ).
Q m1 Jo ams
Combining (3.7) with (3.8) yields
/ _ _ m2_1 —a U _ kl_mla’ a(ma—1) / m(z)
(3.9 L'(t)> [(1 a) g( .- )k]H (OH'(1) — = H (0) [ 1"

+eBLH (1) + [[uel3 + lull}; o + [Vull3].

Using Lemma 3.2, Lemma 3.3 and Lemma 3.1 to obtain
(3.10) Hm==V(p) /Q ul ™) dz < C(C1|[Vull + C2)* =D [Jull + ul22]

< Clllullpr + lullpz + 17ull3* ™~ ullps + [1Val3* ™ ™ ful52]
proa(mg—1) p17&("}2—1) 9
SCIVully 7™+ [Vully ™7+ [ Vallz + lull; )]
thanks to Young’s inequality. We now apply the well-known algebraic inequality
that follows:

1
z7<z+1<(1+7)(z+d)7 V220, 0<7<1, d>0,

d
for z = ||Vul||3, d = H(0) and 7, = pg(’;(:n%:)l) (2 = pé(f;(inﬁ;)l)), we get
pioa(my—1) pioa(my—1) )
(3.11) [Vully ™77+ [[Vully, ™7™ < C[[Vullz + H(D))-
From (3.10) and (3.11), we arrive at
(3.12) H“(mrl)(t)/ [ul " dz < C(lully) o, + IVull3 + H(1).
Q

(3.9) and (3.12) together produce

mg — 1
(3.13) L'(t) > [(1 —a) —g( jng )k}H—a(t)H’(t)
be(B= BV () + ol 2, + IV
Here, we choose k to be big enough that
y=08-— a-l::“_mlc > 0.

Once £ is fixed, we find € small enough to guarantee
mo — 1
o=
(1-a)— ("2
Thus, (3.13) takes the form

(3.14) L'(t) > velH (1) + Jull3 + ull; o, + [IVul3]-

1,24+

)k >0 and L(0) = H'™(0) + s/ uo(x)uq (z)dz > 0,
Q
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Consequently, we have
L(t) > L(0) >0, forall t>0.

However, from (3.4), we derive:

(3.15) L= (t) = [Hlﬂx(t) +5/ um(%t)dx} <o {H(t) +5(/ uut(zﬂf)dx)m]'
Q2 Q
We observe that

’ /Q wug(z, t)dz| <

/ uug(x, t)dx
Q

Young’s inequality once more offers

1
T-a 1-2 1
/ uug(z, t)dx a
Q

ClIIE™ + ul3], for " -1
Recalling (3.5) then applying Lemma 3.1, we find

ullolludllz < Cllullp, [luell2;

which implies
1

1 1
< Cllullpy* [luell™

2l—-a) 21—«

(3.16) ’/uut v 0)dz| < ClH( ) aell3 + al2 g, + [Vull3).
By inserting (3.16) into (3.15), we obtain

(3.17) L% () < eCLH() + [[udl)3 + [[ul: o, + [Vull3).

From (3.14) and (3.17), we conclude that

(3.18) L'(t) > ALT=(t), forall ¢t>0.

where A is a positive constant depending on 2, ug 1, m; 2 and p; 2 only. When
(3.18) is simply integrated over (0,t), it produces

. 1
Li=a(t) 2 ——=
L5 (0) — 12 At

Therefore, L(t) blows up in finite time

l-a
S —————=—-
AalL(0)] ™=
The proof is complete. O
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®EHOMEH PA3JAYBABAIBA 3A JEJJHAYMNHY
IMPUTYIIIEHOT TAJIACA CA JIOTAPUTAMCKUM
YJIAHOM MU3BOPA 1 ITPOMEHJ/BUBVM EKCIIOHEHTNMA

PE3UME. OBaj pas ucrpayje jeJJHAUNHY Tajgaca ca HeJMHEAPHONIINY TPOMEH/bUBOT
€KCIIOHEHTa U JIOTapUTaMCKUM YJIaHOM HU3BOpa JaTy ca:

wyy — Au+ aug|ug ™72 = bulu[PO 2 1n |ul,

rie ¢y a u b nosurusHe KoHcTante, a dyukuuje m(-) u p(-) 3an0BosbaBajy oupele-
me morpebue ycioBe. Kopucrehn emepreTckum MeTos M HEKOJIMKO TEXHUKA HEjel-
HAKOCTH, JOOHjaMO pesysrare TIOOATHOD HENOCTOjarha Y KOHAYHOM BPEMEHY 3a
cuenudUIHA pEIleha ca IMO3UTHBHOM IOYeTHOM eHeprujoM. OBaj TuIl jegHadumne
nMa 3HAYAjHE TIPUMEHE y PasInIuTUM 00JIACTUMA, YK/BYUIyjyhu nuHamMuky (iyn-
J1a, eaeKkTpopeosiomke dynjie, KBAHTHY MEXaHUKY, HyKjeapHy (U3NKY, OITHKY U
reopusuKy.
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