GDIS 2024

\mathbb{Z}_2 -HOMOLOGY OF THE ORBIT SPACES $G_{n,2}/T^n$

Vladimir Ivanović and Svjetlana Terzić

ABSTRACT. We present computation of the Z₂-homology groups of the orbit space $X_n = G_{n,2}/T^n$ for the canonical action of the compact torus T^n on a complex Grassmann manifold $G_{n,2}$. Our starting point is the model (U_n, p_n) for X_n constructed by Buchstaber– Terzić in [1], where $U_n = \Delta_{n,2} \times \mathcal{F}_n$ for a hypersimplex $\Delta_{n,2}$ and an universal space of parameters \mathcal{F}_n , and $p_n: U_n \to X_n$ is a continuous projection. The basic input in the construction of this model is the result, proved by the same authors, which states that X_n can be represented as the disjoint union of spaces $\{C_\omega \times F_\omega\}$ together with the continuous projections $p_\omega: \mathcal{F}_n \to F_\omega$. Here \mathbb{C}_ω are the chambers in the hypersimplex $\Delta_{n,2}$ which correspond to its decomposition given by all possible intersections of matroids, that is admissible polytopes. The spaces F_ω are the orbit spaces of $\hat{\mu}^{-1}(C_\omega)$ by the canonical action of the algebraic torus $(\mathbb{C}^*)^n$, where $\hat{\mu}: G_{n,2}/T^n \to \Delta_{n,2}$ is the map induced by the standard moment map $\mu: G_{n,2} \to \Delta_{n,2}$.

The notion of the universal space of parameters is defined by Buchstaber–Terzić in [2] for general T^k -action on a smooth manifold M^{2n} . The universal space of parameters \mathcal{F}_n for T^n -action on $G_{n,2}$ is studied in detail in [1]. They proved that \mathcal{F}_n is diffeomorphic to the moduli space $\mathcal{M}_{0,n}$ of stable *n*-pointed genus zero curves. We exploit the results from Keel in [6] and Ceyhan in [4] on generators of homology groups for $\mathcal{M}_{0,n}$ and express them in terms of the objects of the stratifications of \mathcal{F}_n which are incorporated in the model (U_n, p_n) .

In the result we deduce that the homology groups for \mathcal{F}_n are spanned by the divisors outgrowing in the compactification of F_n to \mathcal{F}_n , where $F_n = W_n/(\mathbb{C}^*)^n$ for the main stratum W_n of $G_{n,2}$. Moreover, for any F_{ω} being compactification of F_n , we show that the homology groups of F_{ω} are spanned as well by the divisors outgrowing in the compactification of F_n to F_{ω} .

We recover the computation of homology groups with \mathbb{Z}_2 coefficients for X_5 by the method different from those of Buchstaber-Terzić in [3] and Suess in [7]. In addition, we compute the homology groups with \mathbb{Z}_2 -coefficients for X_6 which are, up to our knowledge not known. The space X_6 is an example of complexity 3 torus action.

In general, the complexity of the study of the orbit spaces M^{2n}/T^k and their homology structure shows up to follow the complexity of torus action. The homology of quasitoric manifolds M^{2n}/T^n , which belong to the class of manifolds with complexity zero torus action, is determined by the combinatorics of the moment polytope P^k . We believe that the results which we obtain describing inductively the structure of cycles in X_n may lead

20

University of Montenegro, Podgorica, Montenegro.

to successful application of the presented method for explicit computation of homology groups for X_n with \mathbb{Z}_2 -coefficients for higher n as well.

References

- 1. V. M. Buchstaber, S. Terzić, A resolution of singularities for the orbit spaces $G_{n,2}/T^n$, Trudy Mat. Inst. Steklova 317 (2022), 27–63.
 V. M. Buchstaber, S. Terzić, The foundations of (2n, k)-manifolds, Sbornik: Mathematics 210(4)
- (2019), 41-86.
- V. M. Buchstaber, S. Terzić, Topology and geometry of the canonical action of T⁴ on the complex Grassmannian G_{4,2} and the complex projective space CP⁵, Mosc. Math. J. 16(2) (2016), 237–273.
- 4. Ö. Ceyhan, Chow groups of the moduli spaces of weighted pointed stable curves of genus zero, Adv. Math. 221(6) (2009), 1964–1978.
- Math. 221(0) (2009), 1904–1978.
 5. V. Ivanović, S. Terzić, Z₂-homology of the orbit spaces G_{n,2}/Tⁿ, (2024), eprint: preprint (math.AT).
 6. S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Am. Math. Soc. 330(2) (1992), 545–574.
- 7. H. Suess, Toric topology of the Grassmannian of planes in \mathbb{C}^5 and the Del Pezzo surface of degree 5, Mosc. Math. J. **21**(3) (2020), 639–652.