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EXPERIMENTAL STUDY OF
TENSOR INVARIANTS OF
HAMILTONIAN SYSTEMS

A. V. Tsiganov

Abstract. Typically, one considers the problem of finding the minimum
number of invariants of a dynamical system sufficient for integrability. It
can be also assumed that there are invariants not related to integrability that
describe other properties of the dynamical system. We compute such tensor
invariants for some integrable and non-integrable dynamical systems by using
modern computer software and discuss their properties.

1. Introduction

A vector field X on the phase space M with coordinates x = (x1, . . . , xn)
defines a system of ordinary differential equations (dynamical system)

(1.1)
d

dt
x = X(x1, . . . , xn),

depending on an evolution parameter t. Invariant I(x) is a constant

I(x) = const

along any solution of the system (1.1) including phase space functions (first inte-
grals), vector and multivector fields (symmetry fields, hidden symmetries, Poisson
structures), differential forms (symplectic forms, volume forms), recursion opera-
tors in bi-Hamiltonian geometry, invariant distributions in nonholonomic mechanics
and control theory, Poincaré–Cartan absolute and relative invariants, etc.

For a smooth vector field X, tensor invariants T of the flow generated by X
satisfy the equation

(1.2) LXT = 0.

Here LXT is a Lie derivative of the tensor field T along the vector field X. For
this invariance equation (1.2), it is necessary to study the standard questions con-
cerning the existence of solutions and their classification, the relations between
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different types of solutions, the applications of these invariants to study properties
of trajectories x(t), the construction of invariant-preserving integrators and so on.

In the case of scalar invariants, that is, first integrals of dynamical systems,
all these questions are partly answered, see [1–10,12] and references therein. For
instance, if f(x) is a scalar solution of (1.2), then the solutions x(t) of (1.1) lie on
the the integral manifold f(x) = c. On the other hand, in 1891, Poincaré provided
a criterion by which analytic first integrals do not exist in analytic differential
systems [13]. Indeed, if the analytic dynamical system (1.1) in Cn has a singularity
at x = 0, i.e., X(0) = 0 and eigenvalues of the Jacobian matrix DX(x) at x = 0 do
not satisfy any Z+-resonant conditions, then the dynamical system has no analytic
first integrals in a neighborhood of the origin.

Some well-known examples of the tensor solutions of (1.2) were also studied by
Poincaré in [1]. For instance, if the divergence of the vector field X is equal to zero

(1.3) divX = ∂1X
1 + ∂2X

2 + · · ·+ ∂nX
n = 0,

then the completely antisymmetric unit tensor field Ω of type (0, n)

Ω = dx1 ∧ dx2 ∧ · · · ∧ dxn

and completely antisymmetric unit tensor field E of type (n, 0)

E = ∂1 ∧ ∂2 ∧ · · · ∧ ∂n.

are solutions of the invariance equation (1.2) LXΩ = 0 and LXE = 0. In this case,
the Poincaré recurrence theorem [14] states that a certain dynamical system (1.1)
will, after a sufficiently long but finite time, return to a state arbitrarily close to its
initial state.

The invariance of the differential form Ω was studied in 1838 by Liouville [15]
as a theorem about the phase space distribution function, which for vector fields
without divergence is the theorem about the conservation of the volume form∫

V

Ω = const.

The invariance of the multivector field E is a key element of the Jacobi theory of
functional determinants [16] developed during the period 1841–1845.

We obtain condition (1.3) by substituting the tensor fields Ω and E into the
expression of the Lie derivative of the tensor field T of type (p, q)

(LXT )
i1...ip
j1...jq

=

n∑
k=1

Xk(∂kT
i1...ip
j1...jq

)−
n∑

ℓ=1

(∂ℓX
i1)T

ℓi2...ip
j1...js

− · · · −
n∑

ℓ=1

(∂ℓX
ip)T

i1...ip−1ℓ
j1...js

+

n∑
m=1

(∂j1X
m)T

i1...ip
mj2...jq

+ · · ·+
n∑

m=1

(∂jqX
m)T

i1...ip
j1...jq−1m

,

where ∂ℓ = ∂/∂xℓ is the partial derivative on the xℓ coordinate.
If divX = 0 and there are invariant symmetries X1 = X, . . . ,Xm or first

integrals f1, . . . , fm then tensor fields

ω(i) = Ω⊗Xi, ω(ij) = Ω⊗Xi ⊗Xj , ω(ijk) = Ω⊗Xi ⊗Xj ⊗Xk, . . .
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and

T (i) = E ⊗ dfi, T (ij) = E ⊗ dfi ⊗ dfj , T (ijk) = E ⊗ dfi ⊗ dfj ⊗ dfk, . . .

are also invariants of the flow of divergence free vector field X.
If divX = 0 and there are n − 1 first integrals, the invariant vector field X is

expressed through the functional determinant

Xi =
∂(xi, f1, . . . , fn−1)

∂(x1, . . . , xn)
, i = 1, . . . , n,

see the mathematical exposition of the Jacobi theory of functional determinants
in section 229 of the Vallée–Poussin lectures for engineers [19]. Similar tensor
invariants exist for the vector field X satisfying the equation

div(M(x)X) = ∂1(M(x)X1) + ∂2(M(x)X2) + · · ·+ ∂n(M(x)Xn) = 0.

In Liouville theory, the function M(x) is called an invariant measure, whereas in
Jacobi theory, M(x) is called a multiplier.

Dynamical systems with n−1 first integrals on n-dimensional manifolds and the
topological properties of such systems are studied, particularly in the case when the
integrals are multiple-valued and are pseudoperiodic functions on covering spaces
in [20]. When the first integrals are single-valued functions, we have so-called
degenerate or superintegrable systems [21].

The Lie derivative commutes with the exterior differentiation operation and
satisfies the Leibnitz rule. It allows us to construct tensor invariants from a set of
basic invariant tensor fields which either have a simpler functional dependence on
the variables x, or have some special properties or physical interpretation. As an
example, The Hamiltonian vector field X on a 2n-dimensional symplectic manifold
is defined by ιXω = dH where ι is an interior product, ω is an invariant symplectic
form and dH is an invariant 1-form constructed by differentiating the Hamilton
function H, i.e., the scalar invariant of equation (1.2), which usually coincides with
the mechanical energy of the dynamical system (1.1) [16–18].

The basic invariants H and ω define a family of invariant differential forms of
type (0, 2k) and (0, 2k − 1)

ω2k = ∧kω and ω2k−1 = ιXω2k, k = 1, . . . n,

so that ω2n = Ω is an invariant volume form.
Similarly, for the Hamiltonian vector fields on the Poisson manifold X = PdH,

where P is an invariant Poisson bivector independent on x, we can construct a
family of invariant multivector fields of type (2k, 0) and (2k − 1, 0)

P 2k = ∧kP and P 2k−1 = P 2kdH, k = 1, . . . n.

The following general question arises in connection with the above: do systems
of differential equations (1.1) admit non-trivial tensor invariants of arbitrary type
(p, q) which can not be obtained from the basic invariants? The answer is in the
affirmative, provided that we look at this problem locally, in a small neighbourhood
of a non-singular point of the vector field X, see discussion in [8–10] for a generic
case and in [4–6] for the Hamiltonian systems.
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We aim to solve the invariance equation (1.2) directly by using a modern math-
ematical software and try to obtain its partial solutions in some restricted search
search space, namely globally defined tensor fields on the entire state space. Follow-
ing [22], computer computations can be used to explore the mathematical structure
of the solutions of (1.2) and identify their properties and patterns. Examples are
the integrable and non-integrable Hénon-Heiles systems, the non-integrable Volterra
systems, the superintegrable Kepler problem and the integrable Toda lattice asso-
ciated with the root system G2.

1.1. Mathematical experiment. Below, we consider Hamiltonian systems
defined by the following Hamiltonian

H =
1

2
(p21 + p22) + V (q1, q2)

and canonical Poisson bivector P , which in the matrix form reads as

P =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , so that X = PdH =


p1
p2

− ∂V
∂q1

− ∂V
∂q2

 .

The solutions of the invariance equation (1.2) are the mechanical energy H, the
Poisson bivector P , the two completely antisymmetric tensor fields Ω and E and
their derivatives.

Our aim is to find other globally defined solutions of (1.2). So, we will solve
equation LXP ′ = 0 by using the following polynomial ansatz

(1.4) P ′ij =

2∑
1⩽m⩽k⩽2

aijkm(q)pkpm +

2∑
k=1

bijk (q)pk + cij(q).

for the entries of the bivector

P ′ =
∑

P ′ij ∂

∂xi
∧ ∂

∂xj
, x = (q1, q2, p1, p2).

Here aijkm(q), bijk (q) and cij(q) are functions of q1 and q2.
In coordinates x = (q1, q2, p1, p2), the Lie derivative of the bivector P ′ along

the vector field X is equal to

(LXP ′)ij =

2∑
k=1

(
Xk ∂P

′ij

∂xk
− P ′kj ∂X

i

∂xk
− P ′ik ∂X

j

∂xk

)
.

After the substitution of (1.4) into (1.2) we obtain 60 partial differential equations
on 36 functions on q1 and q2. These equations were solved using various modern
computer algebra systems for later comparison of the results obtained. The final
results obtained in this way were verified analytically.

Substituting the same polynomial ansatz for entries

(1.5) T ijℓ =

2∑
k⩾m=1

aijℓkm(q)pkpm +

2∑
k=1

bijℓk (q)pk + cijℓ(q)



EXPERIMENTAL STUDY OF TENSOR INVARIANTS 5

of the contravariant skew-symmetric tensor of valency three

T =
∑

T ijℓ ∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xℓ

into the equation LXT = 0

(LXT )ijℓ =

2∑
k=1

(
Xk ∂T

ijℓ

∂xk
− T kjℓ ∂X

i

∂xk
− T ikℓ ∂X

j

∂xk
− T ijk ∂X

ℓ

∂xk

)
,

we obtain 81 partial differential equations for 60 functions of q1 and q2. We can also
solve these equations using computer algebra systems. As an example, we present
an answer for the Kepler problem.

2. Tensor invariants of integrable by Liouville systems

Let us consider Hamiltonian vector fields on a 2n-dimensional symplectic man-
ifold M endowed with coordinates x = (q, p), so that

X = PdH, P =

n∑
i=1

∂

∂qi
∧ ∂

∂pi
.

If the Hamiltonian vector field X has n functionally independent invariant first
integrals

fi(q1, . . . , qn; p1, . . . , pn, t) = ci, i = 1, . . . , n,

whose pairwise Poisson brackets are equal to zero

{fi, fj} = 0, i, j = 1, . . . , n

and
∂(f1, . . . , fn)

∂(p1, . . . , pn)
̸= 0.

So that, locally at least, we can express the pi as functions of qj , cj , and t. It means
that the differential form

n∑
i=1

pi(q, c, t)dqi −H(q, p(q, c, t), t)dt

is the differential of a function

S(q1, . . . , qn; c1, . . . , cn; t).
According to [23], it is a complete integral of the corresponding Hamilton–Jacobi
equation

(2.1)
∂S
∂t

+H(q1, . . . , qn, p1, . . . , pn, t) = 0, where pi =
∂S
∂qi

.

A solution of a first-order partial differential equation with as many arbitrary con-
stants as the number of independent variables is called a complete integral. Once
a complete integral is found, a general solution can be constructed from it. Since
a complete integral of a first-order partial differential equation can be found in
quadratures, it completes the original Liouville proof of his theorem about integra-
bility by quadratures [23].
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2.1. Local invariant bivectors. Let us consider time-independent Hamil-
tonian systems. The Arnold–Liouville theorem [3] implies that almost all points of
the symplectic manifold M are covered by a system of open toroidal domains

Oc : {x ∈ M, f1(x) = c1, . . . , fn(x) = cn, ci ∈ R}

with the action-angle coordinates I1, . . . , In and θ1, . . . , θn so that

(2.2) İj = 0, θ̇j =
∂H

∂Ij
, j = 1, . . . , n.

and ω =
∑n

j=1 dIj ∧ dθj . The action coordinates I1, . . . , In are defined in a ball

Br :

n∑
j=1

(Ij − cj)
2 < r2,

while the angle coordinates θ1, . . . , θn run over a torus, in the compact case or over
a toroidal cylinder if the integral manifold Ij(x) = cj is non-compact.

The completely integrable Hamiltonian system (2.2) is called non-degenerate if
the Kolmogorov condition [21] for the Hessian matrix

det
∥∥∥ ∂2H

∂Ii∂Ij

∥∥∥ ̸= 0

holds almost everywhere. In this case, any first integral f(I, θ) is a function of the
action variables only.

df

dt
= 0 ⇒ f = f(I1, . . . , In).

Using action-angle variables, we can describe all local solutions of equation
(1.2) in the space of the symplectic forms and the corresponding Poisson bivectors.

Proposition 2.1. In the neighbourhood of a compact toroidal domain, Oc

closed 2-form ω′ is invariant to the completely integrable non-degenerate Hamilton-
ian system (2.2), i.e.

dω′ = 0, LXω′ = 0,

if and only if it has the form

(2.3) ω′ =

n∑
j=1

d
(∂B(J)

∂Jj

)
∧ dθj − dfj(I) ∧ dIj ,

where B(J1, . . . , Jn) and f(I1, . . . , In) are arbitrary smooth functions of n argu-
ments and functions Ji = Ji(I1, . . . , In) on action variables are equal to

Ji =
∂H

∂Ii
, i = 1, . . . , n.

The 2-form ω′ is non-degenerate if and only if the two non-degeneracy conditions
hold

det
∥∥∥ ∂2H

∂Ii∂Ij

∥∥∥ ̸= 0, det
∥∥∥ ∂2B

∂Ji∂Jj

∥∥∥ ̸= 0.
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See all the details and similar theorem for the non-compact case in [4–6].
Using the Schouten–Nijenhuis bracket [[., .]] between alternating multivector

fields P ′ = ω′−1 and P , we immediately obtain the invariant trivector

T = JP, P ′K, such that LXT = 0.

In a generic case T ̸= 0, two invariant Poisson structures P and P ′ = ω′−1 are
incompatible in the Magri sense, i.e. the linear combination P+λP ′ is the invariant
bivector which does not satisfy the Jacobi condition.

Summing up, the Bogoyavlenskij theorems reduce the rather difficult search
for the invariant Poisson structures to the classical problem of constructing action-
angle coordinates. When these coordinates are found, the formula (2.3) presents a
continuous family of invariant symplectic and Poisson structures. Moreover, these
theorems ensure that in this way we can obtain all invariant structures on the given
symplectic manifold.

Of course, these theorems say nothing about global solutions of equation (1.2)
since non-existence of the global action-angle coordinates, see discussion in [24].

2.2. Stäckel systems. One of the oldest examples of the action-angle vari-
ables was obtained by Stäckel in his dissertation [25]. We can use these action-angle
variables to calculate local solutions of the invariance equation (1.2) using the Bo-
goyavlenskij construction (2.3) for non-degenerate Hamiltonian systems.

To construct a Stäckel family of integrable Hamiltonian systems, we take Dar-
boux canonical variables q1, . . . , qn and p1, . . . , pn in which symplectic form and
Poisson brackets read as

ω =

n∑
j=1

dpj ∧ dqj and {pj , qk} = δjk.

Then, using nondegenerate n × n Stäckel matrix S, in which entries of the j-th
column of Skj depend only on the j-th coordinate qj

detS ̸= 0,
∂Skj

∂qm
= 0, j ̸= m,

inverse matrix C = S−1 and arbitrary functions Vj(qj) we define n independent
functions

(2.4) Ik =

n∑
j=1

Cjk(p
2
j + Vj(qj)), C = S−1, k = 1, . . . , n

which are in involution

{Ij , Ik} = 0, j, k = 1, . . . , n.

These functions can be considered either as first integrals of n commuting Hamil-
tonian vector fields

Xj = PdIj , i = j, . . . , n,

systems, action variables, since the connected surface of the level of these functions

Oc = {x ∈ M : Ij(x) = cj , j = 1, . . . , n}
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is diffeomorphic to n-dimensional real torus. The corresponding separated relations
are

(2.5) p2j =
( ∂S
∂qj

)2

=

n∑
k=1

ckSkj(qj)− Vj(qj),

where S(q1 . . . , qn; c1, . . . , cn) is a complete integral of the Hamilton–Jacobi equa-
tion (2.1)

S(q1 . . . , qn; c1, . . . , cn) =

n∑
j=1

Sj ,

for a given Hamiltonian system [25] where

Sj(qj , c1, . . . , cn) =

∫ √√√√ n∑
k=1

ckSkj(qj)− Vj(qj) dqj .

Stäckel represented this torus as a direct product of n curves Cj on a plane with
coordinates (x, y), which are given by the equations

(2.6) Cj : y2 − Fj(x) = 0, Fj(x) =

n∑
k=1

ckSkj(x)− Vj(x).

If this real torus is part of a complex algebraic torus, then the corresponding me-
chanical system is called an algebraic completely integrable system [26].

For example, if Ci = Cj , and n equations (2.5) define a divisor of points (pi, qi)
on the symmetrized product of a hyperelliptic curve of genus n, then this special
case of systems discovered by Stäckel in 1891 is sometimes called Jacobi-Mumford
systems [27] or Mumford systems [28]. An explicit integration of the corresponding
equations of motion, i.e., finding the functions qi(t) and pi(t), and a more detailed
discussion of such private Stäckel-type systems, can be found in [29].

In the general case, according to the standard procedure of integration of the
Hamilton-Jacobi equation by the method of separation of variables [30, 31], the
functions qj(tk, c1, . . . , cn, β1, . . . , βn) are found by means of quadrature reversal

(2.7) φk =

n∑
j=1

∫ qj Skj(q) dq√∑n
k=1 ckSkj(q)− Vj(q)

= tk + βk, k = 1, . . . , n,

where tk are time variables corresponding to Hamilton functions Hk = Ik, and
ck and βk are parameters determined by the initial conditions. In the case of
finite motion, this motion will not be periodic in general, but only conditionally
periodic [25]. If q0j and qj are the stopping points determined by the condition that
the functions Fj (2.6) are equal to zero, then the periods θjk of the system motion
are equal to

θkj =

∫ qj

q0j

Skj(q)dq√
Fj(q)

.

The sum of these periods (2.7), and in the most common special case this will
be an Abelian sum, determines the variable angles φk for the action variables Ik
(2.4) [25].
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Substituting these action-angle variables into the Bogoyavlenskij definition
(2.3) we obtain all possible invariant differential forms.

2.3. Global invariant bivectors for the Stäckel systems. If the Hamil-
tonian vector field X has n functionally independent invariant first integrals f1, . . . ,
fn, we can define a set of partial solutions of the equation (1.2) in the space
of bivectors

(2.8) P ′ =
∑

aij(f1, . . . , fn)Xi ∧Xj + b(f1, . . . , fn)P, Xi = Pdfi,

where ai,j,...,k and b are some functions on the first integrals and P is a canonical
Poisson bivector.

These partial solutions of equation (1.2) can be generalized if:
• there exist other first integrals of motion g1, . . . , gk so that

rank
∂(f1, . . . , fn; g1, . . . , gk)

∂(q1, . . . , qn; p1, . . . , pn)
= n+ k;

• there exist other invariant bivectors P1, . . . , Pk.
In the first case, we have a Kolmogorov-degenerate system (superintegrable or non-
commutative integrable system) and the corresponding global invariant bivector
reads as

(2.9) P ′ =
∑

aij(f1, . . . , fn, g1, . . . , gk)Xi ∧Xj + b(f1, . . . , fn, g1, . . . , gk)P.

Here, Xi are now invariant vector fields associated with the non-commuting first
integrals f1, . . . , fn and g1, . . . , gk.

In the second case, we can add invariant bivectors P1, . . . , Pk to (2.8) and obtain
another solution of equation (1.2)

P̃ = P ′ +

k∑
i=1

bi(f1, . . . , fn)Pi.

Suppose that the complete integral of the stationary Hamilton–Jacobi equation
H = E admits a complete separation by coordinates and parameters

S(q1, . . . , qn; c1, . . . , cn) =
n∑

j=1

Sj(qj , c1, . . . , cn) =

n∑
j=1

Sj(qj , cj),

i.e. if Hamiltonian takes the following form in some Darboux coordinates (q, p)

H = I1 + · · ·+ In =

n∑
k=1

(p2k + Vk(qk)),

then equation (1.2) has the following solution in the space of bivectors

(2.10) P ′ =

n∑
j>i

Aij(f1, . . . , fn)Xi ∧Xj +

n∑
i=1

bi(f1, . . . , fn)Pi, Pi =
∂

∂qi
∧ ∂

∂pi
.

Here

Xi∧Xj = pipj
∂

∂qi
∧ ∂

∂qj
−pi

∂Vj

∂qj

∂

∂qi
∧ ∂

∂pj
−pj

∂Vi

∂qi

∂

∂qj
∧ ∂

∂pi
+

∂Vi

∂qi

∂Vj

∂qj

∂

∂pi
∧ ∂

∂pj
,
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and Aij , bj are arbitrary smooth functions of n first integrals f1, . . . , fn. In the
space of trivectors, the corresponding solution looks like

T =

n∑
k>j>i

Aijk(f1, . . . , fn)Xi ∧Xj ∧Xk +

n∑
i,j=1

bij(f1, . . . , fn)Pi ∧Xj .

Substituting the invariant bivector P ′ (2.10) into the Jacobi equation

JP ′, P ′K = 0

we obtain a system of equations on the functions Aij and bj which can be solved.
In a similar manner, we can attempt to obtain invariant trivectors T which satisfy
the similar Jacobi conditions

JT, T K = 0,

at the special choice of functions Aijk and bij .
As an example, let us consider three integrable Hénon–Heiles systems which

have a continuum of local Bogoyavlenskij invariants (2.3). The first Hamiltonian

H =
1

2
(p21 + p22) + aq1

(
q22 +

q21
3

)
=

2∑
i=1

(P 2
i + Vi(Qi)),

allows complete separation in the coordinates Q1,2 = q1 ± q2. The second Hamil-
tonian

H = 1
2 (p

2
1 + p22) + aq1(q

2
2 + 2q31)

admits separation simultaneously in the parabolic coordinates u1,2 = q1±
√

q21 + q22
and in their images after the Bäcklund transformation u1.2 → v1,2 obtained using
the classical Abel’s theorem [32]. The third Hamiltonian

H =
1

2
(p21 + p22) + aq1

(
q22 +

16

3
q31

)
=

2∑
i=1

(p2vi + Vi(vi))

allows complete separation in the coordinates v1,2. As a result, we have a global bi-
Hamiltonian structure for the first and third complete separable Hamiltonians [33]
and global non-Poisson invariant bivector (2.8) for the separable second Hamilton-
ian which belongs to a family of the Stäckel systems [25].

We do not have global Poisson bivectors compatible with the canonical bivector
P for all the generic Stäckel systems [34]. Examples of superintegrable complete
separable Stäckel systems may be found in [35]. In the following, using our simple
mathematical experiment, we will compute complementary global invariants and
discuss their “functional independence” for non-integrable Hénon-Heiles systems.

3. The Kepler problem

For degenerate in the Kolmogorov sense systems, there are global first integrals,
which are functions on the both action and angle variables [36], and invariant
bivectors of the form (2.9). The Kepler problem is one of the most fundamental
problems in physics having such integrals of motion and, therefore, we take it as
an example for our mathematical experiment.
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Following Euler [37], we immediately move to consider orbit plane dynamics
with the Cartesian coordinates q1,2 so that the Hamiltonian H and the correspond-
ing vector field X are

H =
p21 + p22

2
− κ√

q21 + q22
,(3.1)

X = p1
∂

∂q1
+ p2

∂

∂q2
− κ

(q21 + q22)
3/2

(
q1

∂

∂p1
+ q2

∂

∂p2

)
.

This Hamiltonian commutes with the two components of the Laplace–Runge–Lenz
vector

K1 = p1(p1q2 − p2q1)−
κq2√
q21 + q22

, K2 = p2(p1q2 − p2q1) +
κq1√
q21 + q22

and the component of the orbital angular momentum K3 = q1p2−q2p1. According to
Euler [37], the pair of first integrals H and K1 (or K2) has a Stäckel form in elliptic
coordinates on the orbit plane and the existence of an additional independent first
integral K3 is a consequence of the Euler additional law on elliptic curves [38].

According to Jacobi [16], the pair of first integrals H and K3 has a Stäckel
form in polar coordinates and components of the Laplace–Runge–Lenz vector are
derived using the Euler–Jacobi method of the last multiplier.

Action-angle variables can be computed using both elliptic and polar coordi-
nates. In this paper, we will limit ourselves to the consideration of the action-angle
variables obtained using polar coordinates.

3.1. Action-angle variables and invariant bivectors. Let us pass to the
polar coordinates

q1 = r cosφ, q2 = r sinφ

and the corresponding momenta

p1 = pr cosφ− pφ sinφ

r
, p2 = pr sinφ+

pφ cosφ

r

in which first integrals H and K2
3 have the Stäckel form [25]

H = S−1
11 (p2r + V1(r)) + S−1

21 (p2φ + V2(φ)) =
1

2

(
p2r +

p2φ
r2

)
− κ

r
,

K2
3 = S−1

12 (p2r + V1(r)) + S−1
22 (p2φ + V2(φ)) = p2φ,

where

S =

(
2 0

−r−2 1

)
, V1(r) = −2κr, V2(φ) = 0.

Next, for H = h < 0 we introduce action-angle variables

Iφ = pφ, Ir =
κ√
−2H

− pφ, H = − κ2

2(Ir + Iφ)2

θr = arctan

(rpr
√
2κr − p2rr

2 − p2φrpr

p2rr
2 − κr + p2φ

)
−

pr
√
2κr − p2rr

2 − p2φ)

κ
,
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θφ = θr + φ− arcsin

(
κr − p2φ√

p4φ + r(p2rr − 2κ)p2φ + κ2r2

)
and so-called Delauney elements [39]

I1 = Iφ, I2 = Ir + Iφ, θ1 = θφ − θr, θ2 = θr.

Invariant Poisson bivectors in the Delauney elements were obtained in [40] and
then in [5,6]. In a similar way, we can get invariant Poisson bivectors in terms of
the Poincaré elements, see discussion in [41].

Substituting these Delauney elements into the Bogoyavlenskij construction
(2.3), we obtain a continuum of the local invariant Poisson bivectors which are
compatible or non-compatible with the canonical Poisson bivector P . The main
problem is to find global counterparts of these tensor invariants.

As an example, we present one pair of the invariant compatible Poisson bivec-
tors

P =
∂

∂θ1
∧ ∂

∂I1
+

∂

∂θ2
∧ ∂

∂I2
and P ′

I = I1
∂

∂θ1
∧ ∂

∂I1
+ I−2

2

∂

∂θ2
∧ ∂

∂I2
which are single valued functions of polar variables and the corresponding momenta

P =
∂

∂r
∧ ∂

∂pr
+

∂

∂φ
∧ ∂

∂pφ

and

P ′
I =

2H

κ2

∂

∂r
∧ ∂

∂pr
− pφ

∂

∂φ
∧ ∂

∂pφ
(3.2)

− pφ(κ
2pφ + 2H)

κ2r(κ2 + 2Hp2φ)

(
(p2φ − κr)

∂

∂r
∧ ∂

∂φ
+

p2φpr

r

∂

∂φ
∧ ∂

∂pr

)
.

The singularity in the Poisson bivector P ′
I and in the corresponding recursion op-

erator N = P ′P−1 has no physical meaning.
Using action-angle variables

J1,2 =
1

2
(H ± I1), χ1,2 =

θ2I
3
2

κ2
± θ1

we can rewrite Hamiltonian H (3.1) in the Fernandes form [42]

H = J1 + J2

and define a bi-Hamiltonian structure for the Kepler problem associated with the
following Poisson bivector

P ′ =


0 0 J1 0
0 0 0 J2

−J1 0 0 0
0 −J2 0 0

 , H =
1

2
trP ′P−1.

Recall that a bi-Hamiltonian system is defined by specifying two Hamiltonian func-
tions H1 and H2 satisfying

X = PdH1 = P ′dH2,



EXPERIMENTAL STUDY OF TENSOR INVARIANTS 13

with a diagonalizable recursion operator N = P ′P−1, having functionally indepen-
dent real eigenvalues λ1, . . . , λn [42].

In polar variables and momenta, this invariant Poisson bivector P ′ is a multi-
valued function on the phase space. So, we can say that bi-Hamiltonian structure
for the Kepler problem in the Fernandes sense exists only locally, i.e. in the neigh-
bourhood of the open toroidal domains defined by the Arnold–Liouville theorem.

3.2. Mathematical experiment. Substituting polynomial ansatz (1.4) for
entries of P ′ and the Kepler vector field X (3.1) into the equation LXP ′ = 0
and solving the resulting 60 partial differential equations, we obtain the following
solution

(3.3) P ′ = (a1X1+a2X2)∧X3+(a3H+a4K
2
3 +a5K1+a6K2+a7K+a8)P +a9P̃ ,

depending on nine parameters ai ∈ R. Here, K1,2 are components of the Laplace–
Runge–Lenz vector, K3 is a component of the angular momentum vector, Xk are
the corresponding invariant vector fields

X1 = PdK1, X2 = PdK2, X3 = PdK3,

and entries of the supplemental invariant bivector P̃ are

P̃ 12 = q1p2 − p1q2, P̃ 13 = −p22
2

+
κq22

(q21 + q22)
3/2

,

P̃ 14 =
p1p2
2

− κq1q2
(q21 + q22)

3/2
, P̃ 23 =

p1p2
2

− κq1q2
(q21 + q22)

3/2
,

P̃ 24 =
p21
2

+
κq21

(q21 + q22)
3/2

, P̃ 34 =
κ(p1q2 − p2q1)

2(q21 + q22)
3/2

.

Similar to the Hamilton–Jacobi equation, we can say that the equation

LXP ′ = 0

has a “complete integral” P ′ (3.3) depending on a sufficient number of arbitrary
constants, which allows to get all the integrals of motion from invariant (1,1) vector
field N = P ′P−1

tr N = 2(a9 − 2a6)H + 2(a2 − 2a3)K1 − 2(a1 + a4)K2 − 4a5K
2
3 − 4a7K3 − 4a8.

In contrast with the standard recursion operator with vanishing Nijenhuis torsion,
we obtain both commuting and non-commuting first integrals.

Substituting P ′ (3.3) into the Jacobi identity

JP ′, P ′K = 0

and solving the resulting equation for parameters, we obtain four invariant Poisson
bivectors P ′

1, . . . , P
′
4, depending on parameters a, b

P ′
1 = a(X1 + iX2) ∧X3 + bP, P ′

2 = a(HP − 2P̃ ),

P ′
3 = a(X1 ∧X3 −K2P ) + b(HP + P̃ ), P ′

4 = a(X2 ∧X3 +K1P ) + b(HP + P̃ ).

Only one of these Poisson bivectors is compatible with the canonical one

JP, P ′
1K = 0



14 TSIGANOV

where

P ′
1 − bP = eiφ


0 −pφ 0 0

pφ 0
ip2

φ

r2 −iprpφ − κ+
p2
φ

r

0 − ip2
φ

r2 0 0

0 iprpφ + κ− p2
φ

r 0 0

(3.4)

= ϕ1dθ1 ∧ dI1 + ϕ2dθ1 ∧ dθ2.

Here, ϕ1,2 are functions on the Delauney elements and the last term is missing in
the known results at [5,6,40].

In a similar manner, let us consider the equation LXT = 0 in the space of trivec-
tors or skew-symmetric tensors of type (3, 0) with entries which are polynomials
of second order in the momenta (1.5). Solving the corresponding system of partial
differential equations, we obtain a solution depending on eight parameters ai ∈ R

T =
(
(a1K3 + a2)X + (a3K3 + a4)X1 + (a5K3 + a6)X2

+ (a7K3 + a8 − a3K1 − a5K2)X3

)
∧ P.

This invariant trivector differs from the known invariant trivectors

Ti = EdKi and TH = EdH,

obtained from the Jacobi invariant E .
Summing up, we failed to generalize the known bi-Hamiltonian structure for

the Kepler system existing in the neighbourhood of the Liouville tori to the whole
phase space. Nevertheless, there exists a well-defined global solution P ′ (3.1) of the
equation LX P ′ = 0 that generates all noncommutative integrals of motion.

There are global Poisson bivectors P ′
I (3.2) and P ′

1 (3.4) that satisfy the fol-
lowing equations

(3.5) LX P ′ = 0, (P ′ − FP ) dH = 0, with P ′ ̸= FP,

where F = H and F = b, respectively. In the generic case, F (3.5) is a function
on all the integrals of motion. Below, we will prove that similar solutions exist for
other integrable and non-integrable Hamiltonian systems.

4. Open and periodic Toda lattices

Let us consider the following Hamiltonian

H =
p21 + p22

2
+ exp(q1/

√
3) + exp(−

√
3/2q1 + q2/2) + α exp(−q2),

describing the open Toda lattice (α = 0) or the so-called periodic Toda lattice
(α = 1) associated with the root system G2. The second integral of motion is a
polynomial of sixth order in the momenta, see [43].

Using the polynomial ansatz (1.4) for the entries of P ′ and the vector field
X = PdH, we can directly solve the equation LXP ′ = 0 and obtain the following
solution

(4.1) P ′ = (a1H + a2)P + a3(α− 1)P̃ , ak ∈ R.
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A supplemental invariant bivector P̃ exists only for the open Toda lattice and
satisfies the equation

(4.2) (P̃ −HP )dH = 0

similar to the Kepler problem equation (3.5). The entries of this supplemental
solution P̃ are equal to

P̃ 12 =
√
3p2 − 5p1,

P̃ 13 =
p22
2

+
5 exp(−

√
3/2q1 + q2/2)

2
,

P̃ 14 = −p1p2
2

−
√
3 exp(−

√
3/2q1 + q2/2)

2
,

P̃ 23 = −p1p2
2

− 5
√
3 exp(q1/

√
3)

3
+

5
√
3 exp(−

√
3/2q1 + q2/2)

2
,

P̃ 24 =
p21
2

− 3 exp(−
√
3/2q1 + q2/2)

2
+ exp(q1/

√
3),

P̃ 34 = −exp(−
√
3/2q1 + q2/2)

4
p1

+

√
3
(
2 exp(q1/

√
3)− 3 exp(−

√
3/2q1 + q2/2)

)
12

p2.

Unlike the Kepler problem, this solution P ′ (4.1) does not satisfy the Jacobi identity
for any values of parameters ak and generates only one integral of motion.

The most interesting result of the experiment is the fact that the non-trivial
solution P̃ ̸= HP of the equations

LX P̃ = 0, (P̃ −HP ) dH = 0

in the space of inhomogeneous polynomials of second order in the momenta (1.4)
exists for an open Toda lattice (α = 0) and not for a periodic lattice (α = 1).

5. Non-integrable Hamiltonian systems

The above non-trivial solutions of equations (3.5) and (4.2)

LX P ′ = 0, (P ′ − FP ) dH = 0, with P ′ ̸= FP,

for the superintegrable Kepler problem and integrable Toda lattice can be related
to the Hamiltonian vector field transformation

X → FX, F = F (H)

and the corresponding time transformation t → τ in the dynamical system (1.1)

dt → Fdτ.

This transformation could be related to the Poincaré–Cartan form pdq−Hdt, which
is a relative integral invariant [1, 2] in Hamiltonian mechanics. However, we are
only able to construct non-trivial solutions of equations (3.5) for a few Hamiltonian
systems.
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As an example, let us consider Hamiltonian systems defined by the Hamiltonian

H = 1
2 (p

2
1 + p22) + V (q1, q2)

and solve LXP ′ = 0 by using polynomial ansatz

P ′ij =

2∑
k⩾m=1

aijkm(q)pkpm +

2∑
k=1

bijk (q)pk + cij(q).

For a generic potential V (q1, q2), the solution of equations (3.5) at F = H depends
on two parameters a1,2 ∈ R

P ′ = (a1H + a2)P.

As an example, see the potential

V = aq31 + bq1q2, a, b ∈ R,

In some special cases, the solution of equation (3.5) at F = H depends on three or
more parameters. For instance, if

V (q1, q2) = qM1 (aqN2 + bqN1 ),

then the solution depends on three parameters

(5.1) P ′ = (a1H + a2)P + a3P̃ ,

where

P̃ 12 =
4(p1q2 − p2q1)

N +M
, P̃ 13 = p21 − p22 − 2qM1

(a(N −M)qN2
N +M

− bqN1

)
P̃ 14 = 2p1p2 +

4aKqN−1
2 qM+1

1

N +M
, P̃ 23 = 2p1p2 + 4qM−1

1 q2

( aMqN2
N +M

+ bqN1

)
,

P̃ 24 = −P̃13, P̃ 34 = 2aKqM1 qN−1
2 p1 − 2qM−1

1 (aMqN2 + b(N +M)qN1 )p2.

Solving the corresponding Jacobi equation JP ′, P ′K = 0 with respect to the param-
eters ak, we obtain two non-trivial invariant Poisson bivectors P ′

1,2 at

a2 = 0, a3 =
a1
2

and a2 = 0, a3 =
N +M

4
a1.

If a1 = 1/2 in the first case similar to the Kepler problem, we have

(P ′
1 −H P )dH = 0, at P ′

1 ̸= H P.

Thus, we can conclude that the invariant Poisson bivector P ′
1 is associated with the

change of time dt → Hdτ and, therefore, the two incompatible Poisson bivectors
P and P ′

1 are “dependent” in a broad sense. In a similar way, we can consider the
second invariant bivector P ′

2.
Using the Schouten–Nijenhuis brackets between bivectors P and P ′ (5.1), we

immediately obtain an invariant trivector for this non-integrable Hamiltonian sys-
tem so that

T = a(H)[[P, P ′]] + b(H)[[P ′, P ′]] = c(H)P ∧X + d(H)P ′ ∧X,

Here, a, b, c and d are functions of the Hamiltonian H.
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6. Conclusion

Global invariants of dynamical systems are usually associated with symmetries
[1–3,10]. In this paper, we discuss a simple mathematical experiment that allows
us to find a class of Hamiltonian systems for which there exist additional tensor
invariants that are “independent” of symmetries and well-known basic invariants.

For instance, the complementary invariant bivector P ′ (5.1) exists for the non-
integrable Hénon-Heiles system with potential

V = q1(aq
2
2 + bq21), a, b ∈ R

and not for a system with potential V = q1(aq
2
1 + bq2). In a similar way, the

complementary invariant bivector P ′ (4.1) exists for an open Toda lattice and not
for a periodic lattice associated with the root system G2.

Of course, here we focus only on invariant bivectors with special entries that
are inhomogeneous polynomials of second order in the momenta (1.4). For tensor
invariants, we are not aware of an analog of Poincaré’s theorem on the relation
of complementary analytic first integrals and resonances for analytic dynamical
systems.

For Hamiltonian systems on Poisson manifolds, the solutions of equation (1.2)
LXT = 0 are more diverse. In particular, these solutions generate polynomial
brackets on the low-dimensional Lie algebras and we can try to classify them in a
way similar to the Cartan classification of the linear brackets [44].

After submitting the manuscript to the journal Theoretical and Applied Me-
chanics, the new Kozlov paper was published [11], where a new insight into tensor
invariants is given. The experimental search of tensor invariants was also contin-
ued, see preprints [45–47]. We thank the reviewer for the work done to improve
this text and for the opportunity to provide these references in the final version.

Acknowledgments. The article was prepared within the framework of the
project International academic cooperation, HSE University.
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ЕКСПЕРИМЕНТАЛНО ПРОУЧАВАЊЕ ТЕНЗОРСКИХ
ИНВАРИJАНТИ ХАМИЛТОНОВИХ СИСТЕМА

Резиме. Уобичаjено се разматра проблем проналажења минималног броjа ин-
вариjанти динамичког система довољног за интеграбилност. Такође се може
претпоставити да постоjе инвариjанте коjе нису повезане са интеграбилношћу,
а коjе описуjу друга своjства динамичког система. Израчунавамо такве тен-
зорске инвариjанте за неке интеграбилне и неинтеграбилне динамичке системе
користећи савремени рачунарски софтвер и разматрамо њихове особине.
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