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Dear distinguished participants of the Mediterranean International Conference of 
Pure&Applied Mathematics and Related Areas (MICOPAM 2018)  held in Antalya, 
Turkey, on October 26–29, 2018.  On behalf of the Scientific and Organizing 
Committees, Welcome to Turkey's pretty and historical Mediterranean resort town 
Antalya, which hosts our conference MICOPAM2018 conference which dedicated to 
Professor Gradimir V. Milovanović on the Occasion of his 70th Anniversary.  

By the way Antalya, which is one of our historical cities, has been a source of 
inspiration for many empires and civilizations. I hope you will visit some part of this 
pretty and historical city of Turkey. In order to show some of the historical sites of 
this beautiful city, we have included an excursion program to our conference. 

This excursion includes a trip to Campus of Akdeniz University, Antalya Kaleici (Old 
Town), Perge Ancient City (where the mathematician Apollonius lived), Aspendos 
Ancient Theatre, Side Ancient City (where you see the splendid Agora, Theatre and 
Temples built in the 17th century B.C.). 
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The idea of organizing this conference was appeared in 2017 at Belgrade, Serbia, 
while speaking with Professor Milovanović. 
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Our dreams are happening today because we are happy to have the opening of the 
conference together. Thus, dear distinguished participants, you have given honor to 
us by attending our conference: MICOPAM 2018. 
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I would like to thank to the following my colleagues and students who helped me at 
every stage of the Mediterranean International Conference of Pure & Applied 
Mathematics and Related Areas: 

Local Organizing Committee: (including especially Co-Chairman Prof. Dr. Mustafa 
Alkan, Prof. Dr. Veli Kurt, Conference Secretary Asst. Prof. Dr. Irem Kucukoglu, Dr. 
Ortac Ones, Dr. Neslihan Kilar, Dr. Busra Al, Asst. Prof. Dr. Fusun Yalcin, Asst. Prof. Dr. 
Ayse Yilmaz, Assoc. Prof. Dr. Ahmet Aykut Aygunes, Dr. Burak Kurt); my precious 
family: (my wife Saniye, my daughters Burcin and Buket), Professor Milovanović; 
besides academic staff of Akdeniz University: Rector Prof. Dr. Mustafa Ünal and Vice 
Rector Prof. Dr. Erol Gürpınar, Dean of Faculty of Science Prof. Dr. Ahmet AKSOY, 
some staff of Department of Mathematics; Prof. Dr. Ömer Colak, Prof. Dr. Gurhan 
Yalcin, Prof. Dr. Niyazi Ugur Kockal, and also other friends whose names that I did not 
mention here. 

As for mathematics; Mathematics is the common heritage of everyone; Mathematics 
is the common language of the world that is always passed from generation to 
generation by refreshing. 

It would be appropriate to say the following: 

In addition to the poetic and artistic aspect of mathematics, mathematics has such a 
spiritual, magical and logical power, all natural science and social science cannot 
breathe and survive without mathematics. 

y
f Facu
tics;
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Mathematics is such a branch of science that other sciences cannot develop without 
it. Therefore, Mathematics, which is the oldest of Science, has contributed 
fundamentally to the development of our world civilizations. So, we can enter into 
the science and technology centers using the power of mathematics and its 
branches. So, mathematics and its branches create the possibility of bridgework and 
communication between the Natural Sciences and the Engineering Sciences as well 
as the Economic and also Social Science.  

The aim of the conference is to bring together leading scientists of the pure and 
applied mathematics and related areas to present their researches, to exchange new 
ideas, to discuss challenging issues, to foster future collaborations and to interact 
with each other. In Fact, the main purpose of this conference is to bring to the fore 
the best of research and applications that will help our world humanity and society. 
Due to the valuable idea of the MICOPAM2018, this conference welcomes speakers 
having talks whose contents mainly related to the following two subjects: Pure and 
Computational and Applied Mathematics, Statistics, Mathematical Physics (related to 
p-adic Analysis, Umbral Algebra and Their Applications),  Analysis Algebra Linear and 
Multi-linear  Algebra,  Clifford Algebras and Applications, Real and Complex 
Functions, Orthogonal Polynomials, Special numbers and Functions, Fractional 
Calculus, q-calculus, Number theory, Combinatorics, Approximation theory, 
Optimization Integral Transformations, Equations and Operational Calculus,  Partial 
Differential Equations, Geometry and Its Applications,  Numerical Methods and 
Algorithms, Probability and Statistics and their Applications,  Scientific Computation 
Mathematical Methods in Physics and in Engineering Mathematical Geosciences. 

To summarize my speech, this conference has provided a novel opportunity to our 
distinguished participants to meet each other and share their scientific works and 
friendships in the above areas.  

I am delighted to note that all participants have free and active involvement and 
meaningful discussion with other participants during the conference at the hotel 
Sherwood Exclusive Kemer, which contains all shades of green and yellow, around 
the Taurus Mountains and decorated with turquoise color of the Mediterranean Sea. 

It is my great pleasure to thank Professor Gradimir V. Milovanović, because this 
conference is dedicated to his 70th birthday at Antalya. Happy Birth Day Professor 
Gradimir V. Milovanović. I hope that his life will be with health and happiness. It is 

nd the
n Engi
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my great pleasure to thank again local organizing committee Consequently, I send 
my thanks to all distinguished invited speakers, and all participants. 

PROF. DR. YILMAZ SIMSEK  

Head of the Organizing Committee of MICOPAM 2018 

Department of Mathematics, Faculty of Science, 

Akdeniz University, TR-07058 ANTALYA-TURKEY 

Tel: +90 242 310 23 43,  

Email: ysimsek@akdeniz.edu.tr, ysimsek63@gmail.com 
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On Gaussian rules for some modified Chebyshev weights 58
Ramón Orive1 , Aleksandar V. Pejčev2 , Miodrag M. Spalević3
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.n the Ln the L

MICOPAM2018_b5.indd   ivMICOPAM2018_b5.indd   iv 16.1.2019.   11.25.5016.1.2019.   11.25.50



Dedicated to Professor G. Milovanović Antalya-TURKEY1

PROCEEDINGS BOOK OF MICOPAM 2018

1 INVITED SPEAKERS

.
MICOPAM2018_b5.indd   1MICOPAM2018_b5.indd   1 16.1.2019.   11.25.5016.1.2019.   11.25.50



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY2

Orthogonal Polynomials on Radial Rays in

the Complex Plane

Gradimir V. Milovanović1,2

Abstract

We consider some classes of polynomials orthogonal on radial rays in the
complex plane with respect to the Hermitian and Non-Hermitian inner products,
as well as some applications of such polynomials. Some applications of such
polynomials could be done, including an electrostatic interpretation of their
zeros.

2010 Mathematics Subject Classifications : 33C45, 33C47, 30C15
Keywords: Orthogonal polynomials, Inner product, Recurrence relation, Nu-

merical construction, Zero distribution.

Introduction

Orthogonal polynomials play a very important role in applications not only in
mathematics, but in many other computational and applied sciences, physics, chem-
istry, engineering, economics, etc. The most important orthogonal polynomials are
ones which are orthogonal on the real line with respect to the inner product

(p, q) =

∫
R

f(t)g(t)dμ(t)
(
p, q ∈ L2(R; dμ

)
,

where dμ is a positive measure on R with finite or unbounded support, for which
all moments μk =

∫
R
tk dμ(t), k = 0, 1, . . ., exist and are finite, and μ0 > 0 (cf. [4],

[8]). Because of the property (tp, q) = (p, tq), these orthogonal polynomials πk( · ) =
πk(dμ; · ) satisfy a three–term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2 . . . , (1)

with π0(t) = 1 and π−1(t) = 0, where the sequences of recursion coefficients αk and βk

depend on the measure dμ. Only for certain narrow classes of measures, e.g., for the
classical measures (Jacobi, generalized Laguerre, Hermite), these coefficients αk and
βk are known in the explicit form (for a characterization of the classical orthogonal
polynomials see [1]). Orthogonal polynomials for which the recursion coefficients are
not known we call strongly non-classical polynomials.

In eighties of the last century Walter Gautschi developed the so-called construc-
tive theory of orthogonal polynomials on R, which includes effective algorithms for
numerical generating orthogonal polynomials with respect to an arbitrary measure,
strong stability analysis of such algorithms, necessary software for implementing such
algorithms and applications (cf. [3], [4], [5]).

This constructive theory opened the door for extensive computational work on or-
thogonal polynomials and many their applications (construction of many new classes
of strongly non-classical polynomials, development of other types of orthogonality, s

.with finwith fin
. . .. . ., ex, ex
((p, tqp, tq),),
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and σ-orthogonality, Sobolev type of orthogonality, multiple orthogonality, orthogo-
nality on some curves in the complex plane (circle, semicircle [6, 7, 9], circular arc),
orthogonality on radial rays [10, 11, 12, 13], etc.), applications in diverse areas of ap-
plied and numerical analysis (numerical integration, interpolation, integral equations,
. . .), approximation theory (e.g., moment-preserving spline approximation), integra-
tion of fast oscillating functions, summation of slowly convergent series, integration
of fast oscillating functions, etc.

Orthogonal Polynomials on Radial Rays

Let M ∈ N, as > 0, s = 1, . . . ,M , and 0 ≤ θ1 ≤ · · · ≤ θM < 2π. Putting
εs = eiθs , s = 1, . . . ,M , we consider M points in the complex plane, zs = asεs ∈ C,
s = 1, . . . ,M , with arguments θs (see Fig. 1). Some of as (or all) may coincide and
also can be ∞.

Figure 1: The case of six rays (M = 6)

The inner product can be introduced so that it is hermitian,

(f, g) =
M∑
s=1

e−iθs

∫
�s

f(z)g(z) |ws(z)|dz,

where x �→ ωs(x) = |ws(xεs)| = |ws(z)| (z ∈ �s; s = 1, . . . ,M) are weight functions
on (0, as), i.e., they are nonnegative on (0, as) and

∫ as

0
ωs(x)dx > 0. It can be

represented as

(f, g) =

M∑
s=1

∫ as

0

f
(
xεs
)
g
(
xεs
)
ωs(x)dx,

and we can see that (f, f) > 0, except when f(z) = 0. Polynomials orthogonal
with respect to this inner product can be considered. In the symmetric case with
even numbers of rays (M = 2m) we can obtained analytic results for the recurrence
coefficients for all classical weight functions (Jacobi, generalized Laguerre, Hermite).

In the simple symmetric (Legendre) case with four rays (M = 4) and

(f, g) =

∫ 1

0

[
f(x)g(x) + f(ix)g(ix) + f(−x)g(−x) + f(−ix)g(−ix)

]
dx,

.ase of siase of si

d so thd so th
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we can prove the recurrence relation

πN+2(z) = z2πN (z)− bNπN−2(z), N ≥ 2; πN (z) = zN , N ≤ 3,

where the coefficient bN (N = 4n+ ν; n = [N/4]) is given by

b4n+ν =

⎧⎪⎪⎨⎪⎪⎩
16n2

(8n+ 2ν − 3)(8n+ 2ν + 1)
if ν = 0, 1,

(4n+ 2ν − 3)2

(8n+ 2ν − 3)(8n+ 2ν + 1)
if ν = 2, 3.

In the general case, using some kind of the discretized Stieltjes-Gautschi procedure,
we can numerically construct the coefficients βkj in the relation

πk(z) = zπk−1(z)−
k∑

j=1

βkjπj−1(z), βkj =
(zπk−1, πj−1)

(πj−1, πj−1)
(1 ≤ j ≤ k).

The following result is related to the zero distribution of πN (z).

Theorem. All the zeros of the orthogonal polynomial πN (z) lie in the convex hull of
the rays L = �1 ∪ �2 ∪ · · · ∪ �M .

Example. We consider an asymmetric case with five rays (M = 5), defined by points
in the complex plane: z1 = 6, z2 = 5e9πi/14, z3 = 2e4πi/5, z4 = 5e6πi/5, z5 = 5e7πi/4,
with weight functions transformed to (0, 1): ω1(x) = 1 (Legendre weight), ω2(x) =
1/
√
x(1− x) (Chebyshev weight of the first kind), ω3(x) =

√
x(1− x) Chebyshev

weight of the second kind), ω4(x) =
√
x/(1− x) (Chebyshev weight of the fourth

kind), ω5(x) =
√
(1− x)/x (Chebyshev weight of the third kind), respectively.

Zeros of πN (z) for N = 20 and N = 100 are presented in Figure 2.

Figure 2: Zeros of πN (z) for N = 20 (left) and N = 100 (right)

In some symmetric cases, an electrostatic interpretation of the zeros of πN (z) can
be done [11].

Orthogonal polynomials on radial rays with respect to a complex-valued moment
functional

L(p) =
M∑
s=1

∫ as

0

p(xεs)ωs(x)dx, p ∈ P,

......
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can be also considered, where as > 0 are given real numbers, and εs and ωs are as
before.
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Diophantine equations and Indices in cubic

number fields

Abdelmejid Bayad1 , Mohammed Seddik2

Abstract

Let F (x, y) = ax3 + bx2y + cxy2 + dy3 ∈ Z[x, y] be an irreducible cubic
form and D denotes its discriminant. In this paper, we investigate arithmetic
properties of the common indices of algebraic integers in cubic fields. For each
integer k such that v2(k) �≡ 0 (mod 3) and v2(D) = 3v2(b

2−3ac), we prove that
the cubic Thue equation F (x, y) = k has no solution (x, y) ∈ Z2. As application,
we construct parametrized families of twisted elliptic curves

E : ax3 + bx2 + cx+ d = ey2

without integer points (x, y).

2010 Mathematics Subject Classifications : 11R04, 11DXX, 11R16, 11R33,
11R09

Keywords: Cubic Thue equations, cubic fields, common index divisors of cubic
fields

Introduction

Let f(x, y) ∈ Z[x, y] be a homogeneous irreducible polynomial of degree n ≥ 3
and k be a non-zero integer. In 1909, Thue proved the following fundamental result.

Theorem 1 ([18]). The diophantine equation

f(x, y) = k (1)

has only finitely many solutions (x, y) ∈ Z2.

However, Thue’s proof is not effective. The problem of estimating the number of
solutions of (1) has rich history, see for example Siegel [17], Mahler [13], Erdös-Mahler
[7], Davenport-Roth [6] and Lewis-Mahler [12].

For each integer k, w(k) denote the number of distinct prime factors of k. In 1933,
Mahler [13] proved that if f is irreducible then (1) has at most C1+w(k) primitive so-
lutions where C depending only on f .

If f(x, y) is an irreducible binary cubic form with negative discriminant, Delauney
[5] and Nagell [15] showed that the equation f(x, y) = 1 has at most five integer
solutions (x, y). Now if its discriminant is positive, then Evertse [8] showed that the
equation f(x, y) = 1 has at most twelve integer solutions (x, y). Recently, Bennett [3]
refined Delauney-Nagell-Evertse result as follows: if f(X, 1) has at least two distinct
complex roots, then the equation f(x, y) = 1 possess at most 10 solutions in integers
x and y.

.quationquation

x yx y) =) =
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In 1984, Ayad [2] proved that if f(x, y) is a binary form of degree 3 with coefficients
in Z, Aut(f) its automorphisms group and H(f) its Hessian, then Aut(f) is trivial
except when H(f) = λg(x, y), λ ∈ Z∗ and g(x, y) is equivalent to x2−xy−y2. In this
last case, Aut(f) is cyclic of order 3 and f is equivalent to one binary form of type :

fm,n(x, y) = mx3 − nx2y − (n+ 3m)xy2 −my3, m, n ∈ Z,

so, the number of representations of integer k by f(x, y) is divisible by 3. Note that
the case m = k = 1 is proved by Avanesov [1].
Let n be a rational integer and Kn = Q(θ) be a cyclic cubic number field generated
by a root θ of f1,n(X, 1) = X3 − nX2 − (n + 3)X − 1 and let OKn

be its ring of
integers. The polynomial f1,n(X, 1) has discriminant (n2 + 3n + 9)2. If n2 + 3n + 9
is square-free, then we have the discriminant of Kn, D(Kn) = (n2 + 3n + 9)2 and
OKn = Z[θ] (there exists infinitely many such n, cf. Cusick [4, pp. 63-73]).

In 2011, A. Hoshi [9] studied the case when k is a positive divisor of n2 + 3n+ 9,
and gave a correspondence between integer solutions to the parametric family of cubic
Thue equations

x3 − nx2y − (n+ 3)xy2 − y3 = k

and isomorphism classes of the simplest cubic fields. For more details on the study
of simplest cubic fields see [16].

Recently, Wakabayashi [22], using Baker’s method, proved that for any integer
n ≥ 1.35 · 1014, the family of parametrized Thue equations

x3 − n2xy2 + y3 = 1

has only trivial solutions (x, y) = (0, 1), (1, 0), (1, n2), (n, 1), (−n, 1).

A. Togbé [19], using Baker’s method and the results obtained by L. C. Washington
[23] and O. Lecacheux [11], solved the family of parametrized Thue equations

x3 − (n3 − 2n2 + 3n− 3)x2y − n2xy2 − y3 = ±1, when n ≥ 1.

A. Togbé [21, 20] using Baker’s method and the results obtained by Y. Kishi [10],
solved the two families of parametrized Thue equations

x3 − n(n2 + n+ 3)(n2 + 2)x2y − (n3 + 2n2 + 3n+ 3)xy2 − y3 = ±1,

x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n+ 3)x2y

−(n3 − 2)n2xy2 − y3 = ±1,

when n ≥ 0.

Let a, b, c, d, e be integers. The equation ax3 + bx2 + cx + d = ey2 was stud-
ied by Mordell [14, pp.255-261]. He proved the following important result: if the
polynomial ax3 + bx2 + cx + d has no squared linear factor in x, then the equation
ax3 + bx2 + cx+ d = ey2 has only a finite number of integer solutions.

Now we state our main result.

Main results

Let N be any integer. We denote by v2(N) the greatest exponent s such that 2s

divides N . The discriminant of the form

F (x, y) = ax3 + bx2y + cxy2 + dy3

.Thue eThue e

yy −− ((nn33
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is the invariant

D = 18abcd+ b2c2 − 4ac3 − 4b3d− 27a2d2. (2)

The binary form F has the quadratic and cubic covariants

H(x, y) = A0x
2 +B0xy + C0y

2, (3)

G(x, y) = A1x
3 +B1x

2y + C1xy
2 +D1y

3. (4)

where

A0 := b2 − 3ac,B0 := bc− 9ad, C0 := c2 − 3bd;

A1 := 2b3 + 27a2d− 9abc,B1 = 3(b2c+ 9abd− 6ac2),

C1 = −3(bc2 + 9acd− 6b2d), D1 = −(2c3 + 27ad2 − 9bcd).

(5)

the quadratic form H is the Hessian and G is the gradient of F .

Throught this paper, we assume that D 	= 0 and gcd(a, b, c, d) = 1. Now we state
our main result.

Theorem 2. Let a, b, c, d and k be integers such that

v2(D) = 3v2(A0), v2(k) ≡ 1, 2 (mod 3).

Then the cubic Thue Diophantine equations

ax3 + bx2y + cxy2 + dy3 = k

has no integer solution (x, y).

Corollary 3. Let a, b, c, d as in Theorem 2, and e be integers such that v2(e) ≥
v2(D)/2 and v2(e) ≡ 1 (mod 3). Then the familly of twisted ellitpic curves

E : ax3 + bx2 + cx+ d = ey2 (6)

have no integer points (x, y).
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Inference for first passage times of the

Cox-Ingersoll-Ross process

Satish Iyengar1

Abstract

The Cox-Ingersoll-Ross (or Feller) diffusion process has linear drift and
a state-dependent diffusion coefficient that vanishes at zero. Earlier studies
have shown that it provides a better fit for neural activity than the Ornstein-
Uhlenbeck under certain conditions. In this talk we describe inference based
on maximum likelihood for this model when the available data are spike trains
rather than the neurons subthreshold voltage traces. This work is joint with
Bowen Yi.

1University of Pittsburgh, USA.
E-mail : ssi@pitt.edu .
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On conjectures of Stenger in the theory of

orthogonal polynomials

Walter Gautschi1, Ernst Hairer2

Abstract

The conjectures in the title deal with the zeros xj , j = 1, 2, . . . , n, of an
orthogonal polynomial of degree n > 1 relative to a nonnegative weight function
w on an interval [a, b] and with the respective elementary Lagrange interpolation

polynomials �
(n)
k of degree n−1 taking on the value 1 at the zero xk and the value

0 at all the other zeros xj . They involve matrices of order n whose elements are

integrals of �
(n)
k , either over the interval [a, xj ] or the interval [xj , b], possibly

containing w as a weight function. The claim is that all eigenvalues of these
matrices lie in the open right half of the complex plane. Ample evidence is
provided for the validity of the claim when the integrals are weighted, but not
necessarily otherwise. Connections are mentioned with the theory of collocation
Runge–Kutta methods in ordinary differential equations.

1Department of Computer Science, Purdue University, West Lafayette
IN 47907-2066, USA.

2Section de mathématiques, Université de Genève , Genève 4, Switzer-
land.
E-mail : wgautschi@purdue.edu, Ernst.Hairer@unige.ch.
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Voronoi diagrams, Delaunay triangulations

and applications

Allal Guessab1

Abstract

In this lecture, we present the concepts of a Voronoi diagram (VD) and of a
Delaunay triangulation (DT). These two geometrical structures are important
tools in many areas like Astronomy, Physics, Chemistry, Biology, Ecology, Eco-
nomics, Mathematics and Computer Science. Here, we present a set of results
showing some of the advantages of their optimality criteria in computing inte-
gral approximations, which are based upon a geometric point of view exploiting
Delaunay triangulations and Voronoi tessellations. We begin by introducing a
new class of cubature formulas for numerical integration (or multidimensional
quadrature), that approximate from above (or respectively from below) the ex-
act value of the integrals of every function having a certain type of convexity.
Under suitable regularity assumptions, we show that all these integral approx-
imations enjoy certain desirable properties. In particular, they can be totally
characterized in terms of the approximation error generated by a multidimen-
sional quadratic function. We show that the Delaunay triangulation, the Voronoi
tessellation and their generalizations give access to efficient algorithms for com-
puting these cubature formulas. We also briefly discuss some ongoing related
research.
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On some new sequence spaces of order α

Ekrem Savaş

Abstract

In this paper we introduce and examine some properties of some new se-
quence spaces of order α that are defined using modulus function and generalized
three parametric real matrix A.

2010 Mathematics Subject Classifications : 40H05, 40C05.
Keywords: Modulus function, Almost convergence, Lacunary sequence, ϕ-function

order α.

Introduction and Background

Let w denote the set of all real and complex sequences x = (xk). By l∞ and
c, we denote the Banach spaces of bounded and convergent sequences x = (xk)
normed by ||x|| = supn|xn|, respectively. In summability theory, the concept of
almost convergence was first introduced by G.G. Lorentz in 1948. Let us observe the
outline of it. A linear functional L on l∞ is said to be a Banach limit [1] if it has the
following properties:

1. L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),

2. L(e) = 1 where e = (1, 1, . . .),

3. L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+1}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ �∞ is said to be
almost convergent if all Banach limits of x coincide.

It is easy to verify that if x is a convergent sequence, then L(x) = limnxn for any
Banach limits L. In the other words, L(x) takes the same value for any Banach limits
L. It is notable that this condition is meaningful not only for convergent sequences,
but also for a certain type of bounded sequences. Let ĉ denote the space of almost
convergent sequences. Lorentz [6] has shown that

ĉ =
{
x ∈ l∞ : lim

m
tm,n(x) exists uniformly in n

}
where

tm,n(x) =
xn + xn+1 + xn+2 + · · ·+ xn+m

m+ 1
.

By a lacunary θ = (kr); r = 0, 1, 2, ... where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. The ratio
kr

kr−1
will be denoted by qr. The space of lacunary strongly convergent sequences Nθ

was defined by Freedman at al [5] as follows:

Nθ =

{
x = (xk) : lim

r

1

hr

∑
k∈Ir

|xk − L|) = 0, for some L

}
.

.ts ots o
ofof xx coicoi.vergentvergent
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Das and Mishra[4] have introduced the space ACθ of lacunary almost convergent
sequences and the space |ACθ| of lacunary strongly almost convergent sequences as
follows:

ACθ =

{
x = (xk) : lim

r

1

hr

∑
k∈Ir

(xk+n − L) = 0, for some L uniformly in n

}
.

and

|ACθ| =
{
x = (xk) : lim

r

1

hr

∑
k∈Ir

|xk+n − L| = 0, for some L uniformly in n

}
.

Note that in the special case where θ = 2r, we have ACθ = ĉ and |ACθ| = [ĉ]. which
is defined by Maddox [7].

Following Ruckle [10], a modulus function f is a function from [0,∞) to [0,∞)
such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x+ y) ≤ f(x) + f(x) for all x, y ≥ 0,

(iii) f increasing,

(iv) f is continuous from the right at zero.

Maddox [8] introduced and examined some properties of the sequence spaces
w0(f), w(f) and w∞(f) defined using a modulus f , which generalized the well-known
spaces w0, w and w∞ of strongly summable sequences.

Recently E. Savas [11] generalized the concept of strong almost convergence by
using a modulus f and examined some properties of the corresponding new sequence
spaces.
Let A = (ank) be a nonnegative regular matrix summability method. Connor [2]
further extended Maddox’s results by giving the following definition:

Definition 1. Let f be a modulus and A be a nonnegative regular summability method.
We let

w(A, f) =

{
x : limn

∞∑
k=1

ankf(|xk − L|) = 0

}
and

w(A, f)0 =

{
x : limn

∞∑
k=1

ankf(|xk|) = 0

}
.

In 1993, Nuray and Savas [9] generalized Connor’s definition by using almost
convergence:

Definition 2. Let f be a modulus and A be a nonnegative regular summability method.
We let

.the conthe con
propertpropert
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w(Â, f) =

{
x : limn

∞∑
k=1

ankf(|xk+m − L|) = 0, for some L, uniformly in m

}

and

w(Â, f)0 =

{
x : limn

∞∑
k=1

ankf(|xk+m|) = 0, uniformly in m

}
.

By a ϕ-function we understood a continuous non-decreasing function ϕ(u) defined
for u ≥ 0 and such that ϕ(0) = 0, ϕ(u) > 0,for u > 0 and ϕ(u) → ∞ as u → ∞, (see,
[12], [13]).
On the other hand in [3] a different direction was given to the study of Cesàro-type
summability spaces of order α, 0 < α ≤ 1 and lacunary statistical convergence of
order α.

In the present paper, we introduce and study some properties of the following
sequence space of order α that is defined using the ϕ- function, generalized three
parametric real matrix and modulus.

Main Results

Let ϕ and f be given ϕ-function and modulus function, respectively and p = (pk)
be a sequence of positive real numbers. Moreover, let A = (Ai) be the generalized
three parametric real matrix with Ai = (an,k(i)), a lacunary sequence θ = (kr) and
0 < α ≤ 1 be given. Then we define the following sequence spaces,

Nα
θ (A, ϕ, f, p)0 =

{
x = (xk) : lim

r

1

hα
r

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pk

= 0, uniformly in

where hα
r denote the αth power (hr)

α of hr, that is hα = (hα
r ) = (hα

1 , h
α
2 , h

α
3 , ....). If

x ∈ Nα
θ (A, ϕ, f)0, the sequence x is said to be lacunary strong (A, ϕ)- convergent to

zero with respect to a modulus f . When ϕ(x) = x for all x, we obtain

Nα
θ (A, f, p)0 =

{
x = (xk) : lim

r

1

hr

∑
n∈Ir

f(

∣∣∣∣∣
∞∑
k=1

ank(i)xk

∣∣∣∣∣)pk = 0, uniformly in i

}
.

If we take f(x) = x, we write

Nα
θ (A, ϕ, p)0 =

{
x = (xk) : lim

r

1

hr

∑
n∈Ir

∣∣∣∣∣
∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣
pk

= 0, uniformly in i

}
.

If we take A = I and ϕ(x) = x respectively, then we have

(Nα
θ )0 =

{
x = (xk) : lim

r

1

hα
r

∑
k∈Ir

f(|xk|)pk = 0

}
.

In the next theorem we establish inclusion relations between wα(A,ϕ, f, p) andNα
θ (A, ϕ,

We now have

.nn ϕϕ((xx))∣∣∣∣∣∣∣ ∞∞∑∑
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Theorem 3. Let f be a any modulus function and let ϕ-function ϕ, generalized three
parametric real matrix A, p = (pk) be a sequence of positive real numbers and the
sequence θ be given. If

wα(A, ϕ, f, p)0 =
{
x = (xk) : limm

1
m

∑m
n=1 f

(
|
∑∞

k=1 ank(i)ϕ(|xk|)|
)pk

= 0, uniformly

then the following relations are true:
(a) If lim infr qr > 1 then we have wα(A,ϕ, f, p)0 ⊆ Nα

θ (A, ϕ, f, p)0,
(b) If supr qr < ∞, then we have Nα

θ (A, ϕ, f, p)0 ⊆ wα(A,ϕ, f, p)0,
(c) 1 < lim infr qr ≤ lim supr qr < ∞, then we have Nα

θ (A, ϕ, f, p)0 = wα(A,ϕ, f)0.

Proof. (a) Let us suppose that x ∈ wα(A,ϕ, f, p). There exists δ > 0 such that
qr > 1 + δ for all r ≥ 1 and we have hr/kr ≥ δ/(1 + δ) for sufficiently large r. Then,
for all i,

1

kαr

kr∑
n=1

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

≥ 1

kαr

∑
n∈Ir

f

∣∣∣∣∣
∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pk

=
hα
r

kαr

1

hα
r

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

≥ δα

(1 + δ)α
1

hα
r

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ankϕ(|xk|)
∣∣∣∣∣ )pn

.

Hence, x ∈ Nα
θ (A, ϕ, f, p)0.

(b) If lim supr qr < ∞ then there exist M > 0 such that qr < M for all r ≥ 1. Let
x ∈ Nα

θ (A, ϕ, f, p)0 and ε is an arbitrary positive number, then there exists an index
j0 such that for every j ≥ j0 and all i,

Rj =
1

hα
j

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

< ε.

Thus, we can also find K > 0 such that Rj ≤ K for all j = 1, 2, . . . . Now let m be
any integer with kr−1 ≤ m ≤ kr, then we obtain, for all i

I =
1

mα

m∑
n=1

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

≤ 1

kαr−1

kr∑
n=1

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

= I1+I2

where

I1 = 1
kα
r−1

∑j0
j=1

∑
n∈Ij

f
(
|
∑∞

k=1 ank(i)ϕ(|xk|)|
)pn

,

I2 = 1
kα
r−1

∑m
j=j0+1

∑
n∈Ij

f
(
|
∑∞

k=1 ank(i)ϕ(|xk|)|
)pn

.

.we obtawe obta

11
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It is easy to see that,

I1 =
1

kαr−1

j0∑
j=1

∑
n∈Ij

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

=
1

kαr−1

( ∑
n∈I1

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

+ ...+
∑
n∈Ij0

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )pn

≤ 1

kαr−1

(h1R1 + ...+ hj0Rj0),

≤ 1

kαr−1

j0k
α
j0sup1≤i≤j0Ri,

≤
j0k

α
j0

kαr−1

K.

Moreover, we have for all i

I2 =
1

kαr−1

m∑
j=j0+1

∑
n∈Ij

f
( ∣∣∣∣∣

∞∑
k=1

ankϕ(|xk|)
∣∣∣∣∣ )pn

=
1

kαr−1

m∑
j=jo+1

( 1

hj

∑
n∈Ij

f
( ∣∣∣∣∣

∞∑
k=1

ankϕ(|xk|)
∣∣∣∣∣ )pn

hj

≤ ε
1

kαr−1

m∑
j=j0+1

hj ,

≤ ε
kαr
kαr−1

,

= εqαr < ε.M.

Thus I ≤ jok
α
jo

kα
r−1

K + ε.M. Finally, x ∈ wα(A,ψ, f, p).

The proof of (c) follows from (a) and (b). This completes the proof.

Theorem 4. Let 0 < α ≤ β ≤ 1 and p be a positive real number, then Nα
θ (A, ϕ, f)0 ⊆

Nβ
θ (A, ϕ, f)0.

Proof. Let x = (xk) ∈ Nα
θ (A, ϕ, f)0. Then given α and β such that < α ≤ β ≤ 1 and

a positive real number p, we write

1

hβ
r

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )p ≤ 1

hα
r

∑
n∈Ir

f
( ∣∣∣∣∣

∞∑
k=1

ank(i)ϕ(|xk|)
∣∣∣∣∣ )p

and we get that Nα
θ (A, ϕ, f)0 ⊆ Nβ

θ (A, ϕ, f)0.

The proof of the following result is a consequence of Theorem 2.2.

Corollary 5. Let 0 < α ≤ β ≤ 1 and p be a positive real number. Then

i) If α = β, then Nα
θ (A, ϕ, f)0 = Nβ

θ (A, ϕ, f)0.

ii) Nα
θ (A, ϕ, f)0 ⊆ Nθ(A, ϕ, f)0 for each α ∈ (0, 1] and 0 < p < ∞.

.bb). This). This.be a posbe a pos
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Matrix biorthogonal polynomials and

matrices of measures: Linear Spectral

perturbations

Francisco Marcellán1

Abstract

In this presentation, linear transformations for matrix biorthogonal polyno-
mials are studied. The orthogonality is understood in a broad sense, and is
given in terms of a nondegenerate continuous sesquilinear form, which in turn
is determined by a quasidefinite matrix of bivariate generalized functions with
a well defined support. The basic tool is the Gauss-Borel factorization of the
Gram matrix, and particular attention will be paid to the non-associative char-
acter, in general, of the product of semi-infinite matrices. We will focus the
attention on the derivation of Christoffel type formulas, which allow to express
the perturbed matrix biorthogonal polynomials and its norms in terms of the
original ones. In particular, Christoffel and Geronimus transformations, where
a right multiplication by a matrix polynomial and the inverse of a matrix poly-
nomial plus adequate mass points, respectively, will be analyzed. The resolvent
matrix and connection formulas are given. Then, using spectral techniques and
spectral jets, Christoffel-Geronimus formulas for the transformed polynomials
and norms are presented.

These linear spectral transformations are considered in the context of the 2D
non–Abelian Toda lattice and noncommutative KP hierarchies. The interplay
between transformations and integrable flows is discussed. Miwa shifts, τ -ratio
matrix functions and Sato formulas are given. Bilinear identities, involving
Geronimus-Uvarov transformations, first for the Baker functions, second for the
biorthogonal polynomials and its second kind functions as well as for the τ -ratio
matrix functions are deduced.
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Generalized Krylov subspace methods for

lp-lq minimization with application to image

restoration

Lothar Reichel1

Abstract

This talk presents new efficient approaches for the solution of lp-lq mini-
mization problems with 0 < p, q ≤ 2, based on the application of successive
orthogonal projections onto generalized Krylov subspaces of increasing dimen-
sion. The subspaces are generated according to the iteratively reweighted least-
squares strategy for the approximation of lq- and lq-norms or quasi-norms by
using weighted l2-norms. Computed image restoration examples illustrate the
performance of the methods discussed. The talk presents joint work with A.
Buccini, G.-X. Huang, A. Lanza, S. Morigi, and F. Sgallari.

1Department of Mathematical Sciences Kent State University Kent,
OH 44242.
E-mail : reichel@math.kent.edu.
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On Extended Stirling polynomials of the

second kind and extended Bell polynomials

associated with Poisson random variables

Taekyun Kim1

Abstract

Recently, several authors have studied the Stirling numbers of the second
kind and Bell polynomials. In this paper, we study the extended Stirling poly-
nomials of the second kind and the extended Bell polynomials associated with
the Stirling numbers of the second kind. In addition, we note that extended Bell
polynomials can be expressed in terms of the moments of the Poisson random
variable with parameter λ > 0.

2010 Mathematics Subject Classifications : 11B73; 11B83
Keywords: Extended Stirling polynomials of the second kind, extended Bell

polynomials

Introduction

As is well known, the Stirling numbers of the second kind are defined as

xn =
∞∑

n=0

S2(n, l)(x)l, (n ≥ 0). (see [1, 3, 6, 18]). (1)

The generating function of S2(n, l) is given by

1

m!
(et − 1)m =

∞∑
n=m

S2(n,m)
tn

n!
, (2)

The Stirling polynomials of the second kind are defined by the generating function

1

k!
ext(et − 1)k =

∞∑
n=k

S2(n, k|x)
tn

n!
, (3)

where k ≥ 0.
The Bell polynomials are defined by the generating function

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
, (4)

where x = 1, Beln(1) = Beln, (n ≥ 0), are called the Bell numbers.

From (2) and (4), we note that

ex(e
t−1) =

∞∑
m=0

xm 1

m!
(et − 1)m =

∞∑
n=0

( ∞∑
m=0

S2(n,m)xm
) tn
n!

. (5)

.is givenis given

==
∞∞∑∑
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Thus, by (5), we get

Beln(x) = S2(n,m)xm, (n ≥ 0). (6)

The expectation of a Poisson random variable with parameter λ is given by

E[X] =

∞∑
i=0

iP (i) =
∞∑
i=0

ie−λλ
i

i!
= λ. (7)

The moments of Poisson random variable X with parameter λ > 0 is defined by

E[Xn] =

∞∑
x=0

xnP (x) = e−λ
∞∑
x=0

xnλ
x

x!
. (8)

Main Results

Theorem 1. For n ≥ 0, we have

Beln,r(λ) =
n∑

m=0

λmS2,r(n,m), (9)

and

S2,r(n,m|x) =
n∑

k=m

(
n

k

)
S2,r(k,m)xn−k. (10)

Theorem 2. For n, k ≥ 0, we have

S2,r(n, k) =

k∑
l=0

(
n

l

)
rlS2(n− l, k − l). (11)

Theorem 3. For n ≥ m ≥ 0, we have

S2(n,m) =
m∑
l=0

(
n

l

)
(−1)lrlS2,r(n− l, k − l). (12)

Theorem 4. For n ≥ k ≥ 0, we have

S2,r(n, k) =
k∑

l=0

(
n

l

)
rlS2(n− l, k − l). (13)

Theorem 5. For n,m, k ≥ 0 with n ≥ m+ k, we have(
m+ k

m

)
S2,r(n,m+ k) =

n∑
l=m

(
n

l

)
S2,r(l,m)S2,r(n− l, k). (14)

.(( ll

))
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Further Remarks

A random variable X, taking on one of the values 0, 1, 2, · · · , is said to be a

Poisson random variable with parameter λ > 0 if P (i) = P (X = i) = e−λ λi

i! , i =

0, 1, 2, · · · . Note that
∑∞

i=0 P (i) = e−λ
∑∞

i=0
λi

i! = e−λeλ = 1. The Bell polynomials
Beln(x), (n ≥ 0), are known to be connected with the Poisson distribution. More pre-
cisely, Beln(λ) can be expressed in terms of the moments of Poisson random variable
x with parameter λ > 0 as

Beln(λ) = E[Xn]. (15)

Let X be a Poisson random variable with parameter λ > 0.

E[et(X+rλ)] =

∞∑
n=0

Beln,r(λ)
tn

n!
. (16)
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Formulas and identities on the expected

values and moments of special polynomials

Burcin Simsek1

Abstract

In this paper, some formulas and identities for expected values and mo-
ments of special polynomials including the Bernoulli numbers and polynomials
and Hermite type polynomials using characteristic functions of particular dis-
tribution functions and taking derivative of the generating functions that are
possessed by the Bernoulli numbers and polynomials and Hermite type polyno-
mials.

2010 Mathematics Subject Classifications : 05A15, 11B83, 11B68, 60E05,
60E10, 62E15

Keywords: Bernoulli numbers and polynomials, Hermite polynomials, Generat-
ing function, Expected values, Moment generating function, Characteristic function,
Distribution functions, Hypergeometric function

Introduction

The theory of characteristic functions and generating functions, moment generat-
ing functions, and probability generating functions have been many applications for
special numbers and polynomials in many areas, including mathematics, mathemat-
ical physics and other related areas (cf. [1]-[9]; and the references cited therein). In
recent years, there has been many studies illustrating the relations of these functions
to special polynomials such as the Bernoulli polynomials, the Euler polynomials, the
Hermite polynomials, which is also the probability density function of normal distri-
bution (cf. [2], [3], [5], [6], [7], [9]).

Background on the generating functions for Bernoulli polyno-
mials and Hermite type polynomials

The generating functions for the Bernoulli polynomials of order k is defined by

FB(t, x; k) =

(
t

et − 1

)k

etx =

∞∑
n=0

B(k)
n (x)

tn

n!
. (1)

One can derive the Bernoulli numbers of order k: B
(k)
n = B

(k)
n (0) by letting Eq-(1)

x = 0 in Eq-(1). Notice that letting k = 0 into this equation yields the Bernoulli

polynomials: Bn(x) = B
(1)
n (x), and one can obtain the Bernoulli numbers easily from

the Bernoulli polynomials: Bn = Bn(0) (cf. [1], [8]; and the references cited therein).
The probabilistic representation associated with the Bernoulli polynomials is given

as follows:

.noulli ponoulli po.probabprobab
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Theorem 1. ([9, p. 749. Theorem 1]). Given a sequence {Ln}n∈N
of independent

random variable, each with the Laplace distribution 1
2 exp(− |x|) (x ∈ R ), define the

random variable LB by

LB =
∞∑
k=1

Lk

2kπ
.

Then the following probabilistic representation holds true:

Bn(x) = E

[(
iLB + x− 1

2

)n]
,

where n ∈ N0 = {0, 1, 2, · · · }; x ∈ R, set of real numbers, i2 = −1 and E denotes the
expectation value operator which is defined by

E [g (x)] = EX [g (x)] =

∫ ∞

−∞
fX(x)g(x)dx,

fX is a probability density of the relevant random variable X ( cf. [7], [9], [3]; and
the references cited therein).

This is further studied in [5] by providing relations between generating functions,
characteristic functions, the nth moment of normal distribution N(μ, σ2) and the
Hermite polynomials. There is a closed relation between characteristic function for
the normal distributionN(μ, σ2) and generating function for the Hermite polynomials,
which is given by the relation below:

fH(t;μ, σ) = exp

(
iμt− σ2

2
t2
)

=
∞∑

n=0

Hn(μ, σ)
tn

n!
(2)

(cf. [5]), where Hn(μ, σ) denotes the Hermite type polynomials with variable μ and σ

and exp
(
iμt− σ2

2 t2
)
is the characteristics function of normal distribution N(μ, σ2)

(cf. [2], [3], [10]; and the references cited therein). By applying some routine calcula-
tions in (2), a formula for the polynomials the Hermite type polynomials is given the
following corollary.

Corollary 2. (cf. [5]) Let n ∈ N0. Then we have

Hn(μ, σ) =2 F0

⎡⎢⎣−n

2
,−n

2
+

n

2
;−;− 1(

iμ√
2σ

)2
⎤⎥⎦ (iμ)n ,

where pFq [a1, a2, . . . , ap; b1, b2, . . . , bq; z] denotes the hypergeometric function, which
is defined by

pFq [a1, a2, . . . , ap; b1, b2, . . . , bq; z] = 1 +
∞∑

n=1

∏p
v=1 (av)n∏q
m=1 (bm)n

zn

n!

in which bm is not zero or negative integers and (α)n = α (α+ 1) . . . (α+ n− 1) and
(α)0 = 1 for α 	= 0 (cf. see for detail [4, p. 73, Eq-(2)]).

The probabilistic representation of the Bernoulli polynomials also given by the
following generating function:

FE(t) =
tet/2

et − 1
=

∞∑
n=0

E[(LB)
n]
(it)n

n!
(3)

(cf. [9, p. 749. Theorem 1]).

.en we hen we h
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Differential equations for generating functions of Berno
polynomials and Hermite type polynomials

In this section, give some formulas and identities for the Bernoulli polynomials,
the Hermite type polynomials with variable μ and σ, and E [(LB)

n
].

Taking derivative of the generating functions (3) and (2) with respect to t, we
have the following equations, respectively:

d

dt
{FE(t)} =

(
1

t
+

1

2

)
FE(t)−

1

t
e

t
2F 2

E (t), (4)

and
∂2

∂t2
{fH(t;μ, σ)} =

(
−μ− σ2 − 2iμσ2t− σ4t2

)
fH(t;μ, σ) (5)

(cf. [6]).
We note that modification Eq-(4) is also given in [6].

Resulted formulas and identities

In this section, we give identity and recurrence relation that involves the Hermite
type polynomials with variable μ and σ and the E[(LB)].

Theorem 3. Let n ∈ N0 with n ≥ 2 Then we have

E[(LB)
n] =

n

2i (n− 1)
E[(LB)

n−1]−
n∑

j=0

(
n

j

)
ij−n

2n−j
E2[(LB)

j ],

where

E2[(LB)
j ] =

j∑
v=0

(
j

v

)
E[(LB)

v]E[(LB)
j−v].

Proof. Combining Eq-(3) with Eq-(4), we get

t

∞∑
n=1

E[(LB)
n]

intn−1

(n− 1)!
−

∞∑
n=0

E[(LB)
n]

(it)n

n!
− t

2

∞∑
n=0

E[(LB)
n]

(it)n

n!

= −
∞∑

n=0

(
t

2

)n
1

n!

( ∞∑
n=0

E[(LB)
n]

(it)n

n!

∞∑
n=0

E[(LB)
n]

(it)n

n!

)
.

We then use Cauchy product on each component of above equation and applying
some routine calculations, we obtain

(n− 1)
∞∑

n=0

E[(LB)
n]

(it)n

n!
− 1

2

∞∑
n=0

nE[(LB)
n−1]in−1 tn

n!

= −
∞∑

n=0

n∑
j=0

(
n

j

)
1

2n−j
E2[(LB)

j ] ij
tn

n!
,

where

E2[(LB)
j ] =

j∑
v=0

(
j

v

)
E[(LB)

v]E[(LB)
j−v].

Finally, the comparison of the coefficient of tn

n! in both sides of the above equation,
we reach at the proof of theorem.

.∞∞∑∑=0=0

EE[([(LLBB
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Theorem 4. Let n ∈ N0 with n ≥ 2. Then we have

Hn+2(μ, σ) = −(μ+ σ2)Hn(μ, σ)− 2inμσ2Hn−1(μ, σ) + n(n− 1)σ4Hn−2(μ, σ). (6)

Proof. Combining (2) and (5), we obtain

∞∑
n=2

Hn(μ, σ)
tn−2

(n− 2)!
+ (μ+ σ2)

∞∑
n=0

Hn(μ, σ)
tn

n!

= −2inμσ2
∞∑

n=0

Hn(μ, σ)
tn+1

n!
+ σ4

∞∑
n=0

Hn(μ, σ)
tn+2

n!
.

After some elementary computations, comparison of the coefficient of tn

n! in both sides
of the above equation provides the proof of theorem.

Notice that in [6], we give another recurrence relation for the hypergeometric
function.
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Plane wave solution for a particle in a

time- dependent linear potential

Mounira Berrehail1 , Farid Benamira2

Abstract

We studied the quantum motion of a particle in the presence of a time-
dependent linear potential by using an operator invariant that is quadratic in
p and x within the framework of the Lewis-Riesenfeld invariant. The special
invariant operator in this work is demonstrated to be Hermitian operator that
has a plane-waves as its eigenfunctions.

Keywords: Time-dependent linear potential; Invariant operator; Unitary trans-
formation; plane wave.

Introduction

The study of time-dependent quantum systems has drawn much attention over
past decades not only for their fundamental physical perspective but also for their
applicability in different areas of physics, such as in quantum transport [1], quantum
optics [2], quantum information [3]. Recently, physicists have focused on the exact
solution of one dimensional Schrodinger equation with time-dependent linear potential
[4]-[9]. Starting first by the work of Guedes [4] who solved the Schrödinger equation
in the framework of the Lewis- Riesenfeld approach [10], using a linear Hermitian
operator and obtained a particular solution of the plane-wave type. Then, by means
of the space-time transformation approach, Feng [5] obtained solutions of the-plane
wave type and Airy wave-packet. However, Bauer [6] explained that the solution found
by Guedes was simply a special case of the earlier found solution, proposed by Volkov.
In this work, we apply the Lewis-Riesenfeld approach to solve the one-dimensional
Schrödinger equation with a time-dependent linear potential, using a class of three
Hermitian operators which are limiting forms of a general quadratic operator in the
form I (t) = α (t) p2 +β (t) (xp+ px)+ γ (t)x2 + η (t)x+ ρ (t) p+ δ (t). We show that
the eigenstates of this operator depend strongly on the time-function α (t). Setting
α (t) identically zero, the corresponding solutions will be of the plane-waves type.

Quadratic invariant and solutions of the Schrödinger
equation

The Hamiltonian for the one-dimensional Schrödinger equation with a time de-
pendent linear potential reads

H (t) =
p2

2m
+ f (t)x, (1)

where f (t) is a time-dependent function.

.,,ver, Bauver, Bau
he earlihe earli
f ldf ld
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The problem is to find the solutions of Schrödinger equation

i�
∂

∂t
ψ (x, t) = H (t)ψ (x, t) , (2)

by means of the Lewis-Riesenfeld approach [?] and unitary transformations.
According to the theory of Lewis-Riesenfeld [10], a complete set of solutions of

the Schrödinger equation (2), with a time-dependent Hamiltonian, is easily found if
a nontrivial Hermitian operator I (t) exists and satisfies the Liouville-von Neumann
equation,

dI (t)

dt
=

∂I (t)

∂t
− i

�
[I (t) , H (t)] = 0. (3)

Then, ϕλ (x, t) if are the eigenfunctions I (t) of , corresponding to real time-independent
eigenvalues λ,

I (t)ϕλ (x, t) = λϕλ (x, t) ,

we can find the corresponding solutions of the Schrödinger equation (2) in the form

ψλ (x, t) = eiαλ(t)ϕλ (x, t) , (4)

where the global phases μλ (t) satisfy the following eigenvalues equation(
1

i�
H − ∂

∂t

)
ϕλ (x, t) = i

.
αλ (t)ϕλ (x, t) . (5)

In this work, we look for a class of invariant operators which are at most quadratic
with respect to position and momentum operators. The general form may be written
as

I (t) = α (t) p2 + β (t) (xp+ px) + γ (t)x2 + η (t)x+ ρ (t) p+ δ (t) , (6)

where the coefficients α (t), β (t), γ (t), η (t), ρ (t) and δ (t) are time-dependent real
functions to be determined.

Substituting (1) and (6) into (3) and accomplishing the integrations, we obtain

γ (t) = γ0,

β (t) = β0 − γ0
m

t,

α (t) = α0 − 2β0

m
t+

γ0
m2

t2,

η (t) = η0 + 2β (t) f1 (t) +
2γ0
m

f2 (t) , (

ρ (t) = ρ0 − η0
m

t+ 2α (t) f1 (t) +
2β (t)

m
f2 (t) ,

δ (t) = δ0 +
(
ρ0 − η0

m
t
)
f1 (t) +

η0
m

f2 (t) + α (t) f2
1 (t) +

2β (t)

m
f2 (t) f1 (t) +

γ0
m2

f2
2 (t

Where

fs (t) =

t∫
0

dts...

t3∫
0

dt2

t2∫
0

f (t1) dt1, (8)

and the initial coefficients are real parameters that can be fixed judiciously. However,
without loss of generality, the parameter δ0 can be taken as zero.

It is worth noting that the construction of I (t) the instantaneous eigenstates of
depends strongly on the function α (t), that is to say, on the choice of the initial
parameters α0, β0 and γ0.

.
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Plan wave solution

For α0 = β0 = γ0 = 0, i.e. α (t) ≡ 0, without loss of generality, the parameters
δ0 = 0 and ρ0 = 0 and take η0 = 0 the invariant (6) becomes linear in the position
and momentum operators.

By using (7), it can be written as

I (t) =
−
ρ (t) p+ η0x+

−
δ (t) (9)

Where

−
ρ (t) =

(
ρ0 − η0

m
t
)

(10)

−
δ (t) =

(
ρ0 − η0

m
t
)
f1 (t) +

η0
m

f2 (t)

To obtain its eigenvalues from Eq. (??), it is better to introduce the unitary trans-
formation

ϕλ (x, t) = U (t)
−
ϕλ (x, t) , (11)

leading to the new eigenvalues equation




I
−
ϕλ (x, t) = λ

−
ϕλ (x, t) , (12)

where the transformed invariant,



I = U−1I (t)U , is a time-independent Hermitian
operator.

As usual, the unitary operator U (t) is taken as U (t) = U1 (t)U2 (t), where Ui (t)
are given by

U1 (t) = e−
i
� [A(t)x+B(t)x2], (13)

U2 (t) = e
iC(t)

�
[xp+px],

Where

A (t) = f1 (t)−
|η0| f2 (t)
m

−
ρ (t)

,

B (t) = − |η0|
2
−
ρ (t)

, (14)

C (t) = − ln
−
ρ (t) .

The transformed invariant



I reads




I = p. (15)

The eigenfunctions of



I in x coordinate is well known as

−
ϕλ (x, t) =

1√
2π�

e
iλx
� (16)

Inserting (16) into (11) and using again (14) leads to

ϕλ (x, t) =
1√

2π�
−
ρ (t)

exp

⎡⎢⎢⎣ i

�

(
λ−

−
δ (t)

)
x+ |η0|

2 x2

−
ρ (t)

⎤⎥⎥⎦ (17)

.ff11 ((tt))−−||ηη00||
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Now, inserting (17) into (5), accomplishing the temporal and spatial derivation and
then identifying the coefficients of the similar operators between the two sides, we get
the phase functions as

αλ (t) = − 1

2�m

t∫
0

⎛⎝λ−
−
δ (τ)

−
ρ (τ)

⎞⎠2

dτ.

Therefore, the solutions of the Schrödinger equation (2) are given by

ψλ (x, t) =

exp

(
− 1

2�m

t∫
0

(
λ−

−
δ (τ)

−
ρ(τ)

)2
)
dτ√

2�m
−
ρ (t)

exp

⎡⎢⎢⎣ i

�

(
λ−

−
δ (t)x+ |η0|

2 x2

)
−
ρ (t)

⎤⎥⎥⎦
Conclusion

In summary, we have presented a completely analytical solution of a system with
a particle moving in a time-dependent linear potential. The Schrödinger equation
for the system with a time-dependent linear potential is investigated on the basis of
Lewis-Riesenfeld invariant theory. We confirm that the use of a Hermitian invariant
operator leads to the the plane-waves solution.
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A Note on Relations Among Partitions

Busra Al1 , Mustafa Alkan2

Abstract

In this paper, we give study the relation among partitions of numbers. We de-
note the numbers of partitions, odd part, even part, distinct even parts, unequal
parts and distinct even parts. Then we investigate some relationships among.
We also obtain three new recurrence formulas for the number of partitions of
positive integer.

2010 Mathematics Subject Classifications : 05A17, 03E02.
Keywords: Number of Partition, Number of Odd Partition, Number of Odd and

Unequal Partition, Number of Even Partition.

Introduction

For centuries, the partition of any positive integer, which is one of the fundamental
problems of number theory, has attracted attention of researchers. The history of
partition of any positive integer goes back to the discovery of some formulas which
were introduced by many famous mathematicians such as S. Ramanujan, Jacobi,
Leonard Euler and G.H. Hardy (cf. [1]-[9]).

In [3, Theorem 14.4], Euler investigated the generating function of the positive
integer, which is also called by the partition function, is defined us

F (x) =

∞∏
n=1

1

(1− xn)
=

∞∑
n=0

p(n)xn. (1)

where | x |< 1 and p(n) denotes of the number of partitions of positive integer n.
The main problem of recurrence formulas is that p(n) increase faster than the value
of n. For this reason, it is more useful to perform operations with small positive
integers in order to find the number of any partition. For example, in order to
calculate p(200) = 3.972.999.029.388, we need to compute all values of p(n) where
1 ≤ n ≤ 199 by using the Euler’s recurrence formula. It should be note that the
recently improved recurrence formulas by J.A.Ewell [5, Theorem 1.2] and Merca [6,
Theorem 1] are more usefull than the Euler’s recurrence formula.

Some generating functions for the numbers of restricted parti-
tions

In the literature, there are two kind of partitions which are the restricted partitions
and the unrestricted partitions. For details about partitions, see the works (cf. [2],
[4],[7],[8],[9], [3]).

The generating function for the numbers Q(n), which is the number of all parti-
tions of positive integer n into odd parts, is given as follows:

∞∏
n=1

1

1− x2n−1
=

∞∑
n=0

Q(n)xn. (2)

.e numbe numb
las is thlas is th
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The generating function of the number of partitions of an positive integer n into
even parts is

∞∏
n=1

1

1− x2n
=

∞∑
n=0

E(n)xn. (3)

Theorem 1 (Euler recurrence formula). Let p(0) = 1 and define p(n) to be 0 if n < 0.
Then for n ≥ 1 we have

p(n) =

∞∑
k=1

(−1)k+1{p(n− w(
3k2 − k

2
)) + p(n− w(

3k2 + k

2
))}.

(cf. [3]).

In this paper, as usual, we here consider that p(0) = Q(0) = 1, p(n) = Q(n) = 0
whenever n ∈ Q − N and 0 < x < 1. Recall that special case of Jacobi’s identity, is
given as follows:

∞∏
n=1

((
1− x2na

)
(1− x2na−a+b)(1− x2na−a−b)

)
=

∞∑
m=−∞

(−1)mxm(am+b) (4)

(cf. [3]).

The relations among partitions

In this section, we give our main results.

Theorem 2. For a positive integer n,

p(n) =

‖n
2 ‖∑

i=0

E(2i)Q(n− 2i).

Proof. Beginning with equation (1) proof, we get

∞∏
n=1

1

1− xn
=

∞∏
n=1

1

(1− x2n)(1− x2n−1)

=
∞∏

m=1

1

1− x2m

∞∏
k=1

1

1− x2k−1
.

Due to equation (3) and equation (2),

∞∑
l=0

p(l)xl =

∞∑
m=0

E(m)xm
∞∑
k=0

Q(k)xk

=

∞∑
n=0

n∑
i=0

E(i)Q(n− i)xn

Thus

p(n) =

‖n
2 ‖∑

i=0

E(2i)Q(n− 2i).

.,,∞∞∏∏.
(1(1
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Theorem 3. For a positive integer n,

n.Q(n) = o(n) +

n∑
l=1

2(−1)l+1Q(n− l2)

where

o(n) =

{
(−1)m, if n = m

2 (3m± 1) for some m ∈ Z+

0 , otherwise
.

Proof. Let a = 1 and b = 0 in the equation 4. And observe that the following
identities;

∞∏
n=0

(
1− x2n+1

) (
1− x2n+1

) (
1− x2n+2

)
= 1 + 2

∞∑
m=1

(−1)mxm2

.

If both sides are multiplied by
∞∏

n=1
(1 + xn),

(1− x)

( ∞∏
n=1

(1− xn)

)
=

( ∞∑
n=0

Q(n)xn

)(
1 + 2

∞∑
m=1

(−1)mxm2

)
. (5)

The left side of the (5) equation from Euler Pentagonal Number Theorem;

(1− x)

( ∞∏
n=1

(1− xn)

)
= (1− 2x− x3 +

∞∑
m=2

(−1)mx
m
2 (3m±1)

−
∞∑
l=2

(−1)lx
l
2 (3l±1)+1). (6)

To be able to write the series shorter, the common strengths of x in the series should
be determined. The following statements can be observed for this:

m

2
(3m− 1) =

t

2
(3t+ 1)

There is no m, t ∈ Z+.
m

2
(3m− 1) =

k

2
(3k + 1) + 1

There is no m, k ∈ Z+.
t

2
(3t+ 1) =

k

2
(3k + 1) + 1

There is no k, t ∈ Z+.

m

2
(3m− 1) + 1 =

k

2
(3k + 1) + 1

There is no m, k ∈ Z+.
t

2
(3t+ 1) =

l

2
(3l − 1) + 1

This equation has a solution for t = l = 1 only in positive integers.Therefore, the
x forces are different for each series in the (6) equation. On the other hand, if the

.1) =1) =
tt.22
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necessary actions are made on the right side of the equation (5), the following equation
is obtained. ( ∞∑

n=0

Q(n)xn

)(
1 + 2

∞∑
m=1

(−1)mxm2

)

= Q(0) +

∞∑
n=1

(
n∑

l=1

[
Q(n) + 2(−1)lQ(n− l2)

])
xn (7)

Using coefficients (6) and (7), the coefficients xn can be compared to the equation
(5).

n =
m

2
(3m− 1) or n =

m

2
(3m+ 1), (8)

If there are m ∈ Z+ such that 8, the following equation can be observed by comparing
the xn coefficients in the equation.

n∑
l=1

[
Q(n) + 2(−1)lQ(n− l2)

]
= (−1)m

Otherwise
n∑

l=1

[
Q(n) + 2(−1)lQ(n− l2)

]
= 0.
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Exploring Non-Convex Mixtures

Rui Santosa , Miguel Felgueirasb , João Martinsa

Abstract

Mixtures with negative weights are often studied in statistics insofar as they
can be applied in several practical issues, such as reliability questions. In ad-
dition, simple conditions can be imposed to obtain a mixture with negative
weights when dealing with shape-extended stable distributions. Therefore, the
main purpose of this work is to highlight those mixtures properties as well as to
deal with estimation issues. The performance of some usual estimators is also
analysed under simulation.

2010 Mathematics Subject Classifications : 60E07, 65C50
Keywords: Pseudo-convex mixtures, shape-extended stable distributions, para-

metric estimation.

Introduction

Mixtures with negative weights have been studied since last century (cf. [1, 7]),
specially in what concerns exponential distribution mixtures. In fact, this distribution
has relevant properties in reliability and is easy to deal with.

Parametric estimation is always relevant in this context because it is mandatory
for data fitting purposes. Therefore, and with the increasing of computational power,
the evaluation of the performance of different estimators under simulation and real
data fitting are common questions when studying this type of mixtures (cf. [3, 5, 6]).

In [4, 6] is introduced a shape-extended definition of distributions closed under
minimization (maximization). This new family of distributions is later used to de-
fine pseudo-convex mixtures generated by shape-extended stable distributions for ex-
tremes. The properties of this mixtures will be used in this work for the power-function
distribution.

Hence, let us consider X1 , ..., Xn as a sequence of independent and identically
distributed (i.i.d.) continuous random variables (r.v.) with distribution function
(d.f.) F , and survival function (s.f.) F . Let Xi:n be the associated i-th ascending
order statistics. Then X1:n = min {X1, ..., Xn} and Xn:n = max {X1, ..., Xn}. Thus,

F
Xn:n

(x) = P (X
n:n

≤ x) = P

(
n⋂

i=1

{X
i
≤ x}

)
= F n(x), ∀x ∈ R.

Moreover, if

F
Xn:n

(x) = F (α
n
x+ β

n
) , ∀x ∈ R with α

n
∈ R+, β

n
∈ R

where α
n
and β

n
are the scale and location changes, then F is stable for maxima or a

max-stable distribution [2]. The previous definition can be extended in order to allow
changes to the shape parameter as well (cf. [4, 6]). We say that F is shape-extended
stable for maxima (SEmaxS) if

F
Xn:n

(x) = Fγn
(αnx+ βn) , ∀x ∈ R, (1)

.w famiw fami
by shapby shap.will be uwill be u
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where γ
n
∈ R represents the shape parameter change. The SEmaxS family includes

the generalized extreme value distribution for maximum, the generalized logistic type
I distribution and the power function distribution.

The same procedure can be applied to obtain shape-extended distributions for
minimum (SEminS). This family includes generalized extreme value distribution for
minima, generalized logistic type II distribution and generalized Pareto distribution.
General expressions for moments, densities, hazard rates and other properties were
derived in [4] and [6].

From now on we will focus on SEmaxS family, specially in what concerns to the
power function. Let X be a SEmaxS distribution with d.f. F . Thus, the r.v. X

M

with d.f. F
X

M
given by

F
X

M
(x) = (1− ω)F (x) + ωF

X2:2
(x) = F (x)

[
1− ωF (x)

]
, (2)

with ω ∈ [−1, 1], is a pseudo-convex mixture (PCM) generated by the SEmaxS dis-
tribution F . The above formula can be used with the power function distribution,
leading to the results presented in the next section.

Main Results

Let X be a r.v. with power function (PF) distribution with d.f. F (x) = xγ , x ∈
(0, 1) and γ ∈ R+. As PF is a SEmaxS distribution, then the r.v. X

M
(PCMPF) has

for d.f.
F

X
M

(x) = xγ(1− ω) + ωx2γ , ω ∈ [−1, 1] . (3)

γ = .25 γ = 3 γ = 10

Figure 1 – Density and hazard rate for PCMPF with ω = −1 + 0.1k, k = 0, 1, . . . , 20

Equation (3) was used to obtain the mixture density and, after that, the ex-
pressions for the parameters estimators were obtained using the moments method
(explicit) and the maximum likelihood method (implicit).

To evaluate the quality of the estimators, a simulation study was performed using
103 replicas in the software R. The estimators were derived using the method of mo-
ments (MME) and the maximum likelihood (MLE). Their performance was assessed
by the bias, the absolute relative bias (ARB) and the mean square deviation (MSD).

.............................
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Different scenarios were considered, where sample dimension n ∈ {100, 1000}, pa-
rameters values ω ∈ {−.75,−.5,−.25, 0, .25, .5, .75} and γ ∈ {0.25, 3, 10}. The MLE
method requires an initial value and, therefore, the method of moments estimates
were applied. Besides, in one case, (γ0, ω0) = (x/(1 − x), 0) was used in order to
assess the sensitivity of the estimator to the initial value.

MME — Method of moments estimator MLE — Maximum likelihood estimator
ω −.75 −.50 −.25 .00 .25 .50 .75 −.75 −.50 −.25 .00 .25 .50 .75

PCMPF, γ = 3, n = 100 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias .0307 .0272 .0112 .0057 .1003 .4067 1.177 .0349 .0193 .0111 .0306 .1575 .4724 1.203
ARB .0863 .1022 .1297 .1665 .2012 .2362 .4101 .0843 .1006 .1280 .1591 .1899 .2398 .4227
MSD .1071 .1522 .2484 .3797 .5302 .8637 2.532 .1113 .1527 .2471 .3569 .5064 .8888 2.619

PCMPF, γ = .25, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias −.001 −.002 −.009 −.001 .0213 .0671 .1350 .0000 −.001 .0002 −.001 −.002 .0040 .0449
ARB .0537 .0848 .1385 .1819 .1814 .2700 .5401 .0257 .0325 .0379 .0519 .0818 .1151 .2032
MSD .0003 .0008 .0020 .0027 .0031 .0077 .0224 .0001 .0003 .0002 .0003 .0008 .0012 .0046

PCMPF, γ = 3, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias .0026 .0108 .0076 −.004 −.033 .1017 .8567 .0013 .0104 .0081 −.002 −.021 .0576 .5387
ARB .0265 .0311 .0392 .0533 .0900 .1022 .2856 .0243 .0297 .0389 .0526 .0847 .1085 .2042
MSD .0100 .0133 .0214 .0425 .1133 .1404 .9575 .0082 .0125 .0213 .0427 .1138 .1609 .6518

PCMPF, γ = 10, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias .0191 .0100 .0238 −.002 −.058 .1758 2.154 .0017 .0077 .0137 −.038 −.101 .1768 1.661
ARB .0300 .0341 .0404 .0518 .0806 .1095 .2169 .0245 .0296 .0373 .0507 .0834 .1094 .1933
MSD .1380 .1809 .2552 .4284 1.060 1.660 7.249 .0932 .1425 .2152 .462 1.234 1.799 6.691

PCMPF, γ = 3, n = 1000 and (γ0, ω0) = (x/(1 − x), 0)
Bias .0044 .0041 .0016 −.001 −.038 .1315 .8539 .0033 .0032 .0025 .0036 −.109 .0369 .4615
ARB .0266 .0307 .0383 .0509 .0868 .1072 .2847 .0252 .0298 .0381 .0494 .1084 .1188 .1884
MSD .0102 .0135 .0211 .0367 .1061 .1521 .9584 .0091 .0126 .0210 .0350 .2045 .1885 .6097

Table 1 — γ estimation for PCMPF

MME — Method of moments estimator MLE — Maximum likelihood estimator
ω −.75 −.50 −.25 .00 .25 .50 .75 −.75 −.50 −.25 .00 .25 .50 .75

PCMPF, γ = 3, n = 100 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias −.001 −.005 .0077 .0138 −.031 −.170 −.450 .0691 .0031 .0118 .0012 −.061 −.202 −.460
ARB .1995 .3793 .9514 − 1.265 .6413 .6110 .0988 .3680 .9322 − 1.169 .6238 .6311
MSD .0344 .0584 .0952 .1240 .1321 .1556 .3422 .1250 .0602 .0958 .1154 .1223 .1572 .3534

PCMPF, γ = 0.25, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias .0060 .0173 .0696 .0420 −.076 −.301 −.587 .0011 .0015 .0015 .0056 .0172 −.019 −.218
ARB .0771 .2063 .7688 − .9535 .6024 .7826 .0571 .1089 .2599 − .5315 .3283 .3270
MSD .0056 .0211 .0708 .0856 .0727 .1510 .4030 .0029 .0046 .0066 .0150 .0333 .0386 .1070

PCMPF, γ = 3, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias −.000 −.001 −.003 .0054 .0203 −.041 −.347 .0012 −.001 −.003 .0043 .0140 −.019 −.218
ARB .0665 .1140 .2798 − .5757 .2947 .4629 .0558 .1055 .2770 − .5457 .3105 .3305
MSD .0039 .0050 .0076 .0141 .0328 .0300 .1533 .0027 .0044 .0075 .0147 .0346 .0355 .1051

PCMPF, γ = 10, n = 1000 and (γ0, ω0) = (γ
MME

, ω
MME

)
Bias −.007 −.002 −.002 .0014 .0117 −.020 −.263 −.002 −.001 .0003 .0087 .0202 −.018 −.199
ARB .0847 .1299 .3045 − .5258 .3207 .3510 .0571 .1048 .2739 − .5454 .3212 .3073
MSD .0061 .0069 .0090 .0133 .0283 .0336 .1039 .0028 .0044 .0073 .0148 .0341 .0376 .0957

PCMPF, γ = 3, n = 1000 and (γ0, ω0) = (x/(1 − x), 0)
Bias −.002 −.001 −.000 −.000 .0237 −.059 −.346 −.001 .0001 −.000 −.002 .0257 −.013 −.187
ARB .0648 .1138 .2809 − .5501 .3109 .4619 .0548 .1098 .2790 − .5318 .3423 .3037
MSD .0037 .0052 .0078 .0123 .0303 .0333 .1544 .0026 .0046 .0077 .0120 0.0331 .0429 .0990

Table 2 — ω estimation for PCMPF

Conclusion

The performance of γ and ω estimators improves when ω decreases. Good results
were achieved when the mixture is not convex (−1 < ω < 0) albeit the results are
not so good when it is convex (0 < ω < 1). As expected, results were better when
the sample dimension increases. Furthermore, the MLE almost always outperforms
MME, as is usual for most distributions.

The changes in the γ parameter value do not seem to have great impact on the
quality of the estimates, in relative terms. Moreover, different initial values for the
MLE gave rise to very similar estimates and therefore do not reveal sensitivity to the
initial value.

..4629.4629..0.0
.1533.1533..0.0.00 and (000 and (..−−.263.263.−−.

MICOPAM2018_b5.indd   42MICOPAM2018_b5.indd   42 16.1.2019.   11.26.0016.1.2019.   11.26.00



Dedicated to Professor G. Milovanović Antalya-TURKEY43

PROCEEDINGS BOOK OF MICOPAM 2018

Acknowledgements

Funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the
project UID/MAT/00006/2013.

References

[1] D. Bartholomew (1969). Sufficient conditions for a mixture of exponentials to be
a probability density function. Ann. Math. Stat. 40, 2189–2194.

[2] J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels (2004). Statistics of Extremes:
Theory and Applications. West Sussex, England: Wiley.

[3] C. Chesneau (2017). A new family of distributions based on the hypoexponential
distribution with fitting reliability data. <hal-01519350v5>.

[4] M. Felgueiras, J. Martins, R. Santos (2012). Pseudo-convex Mixtures. AIP Conf.
Proc. 1479, 1125–1128.

[5] M. Franco, N. Balakrishnan, D. Kundu, J. Vivo. (2014) Generalized mixtures of
Weibull components. Test 23(3), 515–535.

[6] R. Santos, M. Felgueiras, J. Martins (2016). Pseudo-convex Mixtures Generated by
Shape-extended Stable Distributions for Extremes. J. Stat. Theory Pract. 10(2),
357–374.

[7] F. Steutel (1967). Note on the infinite divisibility of exponential mixtures. Ann.
Math. Stat. 38, 1303–1305.

a Estg, Polytechnic Institute of Leiria and Ceaul Lisbon.
b Estg and Carme, Polytechnic Institute of Leiria and Ceaul Lisbon.

E-mail : rui.santos@ipleiria.pt, mfelg@ipleiria.pt, jpmartins@ipleiria.pt.
MICOPAM2018_b5.indd   43MICOPAM2018_b5.indd   43 16.1.2019.   11.26.0016.1.2019.   11.26.00



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY44

Comparing estimation in batched tests

using one and two-dimensional arrays via

simulation

João Paulo Martinsa , Miguel Felgueirasb , Rui Santosa

Abstract

Pooling individual samples for batch testing is a common procedure for re-
ducing costs. Robotic pooling emergence led to the use of more complex pooling
procedures such as two-dimensional arrays. Recently, an algorithm to estimate
the prevalence rate was established using this type of arrays without requiring
the performance of any individual test. Assuming non-perfect tests, a simulation
study is performed to assess estimator’s quality and to provide some guidelines
for the application of this new procedure.

2010 Mathematics Subject Classifications : 62F10, 62P10
Keywords: Estimation, prevalence rate, pooled samples, array, simulation.

Introduction

Since mid-20th century, the use of pooled samples for screening infected individuals
with reduced costs has generated an increasing interest. Dorfman’s methodology [1]
is possibly the most known procedure and it comprehends two stages. In the first
stage a pool of n individuals is homogeneously mixed for batched testing. A negative
result determines the classification of all n individuals as non-infected. On the other
hand, a positive result means that at least one of the individuals is infected. Hence,
further n individuals tests are performed in order to determine who is really infected.
This is called a one-dimensional array since it uses non-overlapping pools.

When the goal is to determine how many individuals are infected rather than
identify who is infected, individual test is only optional. Thus, procedures with less
experimental tests should now be considered. Moreover, more complex schemes of
mixing samples can now be easily used with the advent of robotic pooling. The
automatization of the process turns the chance of errors due to the mixing process
close to zero. Furthermore, costs of mixing samples are usually negligible [5].

Array-based group testing is a two or higher dimensional alternative that uses
overlapping pools. In particular, square arrays (a two dimensional array) use a sample
of size n2 placed in a n×nmatrix. We will refer to this kind of array as an array of size
n. All individuals within the same row and the same column are gathered for batched
testing. Ambiguous results may arise if the experimental test is not gold standard.
For instance, in a square array procedure one may have a positive row but all columns
may test negative. Clearly, the use of the proportion of infected individuals may be
a biased estimate, and sometimes impossible to determine.

An expression for the maximum likelihood (ML) estimator when one-dimensional
arrays are used may be found in [9]. However, it only provides meaningful estimates
when the inverse of the number of performed tests is inside the interval defined by

.east oneeast one
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[1− Se, Sp] where Se and Sp stand for the test sensitivity and the test specificity,
respectively, for an individual sample.

A first attempt to provide some computational guidelines to derive a ML estimate
for the prevalence rate using square arrays is presented in [6] and [7]. Later, [9] argues
that the use of simulation to compute the ML estimate may not be advised for square
arrays. It is suggested a computational script with Se, Sp and the number of arrays
having i − 1 positive rows and j − 1 positive columns for i = 1, 2, · · · , r + 1 and
j = 1, 2, · · · , c + 1 stored in a (r + 1) × (c + 1) matrix O (observed values) as the
inputs. The target function is

Dif(p0|O) =
∑
i,j

(O(i, j)− s× Pp0
(i, j))

2
, (1)

where s is the total number of two-dimensional arrays (i.e., s =
∑

i,j O(i, j)). The
matrix Pp0

includes estimates of the probability for each entry of matrix O given a
prevalence rate p0. The value that minimizes this function can be used to estimate
the prevalence rate.

A short simulation described in [6] points out that two-dimensional arrays may
be an option (and sometimes it is the only available option) when the experimental
tests have a perfect or at least close to perfect performance.

A simulation study

Our simulation study intends to provide some guidance about the optimal square
array size to be used in an estimation problem. We used MatLab R2011 software.

Matrix Pp0
was estimated using 200 random replicas of matrices O for each preva-

lence rate p0 = 0.001× k, with k = 1, . . . , 400 (i.e., with p0 from 0.001 until 0.40 with
increments equal to 0.001). The simulated real prevalence ranged from 0.05 to 0.25
with increments of 0.05. The number of square arrays s was set equal to 50. The
number of replicas in each simulation was 200.

We restricted the simulation to tests with high specificity (Sp = 0.98). Concern-
ing sensitivity, it was considered the values within the set {0.6, 0.7, 0.8}. A higher
sensitivity was not considered as it would lead to a very accurate test, a case in which
the use of Dorfman’s procedure is advised [9]. The accuracy of the estimates was
assessed using the root mean square error (RMSE). Simulation results are displayed
in Figure 3 (obtained using IBM SPSS Statistics 25 software).

A high prevalence rate in a high size array generates almost all rows and columns
positive. In this way, it was already expected the decrease of the optimal array size
with the prevalence rate increase.

The optimal array size is not quite different for each value of the prevalence rate p.
For p = 0.05 it is equal to 10 or 11 whereas for a p = 0.25 it varies from 3 to 5. Hence,
as rule of thumb, the optimal array size is approximately equal to 12.3 − 32 × p0.
However, this only makes sense when there is an a priori knowledge about the value
of the true prevalence rate p.

It is surprising to observe that the decrease of the test sensitivity causes a small
effect in the RMSE. Hence, the use of the “worse” (cheap) tests is advised in this
setting. Figure 3 shows similar accurate estimates for tests that can differ 20% in
what concerns to sensitivity!

.alues walues w
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Figure 1: RMSE (×1000)

Figure 2: Optimal array size

Figure 3: Root mean square error (×1000) (left) and optimal array size (right) for
several prevalence rates

.....
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Conclusion

When dealing with a classification problem (screening all the infected individuals)
the use of pooled samples is not very common although in some situations being an
option to save money [2]. However, when dealing with the estimation problem, the
researcher is allowed to use experimental tests with low sensitivity without losing
significant accuracy.

The performance of two–dimensional arrays still needs further assessment. In
fact, the use of other hierarchical models (with more than one stage) may provide
different results for the square array optimal size [4]. However, [8] did not find any
improvements when using three-dimensional arrays in the estimation problem.

Square arrays are just a particular case of two-dimensional arrays. Although there
are some reasons to believe that they lead to the optimal choice, it remains an open
question [3].
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A generalization of incomplete gamma

function

Aykut Ahmet Aygunesa

Abstract

In this paper, we firstly define the polylogarithms and incomplete gamma
function. For our main result, we introduce a generalization of incomplete
gamma function. Then, by using the integral representation of polylogarithms,
we obtain a relation between polylogarithms and a general case of incomplete
gamma function.

2010 Mathematics Subject Classifications : 11G55, 11M35, 33B15, 33B20.
Keywords: Polylogarithms, incomplete gamma function, a generalization of in-

complete gamma function.

Introduction, definitions and preliminaries

Throughout this article, we use the following standard notations:
N denotes the set of natural numbers, R denotes the set of real numbers and C

denotes the set of complex numbers. Also,

N0 = {0, 1, 2, 3, · · · } = N ∪ {0}

and the n-th derivative of any function f at z0 is denoted by f (n)(z0).
The polylogarithm (or de Jonquiére’s function) Lis(z) (cf. [5]) is defined by

Lis(z) =
∞∑

n=1

zn

ns
= zΦ(z, s, 1)

(s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1).

where Φ(z, s, w) is the Hurwitz-Lerch zeta function (cf. [1], [4]) defined by

Φ(z, s, w) =
∞∑

n=0

zn

(n+ w)s

(s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1)

for w ∈ C\{0,−1,−2,−3, · · · }.
The integral representation of Hurwitz-Lerch zeta function is as follows (cf. [4]):

Φ(z, s, w) =
(−1)s−1

Γ(s)

1∫
0

(log t)s−1tw−1

1− zt
dt (1)

or

Φ(z, s, w) =
1

Γ(s)

∞∫
0

ts−1e−wt

1− ze−t
dt. (2)

.∞∞∑∑=1=1

zznn.nnss
==
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Let N ∈ N0. For w = 1 and s = N + 1, by using equation (1), we obtain

LiN+1(z) = zΦ(z,N + 1, 1)

= z
(−1)N

N !

1∫
0

(log t)N

1− zt
dt. (3)

By choosing z = 1 in (3), the polylogarithms can be reduced to Riemann zeta
function ζ(N + 1) (cf. [3]) given by

ζ(N + 1) =

∞∑
n=1

1

nN+1

where N > 0.
Also, we introduce the incomplete gamma function Γ(s, x) (cf. [6]):

Γ(s, x) =

∞∫
x

ts−1e−tdt (4)

where Re(s) > 0 and x ∈ R.
By choosing x = 0 in (4), we obtain the classical Euler gamma function (cf. [6])

given by

Γ(s) =

∞∫
0

ts−1e−tdt.

Polylogarithms and incomplete gamma function are useful functions in Analytic
Number Theory and Mathematical Physics.

A generalization of incomplete gamma function

In this section we introduce a generalization of incomplete gamma function
Γμ,z(s, x). Then, by using the integral representation of polylogarithms LiN+1(z),
we obtain a relation between polylogarithms and a special case of incomplete gamma
function.

Recently, some authors have studied on generalizations of incomplete gamma func-
tion Γ(α, x;β) for Re(α) > 0 and β ∈ C.

In [7], Chaudhry and Zubair studied on the generalized incomplete gamma func-
tion given by the following integral:

Γ(α, x;β) =

∞∫
x

tα−1e−t−βt−1

dt. (5)

In [2], Miller derived several reduction formulas for specializations of a certain
generalized incomplete gamma function Γ(α, x;β) and its associated Kampé De Fériet
function.

It is possible to define a generalization of different type from equation (5). Let
μ ∈ R. Then, we define

Γμ,z(N + 1, x) =

∞∫
x

tNe−μt

1− ze−μt
dt.

In this section, we claim that Γμ,z(s, x) is associated with polylogarithms. Firstly,
we give the following key theorem for our claim:

.thms anthms an

on genon gen
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Theorem 1. Let b > a > 0 and N ∈ N0. Then, we have

log b∫
log a

tNet

1− zet
dt =

1

z

N∑
k=0

(
N
k

)
(−1)kk!

{
(log b)N−kLik+1(bz)− (log a)N−kLik+1(az)

}
.

Remark 1. By choosing a = 1 in Theorem 1, we have

log b∫
0

tNet

1− zet
dt =

1

z

{
−LiN+1(z)(−1)NN ! +

N∑
k=0

(
N
k

)
(−1)kk!(log b)N−kLik+1(bz)

}
.

(6)

By using the equation (6), we obtain the following corollary:

Corollary 2. Let c, μ ∈ R and N ∈ N0. Then, we have

Γμ,z(N + 1, c) =

∞∫
c

vNe−μv

1− ze−μv
dv =

N !

μN+1z

N∑
k=0

(μc)N−k

(N − k)!
Lik+1(e

−μcz).

Remark 2. By choosing μ = 1 in Corollary 2, we have

lim
z→0

Γ1,z(N + 1, c) = Γ(N + 1, c).

Therefore, we note that Γμ,z(N + 1, c) is a generalization of the incomplete gamma
function Γ(N + 1, c).
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Quadrature Formulas with Multiple Nodes

for Fourier Coefficients

Miodrag M. Spalević 1

Abstract

Gaussian quadrature formulas with multiple nodes and their optimal ex-
tensions for computing the Fourier coefficients, in expansions of functions with
respect to a given system of orthogonal polynomials, are considered. A numer-
ically stable construction of these quadratures is proposed. Error bounds for
these quadrature formulas are derived. We present a survey of recent results on
this topic.

2010 Mathematics Subject Classifications : 65D32, 65D30, 41A55
Keywords: Gaussian quadrature formulas with multiple nodes, Fourier coeffi-

cients, error bound.

Introduction

Let {Pk}∞k=0 be a system of orthonormal polynomials on [a, b] with respect to
a weight function ω (integrable, non-negative function on [a, b] that vanishes only
at isolated points). The approximation of f by the partial sums Sn(f) of its series
expansions f(x) =

∑∞
k=0 ak(f)Pk(x) with respect to a given system of orthonormal

polynomials {Pk}∞k=0 is a classical way of recovery of f . The numerical computation
of the coefficients ak(f),

ak(f) =

∫ b

a

ω(t)Pk(t)f(t) dt,

requires the use of a quadrature formula. Evidently, an application of the n-point
Gaussian quadrature formula with respect to the weight ω will give the exact result
for all polynomials of degree at most 2n− k − 1, k < 2n− 1.

Following Bojanov and Petrova [1] and using the same notation, we consider
quadrature formulas of the type∫ b

a

ω(t)Pk(t)f(t) dt ≈
n∑

j=1

νj−1∑
i=0

cjif
(i)(xj), a < x1 < · · · < xn < b, (1)

where νj are given natural numbers (multiplicities) and Pk(t) is a monic polynomial
of degree k.

In [1], for the sake of convenience, Bojanov and Petrova defined the formula (1)
to be Gaussian, if it has maximal algebraic degree of precision ADP.

Let

πn(R) :=

{
P (t) : P (t) =

n∑
k=0

dkt
k, dk ∈ R

}

.bb ωω((tt))PPkkPPP
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represents the space of all polynomials in one variable of degree at most n. Bojanov
and Petrova [1, Section 2] discuss general remarks concerning Gaussian quadrature
formulas with multiple nodes, since the study of formulas of type (1) for Fourier
coefficients can be reduced to the study of standard multiple node quadratures. We
repeat the following theorem established by Ghizzetti and Ossicini [2].

Theorem 1. For any given set of odd multiplicities ν1, . . . , νn (νj = 2sj + 1, sj ∈
N0, j = 1, . . . , n), there exists a unique quadrature formula of the form

∫ b

a

ω(t)f(t) dt ≈
n∑

j=1

νj−1∑
i=0

ajif
(i)(xj), a ≤ x1 < · · · < xn ≤ b,

of ADP = ν1+· · ·+νn+n−1, which is the well known Chakalov-Popoviciu quadrature
formula. The nodes x1, . . . , xn of this quadrature are determined uniquely by the
orthogonality property∫ b

a

ω(t)

n∏
k=1

(t− xk)
νkQ(t) dt = 0, ∀Q ∈ πn−1(R).

The corresponding (monic) orthogonal polynomial
∏n

k=1(t − xk) is known in the
classical literature as σ-orthogonal polynomial, with σ = σn = (s1, . . . , sn), where n
indicates the size of the array.

Bojanov and Petrova [1] describe the connection between quadratures with mul-
tiple nodes and formulas of type (1). For the system of nodes x := (x1, . . . , xn) with
corresponding multiplicities ν̄ := (ν1, . . . , νn), they define the polynomials

Λ(t;x) :=
n∏

m=1

(t− xm), Λj(t;x) :=
Λ(t;x)

t− xj
, Λν̄(t;x) :=

n∏
m=1

(t− xm)νm ,

set x
νj

j := (xj , . . . , xj) [xj repeats νj times], j = 1, . . . , n, denote by g[x1, . . . , xm] the
divided difference of g at the points x1, . . . , xm, and state and prove the following
important theorem which reveals the relation between the standard quadratures and
the quadratures for Fourier coefficients.

Theorem 2. For any given sets of multiplicities μ̄ := (μ1, . . . , μk) and ν̄ := (ν1, . . . , νn),
and nodes y1 < · · · < yk, x1 < · · · < xn, there exists a quadrature formula of the form∫ b

a

ω(t)Λμ̄(t;y)f(t) dt ≈
n∑

j=1

νj−1∑
i=0

cjif
(i)(xj), (2)

with ADP = N if and only if there exists a quadrature formula of the form∫ b

a

ω(t)f(t) dt ≈
k∑

m=1

μm−1∑
λ=0

bmλf
(λ)(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj), (3)

which has degree of precision N +μ1 + · · ·+μk. In the case ym = xj for some m and
j, the corresponding terms in both sums combine in one term of the form

μm+νj−1∑
λ=0

dmλf
(λ)(ym).

.elation belation b

i li itii li iti
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Main Results

Let us suppose that the coefficients aji (j = 1, . . . , n; i = 0, . . . , νj − 1) in (3)
are known. By acting as in the first part of the proof of Theorem 2.1 in [1] we can
determine the coefficients cji (j = 1, . . . , n; i = 0, . . . , νj−1) in (2). Namely, applying
(3) to the polynomial Λμ̄(·;y)f , where f ∈ πN (R), the first sum in (3) vanishes and
we can obtain (see [1, Eq. (2.4)])∫ b

a

ω(t)Λμ̄(t;y)f(t) dt =
n∑

j=1

(
νj−1∑
i=0

aji
[
Λμ̄(t;y)f(t)

](i)∣∣∣
t=xj

)
=

n∑
j=1

νj−1∑
i=0

cjif
(i)(xj),

where

cji =

νj−1∑
s=i

ajs

(
s

i

) [
Λμ̄(t;y)

](s−i)
∣∣∣
t=xj

(j = 1, 2, . . . , n; i = 0, 1, . . . , νj − 1). (4)

In [4], for a Chakalov-Popoviciu quadrature formula of type∫ b

a

ω(t)f(t) dt ≈
n∑

ν=1

2sν∑
i=0

aνif
(i)(xν), (5)

where a ≤ x1 < x2 < · · · < xn ≤ b, it was studied its extension to the interpolatory
quadrature formula

∫ b

a

ω(t)f(t) dt ≈
n∑

ν=1

2sν∑
i=0

bνif
(i)(xν) +

m∑
μ=1

2s∗μ∑
j=0

c∗μjf
(j)(x∗

μ), (6)

where xν are the same nodes as in (5), and the new nodes x∗
μ and new weights bνi, c

∗
μj

are chosen to maximize the degree of precision of (6), which is greater than or equal
to

n∑
ν=1

(2sν + 1) +
m∑

μ=1

(2s∗μ + 1) +m− 1 = 2

(
n∑

ν=1

sν +
m∑

μ=1

s∗μ

)
+ n+ 2m− 1.

The interpolatory quadrature formula (6) has in general ADP=
∑n

ν=1(2sν + 1) +∑m
μ=1(2s

∗
μ + 1)− 1 which is higher than the ADP of the quadrature formula (5), i. e.∑n

ν=1(2sν + 1) + n− 1, if

2
m∑

μ=1

s∗μ +m > n.

If there exist unique quadrature formulas (5), (6), then Theorem 2 implies that
there exist unique quadratures for calculating the integrals∫ b

a

ω(t)f(t)πn,σ(t) dt ≈
n∑

ν=1

2sν−1∑
i=0

âνif
(i)(xν), (7)

and ∫ b

a

ω(t)f(t)πn,σ(t) dt ≈
n∑

ν=1

2sν−1∑
i=0

b̂νif
(i)(xν) +

m∑
μ=1

2s∗μ∑
j=0

ĉ∗μjf
(j)(x∗

μ), (8)

which represent the Fourier coefficients if the given σ-orthogonal polynomial πn,σ

coincides to the corresponding ordinary orthogonal polynomial Pn with respect to

−− 1 = 21 = 2

l (6) hl (6) h

MICOPAM2018_b5.indd   55MICOPAM2018_b5.indd   55 16.1.2019.   11.26.0216.1.2019.   11.26.02



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY56

the weight function ω, i.e., πn,σ(t) ≡ Pn(t) on [a, b]. Then, the error in (7) can be
estimated by the well known method of computing the absolute value of the difference
of the quadrature sums in (8) and (7).

Using the above presented method (see (7), (8)) for the case ω(t) = 1/
√
1− t2,

t ∈ [−1, 1], we have proved in [5] the following statement.

Theorem 3. Let n, s ∈ N and ω(t) = 1/
√
1− t2, t ∈ [−1, 1]. Then, there exists

a unique quadrature formula with multiple nodes for calculating the corresponding

Fourier-Chebyshev coefficients an(f) =
∫ 1
−1

f(t)Tn(t)/
√
1− t2 dt,

∫ 1

−1

f(t)Tn(t)√
1− t2

dt ≈
n∑

ν=1

2s−1∑
i=0

Âi,νf
(i)(τν), (9)

with ADP = 2sn+ n− 1, as well as its Kronrod extension∫ 1

−1

f(t)Tn(t)√
1− t2

dt ≈
n∑

ν=1

2s−1∑
i=0

B̂i,νf
(i)(τν) +

n+1∑
j=1

Ĉjf(τ̂j),

with ADP = 2sn+ 2n+ 1.

In the special case when s = 1 the quadrature formula (9) becomes the well known
Micchelli-Rivlin quadrature formula (cf. [3]).

Conclusion

A numerically stable construction of the quadrature formulas with multiple nodes
for Fourier coefficients that is proposed in [4], [5] enables us their calculation as well
as estimation of its error. A part of those results is presented here.
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On Gaussian rules for some modified

Chebyshev weights

Ramón Orive1 , Aleksandar V. Pejčev2 , Miodrag M. Spalević3

Abstract

In this paper, Gaussian rules for some modified Chebyshev weights intro-
duced by Gautschi and Li in 1993 are considered. Our main concern is providing
efficient estimations for the error of quadrature. Those estimations are checked
by means of some numerical examples.

2010 Mathematics Subject Classifications : 65D32, 65D30, 41A55
Keywords: Gauss quadrature formulae, Chebyshev weight functions, contour

integral representation, remainder term for analytic functions, error bound.

Introduction

In [1], the authors considered a polynomial modification of a given positive measure
dσ supported on the real axis. Namely, if n ∈ N and πn is the orthogonal polynomial
of degree n with respect to dσ, they deal with the new sequence of polynomials
{π̂m,n}, being orthogonal with regard to the modified measure dσ̂n = π2

n dσ . While
in general is quite difficult getting explicit expressions for the induced orthogonal
polynomials, it is not hard when dealing with the four Chebyshev weights, as pointed
out by the authors in [1]. This new family of polynomials, hereafter referred to
as “induced” orthogonal polynomials, has a number of applications in constructive
approximation of functions, which justifies the interest in studying quadrature rules
for approximating integrals with some kind of modified weights. In this note, we
focus in estimating the error of Gauss rules for this modified weights in the case of
the four Chebyshev weights, and the different bounds we obtain are tested by means
of numerical examples.

The problem of estimating the quadrature error for Gauss–type rules has been
thoroughly studied in the literature; to only cite a few, see the references [2]–[7].

Main Results

Throughout this note, we deal with integrals of the form

Iσ(f) = I(f ;σ, n) =

∫
f(t) dσ̂n(t) ,

where dσ̂n = π2
n dσ , and dσ is one of the four Chebyshev weights, namely

dσ[1](t) =
dt√
1− t2

, dσ[2](t) =
√

1− t2 dt ,

dσ[3](t) =

√
1− t

1 + t
dt , dσ[4](t) =

√
1 + t

1− t
dt .

.ifies theifies the
kind okind o
rules forules fo
ffff
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by means of Gauss rules

Im(f) =
m∑
j=1

Am,j f(tm,j) , m = 1, 2, . . . ,

which means that the nodes {tm,j} are the zeros of the induced orthogonal polynomial
{π̂m,n} . While for the case where i = 1 and n = 1, whose related weight will be
referred hereafter to as dσ[I] , Gauss rules with an arbitrary number m are considered,
otherwise we restrict ourselves to the case where m = n for the sake of simplicity.
In addition, since the orthogonal polynomials with respect to the measures dσ[3] and
dσ[4] are easily connected to each other, only the results for dσ[3] are shown.

In this sense, our main concern is estimating the error of quadrature. It is well–
known that in the usual case where the integrand f is analytic in a neighborhood Ω
of a compact interval, say [−1, 1], this error admits the representation

Rm(f) = Iσ(f)− Im(f) =
1

2πi

∮
Γ

Km(z) f(z) dz ,

where the kernel Km is given by

Km(z) =
�m,n(z)

π̂m,n
, �m,n(z) =

∫ 1

−1

πm(t)

z − t
w(t) dt ,

Γ being any closed smooth contour contained in Ω and surrounding the real interval
[−1, 1]. As usual, elliptic contours with foci at ±1 and sum of the semi–axes equal to
ρ > 1, are considered. These level contours admit the expression

Eρ = {z ∈ C : |φ(z)| = |z +
√
z2 − 1| = ρ} ,

where the branch of
√
z2 − 1 is taken so that |φ(z)| > 1 for |z| > 1.

Next, we state our main results. For details about their proofs, as well as other pos-
sible error bounds, see [5]. On the sequel, we denote ρf = sup{ρ > 1 : f is analytic on Dρ} .
Theorem 1. The following L∞–type bounds for the error, where ‖f‖Eρ

= max
z∈Eρ

, hold.

r
[I]
1 (f) = inf

ρ∗<ρ<ρf

πa1
(
ρ2 + 1 + (−1)m/2

(
ρm+2 + ρm

)) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

ρm+2 (ρ− ρ−1)
(∑m/2

j=0 (−1)jρm−2j +
∑(m−1)/2

j=0 (−1)jρ2j−m
) ,

if m is even, and

r
[I]
1 (f) = inf

ρ∗<ρ<ρf

πa1
(
(m+ 2)ρ2 +m

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

mρm+2 (ρ− ρ−1)
(∑(m−1)/2

j=0 (−1)j m−2j
m ρm−2j +

∑(m−1)/2
j=0 (−1)j m−2j

m ρ2j−m
)

if m is odd. In the same way,

r
(1)
1 (f) = inf

ρ∗<ρ<ρf

πa1
(
3ρ2n + 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22n−2ρ3n (ρ− ρ−1) (ρn + ρ−n)
. (1)

r
(2)
1 (f) = inf

ρ∗<ρ<ρf

πa1
(
2ρ2n+2 − ρ2n − 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22nρ3n+2 (ρ− ρ−1) (ρn + ρ−n)
, n > 1.

(2)

r
(3)
1 (f) = inf

ρ∗<ρ<ρf

πa1
(
2ρ2n+1 + ρ2n + 1

) (
1− 1

4a
−2
1 − 3

64a
−4
1 − 5

256a
−6
1

)
‖f‖Eρ

22nρ3n+1 (ρ− ρ−1) (ρn + ρ−n)
, (3)

where ρ∗ > 1 is a value obtained empirically (see [5] for details), and it was shown to
be relatively closed to 1 in all the cases.

.+2+2 ++ ρρmm.m/m/22
00 ((−−1)1)
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Theorem 2. The following upper bounds for the error of quadrature, based on the
Fourier–Chebyshev expansion of the error, hold.

r
(1)
2 (f) = inf

1<ρ<ρf

π

22n−2

1

ρ2n − 1
‖f‖Eρ , n ≥ 1. (4)

r
(2)
2 (f) = inf

1<ρ<ρf

π

22n

(
1

ρ2n − 1
+

1

2ρ2n+2

)
‖f‖Eρ

. (5)

r
(3)
2 (f) = inf

1<ρ<ρf

π

22n

(
1

ρ2n − 1

)
‖f‖Eρ . (6)

Theorem 3. The following L1–type bounds for the error of quadrature also hold.

r
(1)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n−1

√
7ρ−2n + 9ρ2n

ρ4n − 1
‖f‖Eρ . (7)

r
(2)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n+1

√
ρ2n−4 + 4ρ2n + 3ρ−2n−4

ρ4n − 1
‖f‖Eρ

. (8)

r
(3)
3 (f) = inf

1<ρ<ρf

π

ρn · 22n+1

√
ρ2n−2 + 4ρ2n + 3ρ−2n−2

ρ4n − 1
‖f‖Eρ . (9)

Numerical experiments and Conclusion

Now, we are concerned with checking the accuracy of the quadratures above, as
well as of the bounds given in previous Theorems 1 and 2, when the characteristic
example f1(z) = ecos(ωz), ω > 0; it is an entire function and, thus, ρf = +∞. In the
following Tables, the results obtained by applying our Gauss rules to the Chebyshev
weights are displayed, along with the error bounds provided in the above theorems,
as well as the actual values of the integrals and the errors. In Tables below the error

bounds r
(i)
j , i, j = 1, 2, 3 , given in (1)–(9), along with the actual values of the errors

and the integrals, are displayed for ω = 1 and some values of n. It is noteworthy that
in general the estimates of the error are quite sharp, as well as the accuracy of the
respective quadrature rules. More numerical results are displayed in [5].

n, ω r
[1]
1 (f1) r

[1]
2 (f1) r

[1]
3 (f1) Error[1] I

[1]
ω (f1)

6, 1 4.856(−9) 3.095(−9) 4.643(−9) 5.596(−10) 3.3409...(−3)
10, 1 3.793(−17) 2.444(−17) 3.666(−17) 3.297(−18) 1.3050...(−5)
15, 1 8.548(−28) 5.545(−28) 8.317(−28) 5.915(−29) 1.2744...(−8)
20, 1 8.371(−39) 5.448(−39) 8.172(−39) 4.922(−40) 1.2446...(−11)

n, ω r
[2]
1 (f1) r

[2]
2 (f1) r

[2]
3 (f1) Error[2] I

[2]
ω (f1)

5, 1 6.844(−8) 6.995(−8) 6.668(−8) 9.110(−9) 3.3409...(−3)
10, 1 6.217(−18) 6.312(−18) 6.111(−18) 5.579(−19) 3.3626...(−6)
15, 1 1.406(−28) 1.423(−28) 1.386(−28) 9.984(−30) 3.1861...(−9)
20, 1 1.379(−39) 1.394(−39) 1.362(−39) 8.296(−41) 3.1115...(−12)

1 and s1 and s
re quitere quite
erical reerical re
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n, ω r
[3]
1 (f1) r

[3]
2 (f1) r

[3]
3 (f1) Error[3] I

[3]
ω (f1)

5, 1 7.797− 8) 6.666(−8) 6.707(−8) 1.785(−8) 6.6819...(−3)
10, 1 6.896(−18) 6.110(−18) 6.136(−18) 1.099(−18) 6.5253...(−6)
15, 1 1.542(−28) 1.386(−28) 1.391(−28) 1.972(−29) 6.3723...(−9)
20, 1 1.502(−39) 1.362(−19) 1.366(−19) 1.641(−40) 6.2230...(−12)
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Abstract

When moments or modified moments of the weight function are difficult to
compute, generalized averaged Gaussian quadratures can serve as good substi-
tutes. These formulas were introduced by Spalević [3], where it was demon-
strated that they may yield a smaller error compared to the Gauss quadrature
rules. However, generalized averaged Gaussian quadratures may have external
nodes. This would make them unusable when the domain of the integrand is
limited to the convex hull of the support of the weight function. In this paper
we investigate whether removing some of the last rows and columns of their
Jacobi matrices (cf. [2]) will produce quadrature rules with no external nodes.
The results that will be presented have been recently published in [1].

Keywords: Truncated averaged Gaussian quadratures, Internality.

Introduction

Let dσ be a nonnegative measure with infinitely many points of support. The
smallest closed interval that contains the support of dσ is denoted by [a, b] with
−∞ ≤ a < b ≤ ∞, and we assume that the distribution finction σ has infinitely many
points of increase in this interval. If σ is an absolutely continuous function, then
dσ(x) = w(x) dx on supp(dσ), where w(x) ≥ 0 is a weight function. Let Pk denote
the set of all polynomials of degree at most k and introduce the quadrature formula
(abbreviated q.f.)

Qn[f ] =

n∑
j=1

ωjf(xj)

with real distinct nodes x1 < x2 < · · · < xn and real weights ωj . We say that Qn is
a (2n−m− 1, n, dσ) q.f. if the remainder term Rn[f ], defined by∫

f(x) dσ(x) = Qn[f ] +Rn[f ],

satisfies Rn[f ] = 0 for all f ∈ P2n−m−1. The rule Qn then is said to have algebraic
degree of precision 2n − m − 1. Here m is an integer such that 0 ≤ m ≤ n. If
in addition all quadrature weights ωj are positive, then Qn is said to be a positive
(2n − m − 1, n, dσ) q.f.. Furthermore, we say that a polynomial tn =

∏n
j=1(x − xj)

generates a (2n − m − 1, n, dσ) q.f. if its zeros xj are real and simple, and the q.f.
with nodes x1, x2, . . . , xn is a (2n − m − 1, n, dσ) q.f.. A (2n − m − 1, n, dσ) q.f. is

.the supthe sup
the distthe dist
σσ is anis an
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internal if all its nodes are in the closed interval [a, b]. A node not belonging to the
interval [a, b] is said to external.

It is well known that an �-node Gauss quadrature rule associated with the measure
dσ can be represented by an �×� real symmetric tridiagonal matrix JG

� (dσ) determined
by the recursion coefficients of the first � orthogonal polynomials associated with the
measure dσ. Spalević [3] proposed that the leading (� − 1) × (� − 1) tridiagonal
submatrix of JG

� (dσ) be flipped right-left and upside-down, and appended to JG
� (dσ)

to obtain a new symmetric tridiagonal matrix J2�−1,�−1 of order 2� − 1. The latter
matrix defines a (2�−1)-node quadrature formula referred to as a generalized averaged
Gaussian quadrature formula.

It is the purpose of the present paper to describe extensions of the generalized
averaged Gaussian quadrature formulas introduced in [3]. Section 2 discusses the
extension of the matrix JG

� (dσ) to a real symmetric tridiagonal matrix Jk+�,k of
order k + � by appending a fairly arbitrary real symmetric tridiagonal matrix of
order k to JG

� (dσ). These extensions may yield a smaller quadrature error than
the underlying �-node Gaussian quadrature formula. Section 3 is concerned with
the possible presence of exterior nodes of generalized averaged Gaussian quadrature
formulas. Spalević in [3] showed that the generalized averaged Gaussian quadrature
formulas may have one node to the right or to the left of the interval [a, b]. It therefore
may not be possible to apply these quadrature rules when the integrand is defined
on [a, b] only. To remedy this shortcoming, truncated generalized averaged Gaussian
quadrature rules were introduced in [2]. These rules are obtained by removing the
last few rows and columns of the matrix J2�−1,�−1, which does not affect the degree of
precision. We investigate these rules by using results by Peherstorfer [4] on positive
quadrature rules. Section 4 presents a detailed analysis of truncated generalized
averaged Gaussian quadrature rules obtained by appending only one row and column
to the matrix JG

� (dσ), and investigates for classical measures dσ when these rules
are internal. Section 5 presents a few computed examples and Section 6contains
concluding remarks.

Main Results

It is shown in [4] that, if

tk+1(x) = (x− α̃k)tk(x)− β̃ktk−1(x)

with α̃j , β̃j coinciding with αj , βj up to j = n−1− [m+1
2 ], resp. j = n−1− [m2 ], then

tn generates a positive quadratic formula (q.f.) with a degree of precision 2n− 1−m.
Then

tn = g�pn−� − β̃n−�g�−1pn−�−1,

where (gj) is some sequence with

gj+1(x) = (x− α̃n−1−j)gj(x)− β̃n−jgj−1(x).

We may choose gi = p̃i as the sequence of orthogonal polynomials with respect to
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another measure dμ, with the coefficients λi and γi. The associated n× n matrix is

Jn,�(dσ, dμ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0√

β1 α1

√
β2

. . .
. . .

. . .
√

βn−�−1 αn−�−1

√
β̃n−�√

β̃n−� γ�−1

√
λ�−1

√
λ�−1 γ�−2

. . .

. . .
. . .

0 √
λ1 γ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Theorem. The q.f. determined by removing the last i rows and columns from the
matrix Jn,�(dσ, dμ) has the same degree of precision.

We now consider appending one row and one column to the matrix associated
with the (�+ 1)-node Gaussian rule for dσ.

Suppose that we only replace α�+1 in JG
�+2(dσ). This yields a q.f. with the degree

of precision 2�+ 2 generated by the polynomial t�+2. We know that the zeros of t�+2

and p�+1 interlace, so only the smallest and largest zeros of t�+2 (denoted resp. τ1
and τ�+2) may lie outside [a, b].

Theorem. If α�−1 = α�+1, then the obtained q.f. is internal. If α�−1 < α�+1, then
a < τ�+2 < b, and if α�−1 > α�+1, then a < τ1 < b.

Corollary. If dσ is symmetric, then the q.f. is internal because the coefficients αj

vanish.

Next we analyze when the quadrature formula is internal if dσ(x) = w(x) dx, w
being one of the classical weight functions.

The previous corollary covers the important special cases over [−1, 1] when w is
even:

(a) Legendre weight function w(x) = 1;

(b) Chebyshev weight functions w(x) = (1− x2)±1/2.

Consider the generalized Laguerre weight function w(x) = xs e−x, s > −1, on
[0,∞). Then we have

α� = 2�+ s+ 1, β� = �(�+ s),

p�(0) = (−1)� �!

(
�+ s

�

)
(s > −1).

Theorem. The corresponding q.f. is internal for s � 0, � � 2, and for s ∈ (−1, 0),
� � 3.
The q.f. is external for s ∈ (−1, 0), � = 2.

Next, let w(α,β)(x) = (1 − x)α(1 + x)β , α, β > −1 (α 	= β) over [−1, 1] be the
Jacobi weight function. Then

α� =
β2 − α2

(2�+ α+ β)(2�+ α+ β + 2)
, β� =

4�(�+ α)(�+ β)(�+ α+ β)

(2�+ α+ β)2 ((2�+ α+ β)2 − 1)
,

p
(α,β)
� (1) = 2�

(
�+ α

�

)
/

(
2�+ α+ β

�

)
.

.= (1= (1−−

weightweight
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Assume w.l.o.g. α2 > β2. Then τ1 � −1 is equivalent to[
(α+ β + 2�− 2)(α+ β + 2�) + β2 − α2

]
g(α, β)

2(�+ 1)(�+ 1 + α)(α+ β + 2�− 2)(α+ β + 2�)
� 1,

where g(α, β) := (α+ β + 2�+ 2)(α+ β + 2�+ 3).

Theorem. The q.f. is internal for all � ≥ 3.
If � = 2, the q.f. is internal whenever

β +
12

α+ β + 10
> 0 and (β >

√
13− 4 or α > α0),

where α0 ≈ −0.9419540398 is the unique zero of

Q(α) = 993α6 + 24228α5 + 113200α4 − 10400α3

−1021212α2 − 1982200α− 1041580

in the interval (−1, 0).

Consider the weight function

w(x) = (1− x)α(1 + x)β , α = −3/4, β = 3/4,

and let � = 4. Then the generalized averaged rule defined by the matrix J2�−1,�−1(dσ, dσ)
has one exterior node at about 1.006.

However, truncated rules obtained by removing the last k rows and columns are
interior for both k = 1 and k = 2.

When applying these quadrature rules to the integral∫ 1

−1

f(x)dx, f(x) = (5− 10x)ex−x2

, dσ(x) = dx

(whose actual value is 1− e−10), the following results are obtained:

� QG
� [f ] Q2�−1,�−1[f ] Q

(1)
�+1[f ] Q

(2)
�+2[f ]

4 4.84 · 10−1 −1.16 · 10−2 −1.86 · 10−1 5.19 · 10−2

5 −1.86 · 10−1 −6.66 · 10−4 4.20 · 10−2 −7.29 · 10−3

6 4.20 · 10−2 5.19 · 10−5 −6.41 · 10−3 7.09 · 10−4

7 −6.41 · 10−3 −3.27 · 10−6 6.41 · 10−4 −2.90 · 10−5

8 6.41 · 10−4 1.29 · 10−7 −2.40 · 10−5 −5.48 · 10−6

Conclusion

An analysis of truncated generalized averaged Gaussian quadrature formulas is
presented that sheds light on whether these formulas are interior. Computed examples
show that the analysis is sharp in the sense that it cannot be generalized to quadrature

rules that are extended more than Q
(1)
�+1. Further examples illustrate the performance

of generalized averaged Gaussian quadrature formulas and their truncations.
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Error Estimates for Some Product Gauss

Rules

Davorka Jandrlić1, Miodrag Spalević1, Jelena Tomanović1

Abstract

Some integrals Im over m-dimensional regions can be approximated by cu-
bature formulas Gm

n constructed by the product of Gauss quadrature rules Gn.
Using corresponding Gauss-Kronrod rules K2n+1 or corresponding generalized
averaged Gauss rules Ĝ2n+1 instead of Gn, we construct cubature formulas
Km

2n+1 and Ĝm
2n+1. In order to estimate the error |Im − Gm

n | we use the differ-

ences |Km
2n+1 −Gm

n | and |Ĝm
2n+1 −Gm

n |.
2010 Mathematics Subject Classifications : 65D30, 65D32
Keywords: Cubature rules, Products of Gauss, Gauss-Kronrod and generalized

averaged Gauss formulas.

Introduction

Consider the quadrature formula (q.f.) of the form

I(f) =

∫
R

f(t)dμ(t) ≈ Qn(f) =
n∑

k=1

ωkf(tk).

The unique optimal interpolatory q.f. with n nodes and (algebraic) degree of ex-
actnes 2n−1 is Gauss q.f. Gn. The nodes of Gn are the eigenvalues and the weights are
proportional to the squares of the first components of the corresponding eigenvectors
of tridiagonal symmetric Jacobi matrix with diagonal elements α0, ..., αn−1 and sub-
diagonal elements

√
β1, ...,

√
βn−1, where αs and βs are coefficient of the three-term

recurrence relation, satisfied by the monic orthogonal polynomials.
In order to (economically) estimate the error |I − Gn| we can use the differences

|K2n+1 − Gn| and |Ĝ2n+1 − Gn|. K2n+1 is corresponding Gauss-Kronrod q.f. with

degree of exactness 3n+1, and Ĝ2n+1 is corresponding generalized averaged Gauss q.f.
with degree of exactness 2n+2, both with 2n+1 nodes (n nodes of Gn form a subset).

K2n+1 has higher degree of exactness, but Ĝ2n+1 exists in some situations when
K2n+1 does not and its numerical construction is simpler – Spalević in [2] proposed

effective numerical procedure for constructing Ĝ2n+1, where tridiagonal symmetric
matrix has diagonal elements α0, ..., αn−1;αn;αn−1, ..., α0 and subdiagonal elements√
β1, ...,

√
βn−1;

√
βn;
√

βn+1;
√

βn−1, ...,
√
β1.

Some integrals Im =
∫
Ωm f(x)ω(x)dx, ω(x) ≥ 0, x = (x1, ..., xm) ∈ Rm, m ≥ 2,

over m-dimensional regions Ωm, can be approximated by cubature formulas (c.f.) Gm
n

constructed by the product of q.f. Gn. In order to estimate the error |Im − Gm
n | we

first extend Gm
n to Km

2n+1 and Ĝm
2n+1, and than use the differences |Km

2n+1 −Gm
n | and

|Ĝm
2n+1 −Gm

n |, where Km
2n+1 denotes c.f. constructed by the product of corresponding

q.f. K2n+1, and Ĝm
2n+1 denotes c.f. constructed by the product of corresponding q.f.

Ĝ2n+1.

.componcompon
with dwith d
rere ααs as a
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I2 =
∫ 1
−1

∫ 1
−1

cos(x1 + x2)dx1dx2 = (2 sin 1)2 ≈ 2.832...

n |I2 −G2
n| |I2 −K2

2n+1| |K2
2n+1 −G2

n| |I2 − Ĝ2
2n+1| |Ĝ2

2n+1 −G2
n|

2 2.391e-02 2.979e-07 2.391e-02 2.979e-07 2.391e-02
4 9.455e-07 3.794e-16 9.455e-07 1.086e-13 9.455e-07
6 5.095e-12 8.249e-26 5.095e-12 4.534e-20 5.095e-12

I7 =
∫ 1
−1

· · ·
∫ 1
−1

cos(x1 + · · ·+ x7)dx1 · · · dx7 = (2 sin 1)7 ≈ 38.237...

n |I7 −G7
n| |I7 −K7

2n+1| |K7
2n+1 −G7

n| |I7 − Ĝ7
2n+1| |Ĝ7

2n+1 −G7
n|

2 1.118 1.408e-05 1.118 1.408e-05 1.118
4 4.468e-05 1.792e-14 4.468e-05 5.131e-12 4.468e-05

Table 1: Selected results for integrals over m-dimensional cube.

Main Results

In all considered cases we first introduce Gm
n constructed by the product of Gn

(according to [1]). Km
2n+1 and Ĝm

2n+1 can be introduced analogously, using correspond-

ing K2n+1 and Ĝ2n+1 instead od Gn. In all examples we first solve Im analytically,

and than show results for |Im − Gm
n |, |Im − Km

2n+1|, |Km
2n+1 − Gm

n |, |Im − Ĝm
2n+1|,

|Ĝm
2n+1 −Gm

n |, for different values of n. All results are calculated with 40 significant
decimal digits.

Cube: Cm = {x ∈ Rm | − 1 ≤ xl ≤ 1, l = 1, ...,m}. Integral of each variable
xl, l = 1, ...,m, can be approximated by n-point Gauss q.f. Gn with Legendre weight
function ω(t) = 1 on [−1, 1], ∫ 1

−1

ϕ(t)dt ≈
n∑

k=1

ωkϕ(tk),

which leads to c.f.

Im ≈ Gm
n =

n∑
k1,...,km=1

ωk1 · · ·ωkm · f(tk1 , ..., tkm).

Gm
n has nm, while corresponding Km

2n+1 and Ĝm
2n+1 have (2n+ 1)m nodes.

Selected results are shown in table 1.
Simplex: Tm = {x ∈ Rm | xl ≥ 0, l = 1, ...,m, x1 + · · · + xm ≤ 1}. Approxi-

mating integral of each variable xl, l = 1, ...,m, by n-point Gauss q.f. Gn with Jacobi
weight function ω(t) = (1− t)m−l, l = 1, ...,m, on [0, 1],∫ 1

0

(1− t)m−lϕ(t)dt ≈
n∑

k=1

ωk,m−lϕ(tk,m−l), l = 1, ...,m,

we get c.f.

Im ≈ Gm
n =

n∑
k1,...,km=1

ωk1,m−1 · · ·ωkm,0 · f(Π(k1), ...,Π(k1, ..., km)),

Π(k1) = tk1,m−1,

Π(k1, ..., kl) = (1− tk1,m−1) · · · (1− tkl−1,m−l+1)tkl,m−l, l = 2, ...,m.

Gm
n has nm, while corresponding Km

2n+1 and Ĝm
2n+1 have (2n+ 1)m nodes.

.11ωωkk11 · ·· ·
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I3 =
∫ 1
0

∫ 1−x1

0

∫ 1−x1−x2

0
dx1dx2dx3

(1+x1+x2+x3)3
= 8 ln 2−5

16 ≈ 0.034...

n |I3 −G3
n| |I3 −K3

2n+1| |K3
2n+1 −G3

n| |I3 − Ĝ3
2n+1| |Ĝ3

2n+1 −G3
n|

2 1.237e-04 1.353e-08 1.237e-04 6.196e-08 1.237e-04
4 1.285e-07 2.513e-14 1.285e-07 7.961e-12 1.285e-07
6 1.167e-10 2.024e-18 1.167e-10 2.337e-15 1.167e-10

I4 =
∫ 1
0

∫ 1−x1

0

∫ 1−x1−x2

0

∫ 1−x1−x2−x3

0
dx1dx2dx3dx4

(1+x1+x2+x3+x4)4
= 24 ln 2−16

144 ≈ 0.004...

n |I4 −G4
n| |I4 −K4

2n+1| |K4
2n+1 −G4

n| |I4 − Ĝ4
2n+1| |Ĝ4

2n+1 −G4
n|

2 1.959e-05 1.131e-09 1.959e-05 1.179e-08 1.960e-05
4 2.111e-08 - - 1.661e-12 2.111e-08
6 1.937e-11 - - 5.015e-16 1.937e-11

Table 2: Selected results for integrals over m-dimensional simplex.

S3 : x2
1 + x2

2 + x2
3 = 1, I3 =

∫
S3 e

x1dx = 2π(e− 1/e) ≈ 14.768...

n |I3 −G3
n| |I3 −K3

2n+1| |K3
2n+1 −G3

n| |I3 − Ĝ3
2n+1| |Ĝ3

2n+1 −G3
n|

2 4.842e-02 5.748e-07 4.842e-02 5.748e-07 4.842e-02
4 1.854e-06 7.429e-16 1.854e-06 2.123e-13 1.854e-06
6 9.855e-12 1.583e-25 9.855e-12 8.746e-20 9.855e-12

Table 3: Selected results for integrals over m-dimensional sphere.

Selected results are shown in table 2. In the cases of I4, n = 4, 6, q.f. K2n+1

doesn’t exist and c.f. K4
2n+1 can’t be constructed.

Sphere: Sm = {x ∈ Rm | x2
1 + · · ·+ x2

m = r2}. If we introduce spherical coordi-
nates r, ϕ1, ..., ϕm−1, than replace integral of variable ϕm−1 by (2n)-point rectangle
formula and approximate integral of each variable ϕm−l−2, l = 0, ...,m−3, by n-point
Gauss q.f. Gn with Gegenbauer weight function ω(t) = (1− t2)l/2, l = 0, ...,m− 3, on
[−1, 1], ∫ 1

−1

(1− t2)l/2ϕ(t)dt ≈
n∑

k=1

ωk,lϕ(tk,l), l = 0, ...,m− 3,

we get c.f.

Im ≈ Gm
n = rm−1π

n

2n∑
k=1

n∑
k1,...,km−2=1

ωk1,m−3 · · ·ωkm−2,0·

·F (r, ϕ1,k1
, ..., ϕm−2,km−2

,
π

n
k),

F (r, ϕ1, ..., ϕm−1) = f(r cosϕ1, ..., r sinϕ1 · · · sinϕm−1),

ϕm−l−2,k = arccos tk,l, l = 0, ...,m− 3.

Gm
n has 2nm−1, while corresponding Km

2n+1 and Ĝm
2n+1 have 2(2n+ 1)m−1 nodes.

Selected results are shown in table 3.
Ball: Bm = {x ∈ Rm | x2

1 + · · · + x2
m ≤ 1}. Im can be approximated by linear

combination of n integrals over m-dimensional spheres of different radii,

Im ≈
n∑

i=1

Bi

∫
Sm
i

f(x)dx, Sm
i = {x ∈ Rm | x2

1 + · · ·+ x2
m = r2i }.

.∑∑=1=1

ωωk,lk,lϕϕ
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B4 : x2
1 + · · ·+ x2

4 ≤ 1, I4 =
∫
B4

√
(x2

2 + x2
3 + x2

4)
17dx = 524288

4849845π ≈ 0.339...

n |I4 −G4
n| |I4 −K4

2n+1| |K4
2n+1 −G4

n| |I4 − Ĝ4
2n+1| |Ĝ4

2n+1 −G4
n|

2 1.084e-01 7.329e-06 1.084e-01 6.606e-05 1.084e-01
4 9.084e-05 9.728e-13 9.084e-05 4.984e-11 9.084e-05
6 4.369e-10 3.459e-16 4.369e-10 1.409e-14 4.369e-10

Table 4: Selected results for integrals over m-dimensional ball.

If m is even, than r2i = τi, 2Bir
m−1
i = λi, i = 1, ..., n, where τi and λi are nodes and

weights of Gauss q.f. ∫ 1

0

tm/2−1ϕ(t)dt ≈
n∑

i=1

λiϕ(τi).

If m is odd, than ri = τi, Bir
m−1
i = λi, i = 1, ..., n, where τi and λi are nodes and

weights of Gauss q.f. ∫ 1

−1

tm−1ϕ(t)dt ≈
n∑

i=−n
i	=0

λiϕ(τi).

c.f. takes the form

Im ≈ Gm
n =

π

2n

n∑
i=1

Bir
m−1
i

4n∑
k=1

2n∑
k1,...,km−2=1

ωk1,m−3 · · ·ωkm−2,0·

·F (ri, ϕ1,k1
, ..., ϕm−2,km−2

,
π

2n
k).

Gm
n has (2n)m, while corresponding Km

2n+1 and Ĝm
2n+1 have

(4n+ 2)(4n+ 1)m−1 nodes.
Selected results are shown in table 4.

Conclusion

As expected, with the increase of n precision of all three c.f. Gm
n , Km

2n+1, Ĝ
m
2n+1

increases. Also expected, both Km
2n+1 and Ĝm

2n+1 have better accuracy than Gm
n ,

while Km
2n+1 has better (or the same) accuracy than Ĝm

2n+1.

Both differences |Km
2n+1−Gm

n | and |Ĝm
2n+1−Gm

n | give very good estimates of error

|Im −Gm
n |. Ĝm

2n+1 exists in some situations when Km
2n+1 does not, and it’s numerical

construction is simpler than the construction of Km
2n+1 (since the construction of

Ĝ2n+1 is simpler than the construction of K2n+1). So, Ĝm
2n+1 might be a better

choice than Km
2n+1 for estimating error of Gm

n .
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Matrix transformations

and generalized almost convergence

Maria Zeltser1

Abstract

Maddox generalized the spaces c0, c, �1, �∞ by adding powers pk (k ∈ N) in
the definitions of spaces to the terms of elements of sequences (xk). Using the
ideas of Maddox, Nanda ([5]) defined generalizations f(p) and f0(p) of the spaces
of all almost convergent sequences f and of all almost convergent to 0 sequences
f0. In [5] and [6] he characterized some classes of matrix transformations in-
volving theses spaces and Maddox’s sequence spaces. We have discovered that
almost all results of [5] and [6] are not correct. We give corresponding counterex-
amples and the correct results. Moreover we give them in greater generality. To
obtain these results we reduce these matrix transformations to simpler matrix
transformations between Maddox sequence spaces.

Note that variable exponent spaces have recently seen a renaissance and are
presently studied extensively.

2010 Mathematics Subject Classifications : 40C05, 40D20
Keywords: Matrix transformation, almost convergence, Maddox sequence spaces.

Introduction

Throughout this note we assume familarity with summability and the standard
sequence spaces (see e. g. [1]).

Let p = (pk) and q = (qk) be sequences of strictly positive numbers.
The following variable exponent spaces were defined by Maddox ([3]):

c0(p) = {(xk) ∈ ω| |xk|pk → 0},
c(p) = {(xk) ∈ ω| |xk − l|pk → 0 for some l}.

When all the terms of (pk) are constant and equal to p > 0 we have c(p) = c and
c0(p) = c0, where c, c0 are respectively the spaces of convergent and null sequences.

We set

tmn(x) =
1

m+ 1

m∑
i=0

xn+i (m,n ∈ N)

and note that
tm,n(Ax) =

∑
k

a(n, k,m)xk,

where

a(n, k,m) =
1

m+ 1

m∑
i=0

an+i,k (n, k,m ∈ N).

.nces of snces of s
aces weraces wer
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Using the ideas of Maddox ([3]), Nanda ([5]) defined generalizations of the spaces
of all almost convergent sequences f and of all almost convergent to 0 sequences f0
as follows

f(p) = {(xk) ∈ ω : lim
m

|tmn(x− le)|pm = 0 for some l uniformly in n}

and
f0(p) = {(xk) ∈ ω : lim

m
|tmn(x)|pm = 0 uniformly in n}.

Note that for a bounded positive sequence p the inclusion f(p) ⊂ �∞(p) holds.
Also Nanda ([5], [6]) characterized some classes of matrix transformations involv-

ing Maddox’s and Nakano sequence spaces and the spaces f(p), f0(p), f , f0. Unfortu-
nately almost all results are incorrect. In this note we give counterexamples for some
incorrect results and state the corresponding correct ones. Moreover we give them in
greater generality. For other counterexamples, correct results and proofs see [7].

To prove these results we reduce matrix transformations involving f(p), f0(p) to
simpler matrix transformations between sequence spaces.

We will use the following convention for limits: if the capital letter is used for the
index in the limit, then elements of the sequence are finite only for large indices. If
a lower letter is used for the index in the limit, then all elements of the sequence are
finite. For example limN ρN = 0 means that ρN < ∞ for large N and ρN → 0, while
limm ρm = 0 means that ρm < ∞ for all m and ρm → 0.

Main Results

In Theorem 2 in [5] Nanda gave a characterization of matrices in (c0(p), f0(q)):

Theorem 1. Let p be a bounded positive sequence. Then a matrix A = (ank) is
in (c0(p), f0(p)) if and only if

(i) ∃B ∈ N\{1} : supm(
∑

k |a(n, k,m)|B−1/pk)pm < ∞ (n ∈ N).
(ii) limm supn |a(n, k,m)|qm = 0 (k ∈ N).

In the following example we verify that this theorem is not correct:

Example 1. Let pn = 1 (n ∈ N). Then c0(p) = c0 and f0(p) = f0. We consider
the matrix A = (ank) with a2n2n = n and ank = 0 for (n, k) 	∈ {(2i, 2i)| i ∈ N}
(n, k ∈ N).

The matrix A satisfies both the conditions in Theorem 1. On the other hand for
(xn) = ((log2 n)

−1/2) ∈ c0 we have

y2n = [Ax]2n = a2n2nx2n = n · (log2 2n)−1/2 =
√
n (n ∈ N).

So (yn) 	∈ �∞ ⊃ f0, hence Ax 	∈ f0. Therefore the statement of Theorem 1 does not
hold.

To prove the correct version of Theorem 1 we use the conditions for a matrix to
be in (c0(p), c0(q)) (cf. [4], Theorem 1). We find conditions for a matrix A = (ank) to
map c0(p) to f0(q) which gives the correct statement of Theorem 1 in the case q = p.

Theorem 2. Let p be any positive sequence and let q be a bounded positive
sequence. Then a matrix A = (ank) is in (c0(p), f0(q)) if and only if

(i) limm supn |a(n, k,m)|qm = 0 (k ∈ N),

hat thihat thi

ThenThen cc
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(ii) limN lim supm supn(
∑

k |a(n, k,m)|N−1/pk)qm = 0.

In Theorem 3 in [5] Nanda gave a characterization of matrices in (c(p), f):

Theorem 3. Let p be a bounded positive sequence. Then a matrix A = (ank) is
in (c(p), f) if and only if

(i) ∃B ∈ N\{1} : supm(
∑

k |a(n, k,m)|B−1/pk)pm < ∞ (n ∈ N).
(ii) ∃(αk) : limm supn |a(n, k,m)− αk| = 0 (k ∈ N),
(iii) ∃α : limm supn |

∑
k a(n, k,m)− α| = 0.

The following example demonstrates that Theorem 3 also is not correct:

Example 2. Let pn = 1 (n ∈ N). Then c(p) = c. We consider the matrix
A = (ank) with a2n2n = n, a2n,2n+1 = −n and ank = 0 for (n, k) 	∈ {(2i, 2i), (2i, 2i +
1)| i ∈ N} (n, k ∈ N).

The matrix A satisfies all the conditions in Theorem 3. On the other hand for
(xn) ∈ c0 with x2n = 1/

√
n and xk = 0 for k 	∈ {2n| n ∈ N} we have

y2n = [Ax]2n = a2n2nx2n =
n√
n
=

√
n (n ∈ N).

So (yn) 	∈ �∞ ⊃ f hence Ax 	∈ f . Therefore the statement of Theorem 3 does not
hold.

We find conditions for a matrix A = (ank) to map c(p) to f(q) which gives the
correct statement of Theorem 3 in the case q = e. To prove the correct version of
Theorem 3 we use the conditions for a matrix A to be in (c0(p), c(q)) (cf. Theorem
5.1, part 9 in [2]).

Theorem 4. Let p and q be bounded positive sequences. Then a matrixA = (ank)
is in (c(p), f(q)) if and only if

(i) ∃(αk) : limm supn |a(n, k,m)− αk|qm = 0 (k ∈ N),
(ii) ∃α : limm supn |

∑
k a(n, k,m)− α|qm = 0,

(iii) ∃N ∈ N : lim supm supn
∑

k |a(n, k,m)|N−1/pk < ∞,
(iv) limN lim supm supn(

∑
k |a(n, k,m)− αk|N−1/pk)qm = 0.

Conclusion

In [5] Nanda defined generalizations f(p) and f0(p) of the spaces of all almost
convergent sequences f and of all almost convergent to 0 sequences f0 by adding
powers pk (k ∈ N) in the definitions of spaces to the terms of elements of sequences
(xk). In [5] and [6] he characterized some classes of matrix transformations involving
theses spaces and Maddox’s sequence spaces. Unfortunately almost all results are
incorrect. In this note we give counterexamples for some incorrect results and state
the corresponding correct ones. Moreover we give them in greater generality. For
other counterexamples, correct results and proofs see [7].
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New application on (φ, δ) monotone

sequences

H. S. Özarslan1, M. Ö. Şakar2

Abstract

In this paper, we proved a theorem dealing with |N̄ , pn|k
summability factors of infinite series by using (φ, δ)-monotone sequences. Also,
this theorem includes a new application of the trigonometric Fourier series and
a new result.

2010 Mathematics Subject Classifications : 26D15, 40D15, 40F05, 40G99,
42A24.

Keywords: Riesz mean, quasi monotone sequences, (φ, δ) monotone sequences,
Fourier series, Hölder inequality, Minkowski inequality.

Introduction

A sequence (dn) is said to be δ-quasi monotone, if dn → 0, dn > 0 ultimately, and
Δdn ≥ −δn, where δ = (δn) is a sequence of positive numbers (see [1]). Let

∑
an be

a given infinite series with partial sums (sn). By (un) and (tn) we denote the n-th
(C, 1) means of the sequences (sn) and (nan), respectively. The series

∑
an is said to

be summable |C, 1|k, k ≥ 1, if (see [5])

∞∑
n=1

nk−1|un − un−1|k < ∞. (1)

But since tn = n(un − un−1) (see [7]), condition (1) can also be written as

∞∑
n=1

1

n
|tn|k < ∞. (2)

Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1) . (3)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv (4)

defines the sequence (σn) of the
(
N̄ , pn

)
mean of the sequence (sn), generated by

.uunn−−11

conditioconditio
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the sequence of coefficients (pn) (see [6]). The series
∑

an is said to be summable∣∣N̄ , pn
∣∣
k
, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|σn − σn−1|k < ∞. (5)

If we take pn = 1 for all values of n, then
∣∣N̄ , pn

∣∣
k
summability reduces to |C, 1|k

summability. If we write Xn =
n∑

v=0

pv/Pv, then (Xn) is a positive increasing sequence

tending to infinity with n.
In [3], Bor has proved the following theorem dealing with the |N̄ , pn|k summability

factors of infinite series.
Theorem A. Let (λn) → 0 as n → ∞ and (pn) be a sequence of positive numbers
such that

Pn = O(npn) as n → ∞. (6)

Suppose that there exists a sequence of numbers (μn) which is δ-quasi monotone with∑
nXnδn < ∞,

∑
μnXn is convergent and |Δλn| ≤ μn for all n. If

m∑
n=1

pn
Pn

|tn|k = O
(
Xm

)
as m → ∞, (7)

then the series
∑

anλn is summable |N̄ , pn|k, k ≥ 1.

Main Results

A sequence (μn) is said to be (φ, δ)-monotone if and only if μn → 0, μn ≥ 0 ulti-
mately and Δμn ≥ −δn+1, where (δn) is a sequence of non-negative numbers, (φn) is a
positive monotone increasing sequence and∑

φnδn < ∞ (see [8]). The aim of this paper is to generalize Theorem A by us-
ing (φ, δ)-monotone sequences. Now, we shall prove the following theorem.
Theorem 2.1 Let (λn) → 0 as n → ∞. Suppose that there exists a sequence of

numbers (μn) which is (φ, δ)-monotone with
∑

μnφn is convergent and |Δλn| ≤
μn

n
for all n. If the conditions (6) and

m∑
n=1

pn
Pn

|tn|k = O
(φm

m

)
as m → ∞ (8)

are satisfied, then the series
∑

anλn is summable |N̄ , pn|k, k ≥ 1.
Lemma 2.1 Under the conditions of Theorem 2.1, we have that

|λn|φn = O (1) as n → ∞. (9)

Lemma 2.2 If (μn) is (φ, δ)-monotone with
∑

μnφn is convergent, then

∞∑
n=1

φn|Δμn| < ∞. (10)

.his paphis pap
e shalle shall
∞∞. Su. Su
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Proof of Theorem 2.1 Let (Tn) be the sequence of (N̄ , pn) means of the series∑
anλn. Then by definition, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv. (11)

Then, for n ≥ 1,we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv =
pn

PnPn−1

n∑
v=1

Pv−1λv

v
vav. (12)

By Abel’s transformation, we have

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

Δ
(Pv−1λv

v

) v∑
r=1

rar +
pnλn

nPn

n∑
v=1

vav

=
(n+ 1)pntnλn

nPn
− pn

PnPn−1

n−1∑
v=1

pvtvλv
v + 1

v
+

pn
PnPn−1

n−1∑
v=1

PvΔλvtv
v + 1

v

+
pn

PnPn−1

n−1∑
v=1

Pvλv+1tv
1

v
= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To complete the proof of Theorem 2.1, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞ for r = 1, 2, 3, 4.

First, we get

m∑
n=1

(
Pn

pn

)k−1

|Tn,1|k = O(1)

m∑
n=1

|λn|pn|tn|k
Pn

= O(1)
m−1∑
n=1

Δ|λn|
n∑

r=1

pr
Pr

|tr|k +O(1)|λm|
m∑

n=1

pn
Pn

|tn|k

= O(1)

m−1∑
n=1

μnφn +O(1)|λm|φm = O(1) as m → ∞,

by the hypotheses of Theorem 2.1 and Lemma 2.1.

Now, applying Hölder’s inequality, as in Tn,1, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = O(1)

m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

pv|tv|k|λv|k
{ 1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

|λv|k−1|λv|pv|tv|k
m+1∑

n=v+1

pn
PnPn−1

= O(1)

m∑
v=1

|λv|
pv
Pv

|tv|k

= O(1) as m → ∞,

.||λλnn||
nn∑∑
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by the hypotheses of Theorem 2.1 and Lemma 2.1.
Now, using (6), we get

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = O(1)
m+1∑
n=2

pn
PnP k

n−1

{ n−1∑
v=1

Pv|Δλv||tv|
}k

= O(1)
m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

μk
vpv|tv|k

{ 1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

μk−1
v μvpv|tv|k

m+1∑
n=v+1

pn
PnPn−1

= O(1)
m∑

v=1

μv
pv
Pv

|tv|k

= O(1)
m−1∑
v=1

|Δμv|
v∑

r=1

pr
Pr

|tr|k +O(1)μm

m∑
v=1

pv
Pv

|tv|k

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2.
Finally, again using (6), as in Tn,1, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,4|k = O(1)
m+1∑
n=2

pn
PnP k

n−1

{ n−1∑
v=1

Pv

v
|λv+1||tv|

}k
= O(1)

m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

pv|λv+1|k|tv|k
{ 1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

|λv+1|k−1|λv+1|pv|tv|k
m+1∑

n=v+1

pn
PnPn−1

= O(1) as m → ∞.

This completes the proof of Theorem 2.1.

An application to trigonometric Fourier series

Let f be a periodic function with period 2π and Lebesque integrable over (−π, π).
The trigonometric Fourier series of f is defined as

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) =
∞∑

n=0

Cn(x) (13)

where (an) and (bn) denote the Fourier coefficients.

Write Ψ(t) =
1

2
{f(x+ t) + f(x− t)} and Ψ1(t) =

1

t

∫ t

0

Ψ(u)du.

It is well known that if Ψ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the
n-th (C,1) mean of the sequence (nCn(x)) (see [4]). Hence using this fact, we get
following result for trigonometric Fourier series.
Theorem 3.1 If Ψ1(t) ∈ BV(0, π) and the sequences (pn), (λn) and (μn) satisfy the
conditions of Theorem 2.1, then the series

∑
Cn(x)λn is summable |N̄ , pn|k, k ≥ 1.
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A geometrically convergent modified

moving asymptotes method

Allal Guessab1 , Abderrazak Driouch1,2 , Otheman Nouisser2

Abstract

A new modified moving asymptotes method is presented. In each step of
the iterative process, a strictly convex approximating subproblem is generated
and explicitly solved, and in doing so we propose a strategy to incorporate a
modified second-order information for the moving asymptotes location. This
considerably reduces the computational cost of our optimization method and
may both stabilize and speed up the convergence of the general process. Under
natural assumptions, we prove the geometrical convergence of the associated
optimization algorithm. In addition experimental results reveal that the present
method is significantly faster compared to the [1] method, Newton’s method and
the BFGS Method, and it will succeed where these latter diverge simultaneously.

2010 Mathematics Subject Classifications : 65K05, 65K10, 65L10, 90C30,
46N10.

Keywords: Non-convex, non linear optimization Global convergence, Method of
moving asymptotes.

Introduction

Consider the unconstrained optimization problem: Find x∗ ∈ Ω such that

f (x∗) = min
x∈Ω

f (x) , (1)

where Ω is an open subset of R and f : R → R is a given non-linear real-valued
objective function, typically twice continuously differentiable, which could be non-
convex. In order to evaluate the merit of using second order information an extension
of the method of moving asymptotes, that accounts for the curvatures, was proposed
in [1]. Let us first briefly recall its main idea. Throughout, we assume that f ′ does
not vanish at a given suitable initial point x(0) ∈ Ω, that is f ′(x(0)) 	= 0, since if this
is not the case we have nothing to solve. Starting from the initial design point x(0)

the iterates x(k) are computed successively by solving sub-problems of the form: Find
x(k+1) such that

f (k)(x(k+1)) = min
x∈Ω

f (k)(x), (2)

Throughout this paper we assume that w is a function satisfying the following condi-
tions:

w is a real-valued function, defined and continuous on R, (3)

lim|x|→+∞w(x) = 0. (4)

Our general modification of moving asymptotes method that we examine herein may
be described as follows: Given the iteration point x̃(k) (at iteration k).

.= min= min
xx∈∈ΩΩ

ff

ff :: RR →→

MICOPAM2018_b5.indd   81MICOPAM2018_b5.indd   81 16.1.2019.   11.26.0716.1.2019.   11.26.07



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY82

• The objective function f is iteratively approximated at the k-th iteration by

the approximating function f̃
(k)
w where:

f̃ (k)
w (x) = ã(k) + b̃(k)(x− x̃(k)) + (5)

c̃(k)

(
1

2

(x̃(k) − d̃(k))3

x− d̃(k)
+

1

2
(x̃(k) − d̃(k))(x− 2x̃(k) + d̃(k))

)
.

• The approximating function f̃
(k)
w is first order approximations of the original

function f at the current iteration point x̃(k), i.e.,

f̃ (k)
w (x̃(k)) = f(x̃(k)), (6)

(f̃ (k)
w )′(x̃(k)) = f ′(x̃(k)). (7)

In addition to the above conditions (6) and (7), the approximating function
should satisfy the more general condition (8) instead of the second order inter-
polation condition:

(f̃ (k)
w )′′(x̃(k)) =

∣∣∣f ′′(x̃(k)) + w(x̃(k))f ′(x̃(k))
∣∣∣ . (8)

Consequently, in the present situation, the approximate parameters ã(k), b̃(k) and
c̃(k) are here determined for each iteration such that:

ã(k) = f(x̃(k)), (9)

b̃(k) = f ′(x̃(k)), (10)

c̃(k) =
∣∣∣f ′′(x̃(k)) + w(x̃(k))f ′(x̃(k))

∣∣∣ . (11)

Furthermore, in order to fully determine an explicit expression for the approximating

function f̃
(k)
w , the parameter d̃(k) is chosen such that

d̃(k) = x̃(k) + 2α̃(k) f
′(x̃(k))

c̃(k)
, (12)

where {α̃(k)}k is a sequence of real numbers with

α̃(k) > 1, (k ∈ N). (13)

Different rules for how to choose these values (and possible weight functions in (8))
will be discussed later. We note that our method does not use the second order
interpolation condition, but instead we have incorporated a first- and second-order
information, as given in (11). Moreover, in particular, if you take w = 0 and if we
suppose that the objective function is convex, then our iterative scheme obviously
reduces to the one introduced in [1]. Hence, subsequent iterations of the [1] method

are similar, except that in the proposed approximating function f̃
(k)
w the parameters

c(k) and d(k) are replaced by those computed in (11) and (12) respectively. It starts
at an initial point x̃(0) and generates successive iterates by

f(x̃(k+1)) ← f̃ (k)
w (x̃(k+1)) = min

x∈Ω
f̃ (k)
w (x) . (14)

For simplicity, we have removed the index w in x̃
(k)
w .

.+ 2˜+ 2α̃α((kk

mbers wmbers w
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We prefer to work with (11) instead of the second order interpolation condition
for several reasons. First, as mentioned above, this allows us to apply our method
to a large class of objective functions. There is also a significant difference from a
numerical point of view: many experimental results reveal that the iterative scheme
based on our modification (11) can yield significantly fewer iterations than the [1]
method, Newton’s method or the BFGS Method itself. In contrast to these three
approaches, our method converges even if the starting point is very far from the true
solution. In addition, as we will see, the key features of the present method are:

• It does not require us to build a good initial solution close to the exact solution.

• It converges geometrically for a large class of functions w that satisfy condition
(4).

• It will succeed where the [1] method, Newton’s method and the BFGS Method
break down.

Newton’s method and the BFGS Method have a well-studied convergence theory that
guarantees the convergence to a solution under a standard set of assumptions. For
these and other their variants, the interested reader should consult one of the many
excellent books on this subject [2, pp. 48–75] and [3, pp. 75–89]. We refer the readers
to [1] and the references therein for the method of moving asymptotes.
We have not succeeded in proving that the method can be extended to multiple
dimensions, but in practice, we have found it to work in two dimensions.

Main Results

Convergence Analysis

We start this section with a result concerning an explicit expression for the itera-

tive sequence
{
x̃(k)
}
k
generated by the approximating function f̃

(k)
w . Here, we continue

to denote by c̃(k), d̃(k) and α̃(k) the coefficients given by (11), (12) and (13) respec-
tively. Note that condition (13), imposed on the parameters α̃(k), is crucial since it

will guarantee strict convexity of the approximating function f̃
(k)
w . For brevity, in the

following we use the notation:

Ik =
]
−∞, d̃(k)

[
∪
]
d̃(k),+∞

[
, (15)

Theorem 1. With the above notation, let Ω ⊂ R be an open subset of the real line,
a given twice continuously differentiable function f in Ω, x̃(0) ∈ Ω and x̃(k) being
respectively the initial and a current point of the sequence

{
x̃(k)
}
k≥0

. Then, for each

k > 0 the approximating function defined by (5) is a strictly convex function on Ik.
In addition, the function f̃

(k)
w has an unique minimum at

x̃(k+1) ← x̃
(k)
∗ = d̃(k) + (x̃(k) − d̃(k))

√
s̃(k) (16)

where

s̃(k) =
α̃(k)

α̃(k) − 1
. (17)

.sed on tsed on t

pproximpproxim
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Convergence study

In this Section, we give the main result of this paper, that is sufficient conditions
on the data (the point x̃(0), the function f ′ in a neighborhood of x̃(0), the family
f ′′ (x̃(k)

)
, k ≥ 0), which guarantee that first derivative of f vanishes in a neighborhood

of x∗, first, and secondly, the convergence of the method to this zero.
To establish our convergence results, we need the following assumptions. We assume
that there exist positive constants r, M and ξ < 1 such that the following assumptions
hold:

Assumption 1.

Br :=
{
x ∈ R :

∣∣∣x− x̃(0)
∣∣∣ ≤ r

}
⊂ Ω.

Assumption 2.

0 <
α̃(k)

α̃(k) − 1
≤ M

2
c̃k, (k > 0). (18)

Assumption 3.

sup
k≥0

sup
x∈B

∣∣∣∣∣f ′′(x)−
f ′ (x(k−1)

)
x(k−1) − x̃(k)

∣∣∣∣∣ ≤ ξ

M
.

Assumption 4.

0 <
∣∣∣f ′
(
x̃(0)
)∣∣∣ ≤ r

M
(1− ξ) .

Throughout this subsection, we assume that Assumptions 1-4 hold. The constants
r, M and ξ < 1 that appear in the subsequent analysis are always the constants from
Assumptions 1-4. Our aim is to show that the sequence

{
x̃(k)
}
k≥0

defined by (19)

converges geometrically to a point x∗ in the sense that∣∣∣x̃(k) − x∗
∣∣∣ ≤ ξk

1− ξ

∣∣∣x(1) − x(0)
∣∣∣ .

Theorem 2. Assume Assumptions 1-4 hold. Let the assumptions of theorem 1 be
valid and let s̃(k) be defined by (17). Then the sequence

{
x̃(k)
}
k≥0

given by

x̃(k+1) = d̃(k) + (x̃(k) − d̃(k))
√
s̃(k) (19)

is completely contained in the interval Br, and converges to the unique zero of f ′ in
Br.
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Omega Invariant and Its Applications in

Graph Theory

Aysun Yurttas1 , Muge Togan2 , Sadik Delen3 , Ismail Naci Cangul3

Abstract

The last two authors recently defined a new graph invariant denoted by
Ω(G) in terms of a given degree sequence which is also related to the cyclomatic
number. It has many important combinatorial applications in graph theory
and gives direct information compared to the better known Euler characteristic
on the realizability, connectedness, cyclicness, components, chords, loops etc.
Many similar classification problems can be solved by means of Ω. In this
paper, we study the change of several topological graph indices, the first, second
and third Zagreb indices, forgotten index, sigma index and Narumi-Katayama
index amongst all possible realizations of a given degree sequence. These results
enable us to solve many extremal problems related to graphs.

2010 Mathematics Subject Classifications : 05C07, 05C10, 05C30, 05C35,
57M15.

Keywords: Ω of a graph, degree sequence, graph index, Zagreb index, forgotten
index, sigma index, Narumi-Katayama index.

Introduction

Let G = (V,E) be a graph with size m and order n. The degree of a vertex
v ∈ V (G) is denoted by dv. If the degree of v is one, then it is called a pendant
vertex. The biggest vertex degree of G is denoted by Δ, respectively. If u and v are
connected to each other by an edge e, this situation will be denoted by e = uv. In
such a case, the vertices u and v are called adjacent vertices and the edge e is said to
be incident with u and v. A graph is connected when there is a path between every
pair of vertices. A graph that is not connected is disconnected. A graph having no
cycle will be called acyclic and the remaining graphs are called cyclic graphs. An edge
connecting a vertex to itself is called a loop, and at least two edges connecting two
vertices will be called multiple edges.

Written with multiplicities, a degree sequence is written as

DS(G) = {1(a1), 2(a2), 3(a3), · · · ,Δ(aΔ)}

where ai’s are non-negative integers. If we allow the graph to be disconnected and
to have isolated points, then we must also add 0a0 at the beginning of D(S(G)). Let
D = {d1, d2, d3, · · · , dk} be a set of non-decreasing non-negative integers. A graph G
is called a realization of the set D if the degree sequence of G is equal to D.

For a realizable degree sequence, there may be more than one graph having this
degree sequence and this is usually the case. For example, the two graphs in Fig. 2
have the same degree sequence:

.is denois deno
this sitthis sit
led adjled adj
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Figure 1 Graphs with the same DS

The most well-known result to determine realizability is the Havel-Hakimi process.
For this and some other algorithms, see [1], [2], [3], [6], [7].

The following number have recently been defined by last two authors:

Definition 1. Let
D = {1(a1), 2(a2), · · · ,Δ(aΔ)} (1)

be a set of non-negative integers. Ω(D) is defined in terms of the degree sequence D
as

Ω(D) = a3 + 2a4 + 3a5 + · · ·+ (Δ− 2)aΔ − a1

=

Δ∑
i=1

(i− 2)ai.

The number Ω is fixed for all the realizations of a given degree sequence and
therefore is a graph invariant. In [4] and [5], several properties of this Ω invariant
have been obtained. In [5], a connected realization having a cycle of length a2 + a3 +
a4+a5+ · · ·+aΔ, loops, chords and a1 pendant edges was called a cyclic fundamental
realization ofD when Ω(D) ≥ 0. At the same reference, there are two more definitions
for fundamental realizations when Ω = −2 and Ω ≤ −4.

Change of graph indices

The following theorem given in [4] will be the main tool for our calculations in
this section. It determines the possible realizations of a given degree sequence with
zero Ω invariant:

Theorem 2 ([4]). Let D = {1(a1), 2(a2), · · · ,Δ(aΔ)} where a1 > 0 and a2, a3, · · · , aΔ ≥
0. If Ω(D) = 0, then D can be realized as a connected unicyclic graph where the length
of this unique cycle could be anything between 1 and a2 + a3 + · · ·+ aΔ.

The main idea used in the proof was to cut-and-paste process. Start with an
a2 + a3 + · · ·+ aΔ-gon C = Ca2+a3+···+aΔ so that all vertices on C are placed consec-
utively from smallest degree to largest degree. Using the fact that Ω(D) = 0, it was
shown that we can add one pendant edge to the vertices of degree 3, two pendant
edges to the vertices of degree 4, three pendant edges to the vertices of degree 5, and
finally Δ− 2 pendant edges to the vertices of degree Δ. This is the fundamental real-
ization defined in [5]. An algorithm was then defined to obtain all unicylic realizations
having all positive integers between a2 + a3 + · · · + aΔ and 1 as cycle length. Let
us denote the realizations obtained at each step of the algorithm by Ca2+a3+···+aΔ−1,
Ca2+a3+···+aΔ−2, · · · , C1. For example if we start with C = C8, then there are 7 steps
giving C7, C6, · · · , C1.

We now calculate the change of six important graph indices amongst all the re-
alizations mentioned in Theorem 2. The first, second and third Zagreb indices of a
graph G were defined by

M1(G) =
∑

v∈V (G)

d2v, (2)

.· ·· · ,,ΔΔ((aa
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M2(G) =
∑

uv∈E(G)

du · dv, (3)

M3(G) =
∑

uv∈E(G)

(du + dv)
2. (4)

The forgotten Zagreb index of G was defined by

F (G) =
∑

v∈V (G)

d3v. (5)

It is not difficult to see that

M3(G) = F (G) + 2M2(G). (6)

The sigma index was defined as one of the irregularity measures by

σ(G) =
∑

uv∈E(G)

(du − dv)
2, (7)

and satisfies the relation
σ(G) = F (G)− 2M2(G). (8)

The last index we deal with in this paper is the Narumi-Katayama index defined by

NK(G) =
∏

v∈V (G)

du. (9)

Theorem 3. Let the graph G be one of the realizations of the degree sequence D
given in Theorem 2 so that Ω(D) = 0. If Δ ≤ 9, then M2(G) has its smallest and
largest values amongst all realizations given in Theorem 2 for C and C1, respectively.
If Δ ≥ 10, then M2(G) has its smallest and largest values amongst all realizations
given in Theorem 2 for C1 and C, respectively.

Proof. We use the steps of above algorithm to prove the results. We start by a
a2 + a3 + · · ·+ aΔ-gon C. We first show that the number of pendant edges added to
the vertices of C is equal to a1. Indeed, this number is a3+2a4+3a5+ · · ·+(Δ−2)aΔ
which is equal, by the definition, to Ω+a1 which is a1 in this case. In C, there are a3
(1, 3)-vertices, 2a4 (1, 4)-vertices, 3a5 (1, 5)-vertices, · · · , (Δ − 2)aΔ (1,Δ)-vertices,
a2 − 1 (2, 2)-vertices, a3 − 1 (3, 3)-vertices, · · · , aΔ − 1 (Δ,Δ)-vertices, one (2, 3)-
vertex, one (3, 4)-vertex, · · · , one (Δ− 1,Δ)-vertex, and finally one (Δ, 2)-vertex. So
the second Zagreb index of this realization is equal to

M2(C) =
∑Δ

i=2

[
(ai − 1) · i2 + ai · (i− 2) · (1 · i) + i · (i− 1)

]
+ 2Δ− 2

=
∑Δ

i=2 2i · (i− 1) · ai −
Δ2 − 3Δ + 2

2
.

Next, we draw an a2 + a3 + a4 + · · · + aΔ − 1-gon by omitting one of the vertices,
say v, having the smallest degree on C together with any pendant edges incident
with it and the end vertices incident with these edges. To keep the Ω(G) unchanged,
we add a new vertex which we call v again, onto one, say uva2+a3+···+aΔ , of the
da2+a3+···+aΔ − 2 existing pendant edges. So the second Zagreb index of this new
graph Ca2+a3+···+aΔ−1 is

M2(Ca2+a3+···+aΔ−1) =
∑Δ

i=2

[
(ai − 1) · i2 + ai · (i− 2) · (1 · i) + i · (i− 1)

]
+ 3Δ− 4.

.thm tothm to
that thethat the
is numbis numb

MICOPAM2018_b5.indd   88MICOPAM2018_b5.indd   88 16.1.2019.   11.26.0916.1.2019.   11.26.09



Dedicated to Professor G. Milovanović Antalya-TURKEY89

PROCEEDINGS BOOK OF MICOPAM 2018

Continuing in the same fashion, we reach to a 1-gon (loop) C1 which has the second
Zagreb index

M2(C1) =
∑Δ

i=2 2i · (i− 1) · ai −
Δ2 +Δ− 36

2
.

Now define a function f such that

f(Δ) = M2(Ca2+a3+···+aΔ
)−M2(G1)

= 2Δ− 19.

First note that f ′(Δ) = 2 and f is always increasing. Also for Δ < 19/2,M2(Ca2+a3+···+aΔ) <
M2(G1) and for Δ > 19/2, M2(Ca2+a3+···+aΔ) > M2(G1). This completes the
proof.

Theorem 4. Let the degree sequence D be realizable and have Ω(D) = 0. Then

i the first Zagreb index of G is the same for all graphs G given in Theorem 2;

ii the forgotten Zagreb index of G is the same for all graphs G given in Theorem
2.

iii the Narumi-Katayama index of G is the same for all graphs G given in Theorem
2.

Proof. The first two indices are defined as the sum of powers of the vertex degrees.
The third one is the product of all vertex degrees. As the degree sequence is the same
for all the realizations, each of these three indices takes the same value.

Corollary 5. Let the graph G be one of the realizations of the degree sequence D
given in Theorem 2 so that Ω(D) = 0. If Δ ≤ 9, then M3(G) has its smallest and
largest values amongst all realizations given in Theorem 2 for C and C1, respectively.
If Δ ≥ 10, then M3(G) has its smallest and largest values amongst all realizations
given in Theorem 2 for C1 and C, respectively.

Proof. It follows from Eqn. 6 and Theorem 3.

Corollary 6. Let the graph G be one of the realizations of the degree sequence D
given in Theorem 2 so that Ω(D) = 0. If Δ ≤ 9, then σ(G) has its smallest and
largest values amongst all realizations given in Theorem 2 for C and C1, respectively.
If Δ ≥ 10, then σ(G) has its smallest and largest values amongst all realizations given
in Theorem 2 for C1 and C, respectively.

Proof. It follows from Eqn. 8 and Theorem 3.
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Application of Topological Degree Method

In Quantitative Behavior of Fractional

Differential Equations

Ghaus ur Rahman1

Abstract

In this paper, we study existence and uniqueness of positive solution to a
classes of fractional order differential equations involving the Caputo deriva-
tives. By using classical fixed point theorem on topological degree methods for
condensing map, we obtain sufficient conditions for existence and uniqueness of
positive solution. Some conditions devoted to the stability of Hyers-Ullams type
are also established. Moreover suitable example will be provided to illustrate
the main results.

2010 Mathematics Subject Classifications : 30E25, 26A33, 34A37, 34B05
Keywords: Topological degree method, condensing map, Hyers-Ullams type sta-

bility, fractional differential equations

Introduction

The study of fractional differential equations expand from theoretical background
of existence and uniqueness of positive solutions to numerical methods for finding
solutions. Fractional differential equations have been used in various fields e.g eco-
nomics, physics and engineering for detail (see[5],[6],[7] and reference therein). It has
large applications in image and signal processing phenomenons, nonlinear oscillation
of earthquakes. The existence theory has been studied very well by using the tools of
classical fixed point theory, for detail (see[2],[3],[4],[8]).

There are two aspects of differential equations, qualitative aspect and quantitative.
In qualitative aspect we do not deal with the actual solution of the system of differen-
tial equations, rather we discuss the general behavior of the whole family of solution
in phase plane. While in the quantitative aspect of system of differential equations we
explore the numerical or exact solution of the system. This paper is concerned with
the existence, uniqueness and data dependence of solution to the following classes of
nonlocal Cauchy problems and boundary value problems of fractional order, using
topological degree method.{

cDpu(t) = f(t, u(t)), t ∈ I = [0, 1], 1 < p ≤ 2,

u(0) = u0, u(1) = g(u),
(1)

where g, h : C(J,R) → R are nonlocal functions and f : [0, 1]× R → R is continuous
function, cDp is the Caputo fractional derivatives of order p, 0 < p < 1. Also A is
bounded linear operator from D(A) to R.

.processiprocessi
as beenas been
see[2] [3see[2] [3
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Main Results

Existence, uniqueness and data dependence results of the model
(1)

In this section, we deal with the existence, uniqueness and data dependence of the
problem (1). Initially we assume the some assumptions. Now we study the existence
and uniqueness of solution for (1).

Theorem 1. Fractional differential equation of non-local Cauchy problem{
cDpu(t) = y(t), t ∈ I = [0, 1],

u(0) = u0, u(1) = g(u),

has a unique solution u, which possess the form u(t) =
∫ 1
0
G(t, s)y(s)ds, where G(t, s)

is the Green function given by

G(t, s) = 1

Γ(p)

{
− t(1− s)p−1 + (t− s)p−1, 0 ≤ s ≤ t ≤ 1,

− t(1− s)p−1, 0 ≤ t ≤ s ≤ 1.
(2)

Theorem 2. The operator F : C(J,R) → C(J,R) is Lipschitz continuous with Lips-
chitzen kg ∈ [0, 1). Consequently F is α- Lipschitz with constant k, moreover F obeys
the growth condition provided by

||F (u)|| ≤ |u0|+ Cg||u||q1 +M1.

Theorem 3. The operator G : C(J,R) → C(J,R) is continuous, moreover G satisfies
the following growth condition

||Gu|| ≤ 1

Γ(p+ 1)
[Cf ||u||q2 +M2].

Theorem 4. The operator G : C(J,R) → C(J,R) is compact, consequently G is
α-Lepschitiz with zero constant.

Theorem 5. Let (H1) to (H3) hold, then (1) has at least one solution u ∈ C(J,R)
and the solution set of (1) is bounded in C(J,R).

Theorem 6. Assume that (H1) − (H4) hold, then fractional NCP(1) has a unique

solution u ∈ C(J,R) if and only if kg +
Lf

Γ(p+1) < 1.

Theorem 7. Under the assumption (H1)− (H4), the BVP (1) is Hyers-Ulam stable
and hence generalized Hyers-Ulam stable if

Υ =

(
kg +

Lf

Γ(α+ 1)

)
	= 1.

Conclusion

The present manuscript mainly deals with the existence results for a class of
nonlocal Cauchy problem with boundary conditions. The input functions which are
designated by g, h : C(J,R) → R are nonlocal functions. Using some fixed point
theorem and topological degree theory to exhibit the solutions of the said problems.
Moreover, for both problem, sufficient conditions were successfully developed under
which they are Hyers-Ullam and generalize Hyers-Ullam stable

.henhen (1)(1)
nn CC((JJ
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Semilocal convergence of

Sakurai-Torii-Sugiura method for

simultaneous approximation of polynomial

zeros

Petko D. Proinov1, Stoil I. Ivanov2

Abstract

In this talk, we provide a new semilocal convergence theorem for a fourth-
order iterative method for the simultaneous approximation of polynomial zeros
due to Sakurai, Torii and Sugiura [1]. This theorem improves and complements
the existing result of Petković, Rančić and Milošević [2]. Two numerical exam-
ples are given to show some practical applications of our result.

2010 Mathematics Subject Classifications : 65H05
Keywords: Iterative methods, Polynomial zeros, Simultaneous methods, Semilo-

cal convergence, Error estimates

Introduction

Let f(z) = a0z
n + a1z

n−1 + · · ·+ an be a complex polynomial. We consider the
zeros ξ1, . . . , ξn of f as a vector ξ in Cn. More precisely, a vector ξ ∈ Cn is said to be
a root vector of f if f(z) = a0

∏n
i=1(z − ξi) for all z ∈ C.

In 1991, Sakurai, Torii and Sugiura [1] introduced a fourth-order iterative method
for simultaneous finding polynomial zeros. The Sakurai-Torii-Sugiura method can be
defined in Cn by the following iteration:

x(k+1) = x(k) − Φ(x(k)), k = 0, 1, 2, . . . , (1)

where the correction function Φ: Cn → Cn is defined by

Φ(x) = (Φ1(x), . . . ,Φn(x)) withΦi(x) =

⎧⎨⎩
2L i(x)

L i(x)2 − Fi(x)
if f(xi) 	= 0,

0 if f(xi) = 0,

with L i(x) and Fi(x) defined as follows

L i(x) =
f ′(xi)

f(xi)
−
∑
j 	= i

1

xi − xj
, Fi(x) =

f ′′(xi)

f(xi)
−
(
f ′(xi)

f(xi)

)2

+
∑
j 	= i

1

(xi − xj)2
.

In 2003, Petković, Rančić and Milošević [2] established a semilocal convergence result
for the iteration method (1). They proved that if f ∈ C[z] is a polynomial of degree
n ≥ 3 with only simple zeros and x(0) ∈ Cn is an initial approximation with distinct
components such that

‖Wf (x
(0))‖∞ <

δ(x(0))

3n+ 1
,

.os. Theos. The
n:n:

((kk))))
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then the Sakurai-Torii-Sugiura method (1) is convergent to a root vector of f . Here
and throughout, ‖ · ‖∞ stands for the max-norm on Cn, the function Wf : C

n → Cn

is the well known Weierstrass’ correction defined by

Wf (x) = (W1(x), . . . ,Wn(x)) with Wi(x) =
f(xi)

a0
∏

j 	= i (xi − xj)

and the function δ : Cn → R+ is defined by

δ(x) = min
i 	= j

|xi − xj |. (2)

The main purpose of this talk is to present a new semilocal convergence theorem
for the Sakurai-Torii-Sugiura iteration (1) which improves and complements the result
of Petković et al. [2]. We end the work with two numerical examples that show some
practical applications of our result.

Main Result

We define a relation of equivalence ≡ on Cn by x ≡ y if there exists a permutation
(i1, . . . , in) of the indixes (1, . . . , n) such that

(x1, . . . , xn) = (yi1 , . . . , yin).

Now we can define a distance between two vectors x, y ∈ Cn as follows:

ρ(x, y) = min
u≡ y

‖x− u‖∞.

Recently, Proinov [3, 4, 5] has developed a general convergence theory for the
Picard type iterative methods. Using this theory, in [6] we proved two new semilocal
convergence theorems for the Sakurai-Torii-Sugiura method (1). The following result
is a consequence of one of these theorems. This result improves and complements the
above mentioned result of Petković et al. [2] in several directions.

Theorem 1. Let f ∈ C[z] be a polynomial of degree n ≥ 2 and x(0) ∈ Cn be a vector
with pairwise distinct components satisfying

‖Wf (x
(0))‖∞ ≤ 8

(3 +
√
8n− 7)2

δ(x(0)). (3)

Then f has only simple zeros and the iteration (1) is well defined and converges to a
root-vector ξ of f with order of convergence four and with error estimate

ρ(x(k), ξ) ≤ α(Ef (x
(k))) ‖Wf (x

(k))‖∞

for all k ≥ 0 such that Ef (x
(k)) < 1/(1 +

√
n− 1)2, where the functions Ef and α are

defined by

Ef (x) =
‖Wf (x)‖∞

δ(x)
and α(t) =

2

1− (n− 2)t+
√

(1− (n− 2)t)2 − 4t

and the function δ is defined by (2).

.[ ][ ]
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Numerical results

Let f ∈ C[z] be a polynomial of degree n ≥ 2 and x(0) ∈ Cn be an initial approx-
imation. In the examples below, we apply the Sakurai-Torii-Sugiura method (1) for
computing all the zeros ξ1, . . . , ξn of f simultaneously.

The main purpose of this section is to show that Theorem 1 can be used for solving
the following very important practical problems:

i) numerical proof of the convergence of Sakurai-Torii-Sugiura method;
ii) numerical proof of the guaranteed accuracy of approximations at each iteration.
Let us define the functions Ef and α as in Theorem 1. It follows from Theorem 1

that if there exists an integer m ≥ 0 such that

Ef (x
(m)) ≤ Rn =

8

(3 +
√
8n− 7)2

, (4)

then the iteration (1) is well-defined and converges to a root vector ξ of f with order
of convergence four. Besides, for a given accuracy ε > 0 if there exists an integer
k ≥ 0 such that

Ef (x
(k)) < τn =

1

(1 +
√
n− 1)2

and εk = α(Ef (x
(k))) ‖Wf (x

(k))‖∞ < ε, (5)

then f has only simple zeros and at kth iteration the root vector ξ of f is calculated
with guaranteed accuracy εk. For each example, we calculate the smallest integer
m ≥ 0 which satisfies the convergence condition (4) and the smallest k ≥ 0 which
satisfies the accuracy criterion (5) with ε = 10−15.

Example 2. In this example, we consider the polynomial

f(z) = z5 − 15z4 + 22z3 + 438z2 − 1175z − 1575

with zeros ±5, −1, 7, 9 and initial guess x(0) = (−5.7,−1.8, 4.1, 6.2,−9.8) which
are taken from Cholakov and Vasileva [7, Example 5.1]. We can see in Table 1 that
the convergence condition (4) is satisfied for m = 1 and the accuracy criterion (5) is
satisfied for k = 3. At the third iteration, the zeros of f are found with guaranteed
accuracy less than 10−21. Moreover, at the forth iteration the zeros of f are calculated
with accuracy 10−91.

Table 1: Numerical results for Example 2 (τn = 0.111111).

m Ef (x
(m)) Rn k Ef (x

(k)) εk εk+1

1 0.090882 0.104619 3 7.8× 10−23 1.5× 10−22 1.1× 10−91

Example 3. Consider the polynomial f(z) = z15 + z14 + 1 and Aberth’s initial
approximation x(0) ∈ Cn defined by

x(0)
ν = −a1

n
+ r0 exp(i θν), θν =

π

n

(
2ν − 3

2

)
, ν = 1, . . . , n,

with a1 = 1, r0 = 2 and n = 15. As can be seen from Table 2 the convergence condition
(4) is satisfied for m = 5, the accuracy criterion (5) is satisfied for k = 6 and at the
seventh iteration the zeros of f are calculated with an accuracy of at least 10−84. In
Figure 1, we present the trajectories of approximations generated by 6 iterations.

.on, theon, the
the fortthe fort
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Figure 1: Trajectories of approximations for Example 3.

Table 2: Numerical results for Example 3 (τn = 0.044477).

m Ef (x
(m)) Rn k Ef (x

(k)) εk εk+1

5 5.2× 10−6 0.043061 6 8.6× 10−22 3.7× 10−22 1.1× 10−85
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On the Upper Second Submodules

Seçil Çeken1

Abstract

Let R be a ring with identity and M be a left R-module. The set of all second
submodules of M is called the second spectrum of M and denoted by Specs(M).
For each prime ideal p of R we define Specsp(M) := {S ∈ Specs(M) : annR(S) =
p}. A second submodule Q of M is called an upper second submodule if there
exists a prime ideal p of R such that Specsp(M) �= ∅ and Q =

∑
S∈Specsp(M)

S. In

this note we give some characterizations of upper second submodules of some
module classes.

2010 Mathematics Subject Classifications : 16D10, 16D80
Keywords: Second submodule, Upper Second submodule

Introduction

Throughout this paper all rings will be associative rings with identity elements
and all modules will be unital left modules. Unless otherwise stated R will denote a
ring. By a proper submodule N of a left R-module M, we mean a submodule N with
N 	= M . Given a left R-module M, we shall denote the annihilator of M (in R) by
annR(M).

A non-zero R-module M is called a prime module if annR(M) = annR(K) for
every non-zero submodule K of M . A proper submodule N of a module M is called
a prime submodule of M if M/N is a prime module. If N is a prime submodule
of a module M , then annR(M/N) = p is a prime ideal of R and in this case N is
called a p-prime submodule of M . The set of all prime submodules of a module M is
called the prime spectrum of M and denoted by Spec(M). Also, the set of all p-prime
submodules of M is denoted by Specp(M) for a prime ideal p of R (see [11]).

In [13], S. Yassemi introduced second submodules of modules over commutative
rings as the dual notion of prime submodules. Second modules over arbitrary rings
were defined in [2] and used as a tool for the study of attached primes over noncom-
mutative rings. A right R-module M is called a second module provided M 	= (0)
and annR(M) = annR(M/N) for every proper submodule N of M . By a second
submodule of a module, we mean a submodule which is also a second module. If N
is a second submodule of a module M , then annR(N) = p is a prime ideal of R and
in this case N is called a p-second submodule of M . Recently, second submodules
have attracted attention of many authors and they have been extensively studied in
a number of papers (see for example [1], [3], [4], [6], [7], [8], [9]).

In [5], Behboodi and Shojaee introduced the notion of lower prime submodules
and investigated a topology on the set of these submodules. A prime submodule Q of
a module M is called a lower prime submodule if there exists a prime ideal p of R such
that Specp(M) 	= ∅ and Q =

⋂
P∈Specp(M)

P . Motivated by this notion, in this paper,

we define the concept of upper second submodule and investigate some properties of
this module class.

.pp is a pis a p
set of aset of a
noted bynoted by
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Upper Second Submodules and Upper Dual Zariski
Topology

Definition 1. Let M be a left R-module. A second submodule Q of M is called an
upper second submodule if there exists a prime ideal p of R such that Specsp(M) 	= ∅
and Q =

∑
S∈Specsp(M)

S. The set of all upper second submodules of M is called upper

second spectrum of M and denoted by u.Specs(M).

Clearly, if S, Q ∈ u.Specs(M), then S = Q if and only if annR(S) = annR(Q).

Proposition 2. Let R be a ring such that R/P is a right or left Goldie ring for every
prime ideal P of R. If M is an injective left R-module, then u.Specs(M) = {(0 :M
p) : p is a prime ideal of R and (0 :M p) 	= 0}.

Proof. The result follows from [8, Lemma 3.9].

We will characterize the upper second submodules of an Artinian module. To do
this we need some preliminary results. First, we generalize the notion of p-interior of
a submodule which was defined in [3]. Let R be a commutative ring, p be a prime
ideal of R and N be a submodule of an R-module M . Following [3], the p-interior of
N is defined as the set

Ip(N) := ∩{L : L is a completely irreducible submodule of M and rN ⊆ L for
some r ∈ R\p}.

Let R be an arbitrary ring, p be a prime ideal of R and M be an R-module. We
generalize the p-interior of a submodule N of M as follows.

IMp (N) = ∩{L : L is a completely irreducible submodule of M and AN ⊆ L for
some ideal A 	⊆ p}.

Clearly, IMp (N) is a submodule of M and IMp (N) ⊆ N .

Theorem 3. Let N be a submodule of a left R-module M such that annR(N) = p is
a prime ideal of R. If M/IMp (N) is a finitely cogenerated R-module, then IMp (N) =∑

S∈Specsp(N) S, i.e. IMp (N) is an upper second submodule of N .

Proof. First, we show that annR(I
M
p (N)) = p. Since IMp (N) ⊆ N , we have annR(N) =

p ⊆ annR(I
M
p (N)). Let s ∈ annR(I

M
p (N)). Since M/IMp (N) is finitely cogenerated,

there exist an n ∈ Z+ and completely irreducible submodules Li of M such that
AiN ⊆ Li for some ideals Ai 	⊆ p and IMp (N) = ∩n

i=1Li. Set A = A1...An. Then

AN ⊆ IMp (N) and so (sA) = 0. It follows that (RsR)A ⊆ p. Since A 	⊆ p, we have

s ∈ p. Therefore, annR(I
M
p (N)) = p. Now, we show that IMp (N) is a second submod-

ule of M . Let B be an ideal of R such that BIMp (N) � IMp (N). Then there exists a

completely irreducible submodule L of M . such that BIMp (N) ⊆ L and IMp (N) 	⊆ L.

Hence, for each ideal C 	⊆ p, we have CN 	⊆ L. Now, AN ⊆ IMp (N) implies BAN ⊆ L.

This leads to BA ⊆ p. Since A 	⊆ p, we have B ⊆ p. Thus, BIMp (N) = 0. This shows

that IMp (N) is a p-second submodule of N . Then, clearly, IMp (N) ⊆
∑

S∈Specsp(M) S.

Suppose that there exists a p-second submodule S of N such that IMp (N) � S. Since

IMp (N) = ∩n
i=1Li � S, there exists Li (1 ≤ i ≤ n) such that S 	⊆ Li, but AN ⊆ Li.

Since S is p-second and A 	⊆ p, we have S = AS ⊆ AN ⊆ Li, a contradiction. Thus,
there does not exist a p-second submodule S of N such that IMp (N) � S. Since∑

S∈Specsp(M) S is a p-second submodule of N , we have IMp (N) =
∑

S∈Specsp(M) S.

.)) =)) = pp..

NN)). Si)). Si
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Corollary 4. Let p be a prime ideal of R and M be an R-module such that M/IMp ((0 :M
p)) is a finitely cogenerated R-module. If IMp ((0 :M p)) 	= 0, then IMp ((0 :M p)) is an
upper second submodule of M .

Proof. By Theorem 3, it is enough to show that annR((0 :M p)) = p. To see this,
suppose that r(0 :M p) = 0 and r 	∈ p. Hence for each completely irreducible submod-
ule L of M , we have r(0 :M p) ⊆ L. Then (RrR)(0 :M p) ⊆ L and (RrR) 	⊆ p.
So, IMp ((0 :M p)) ⊆ L. Hence IMp ((0 :M p)) = 0, a contradiction. Therefore

annR((0 :M p)) = p and by Theorem 3, IMp ((0 :M p)) is an upper p-second sub-
module of (0 :M p). Let S be a p-second submodule of M . Since S ⊆ (0 :M p),
we have S ⊆ IMp ((0 :M p)). Thus IMp ((0 :M p)) is an upper p-second submodule of
M .

Corollary 5. Let p be a prime ideal of R and M be an R-module such that M/IMp ((0 :M
p)) is a finitely cogenerated R-module. Then the following statements are equivalent.

(1) annR((0 :M p)) = p.
(2) IMp ((0 :M p)) is an upper second submodule of M .
(3) There exists a second submodule K of M such that p = annR(K).
(4) IMp ((0 :M p)) 	= 0.

Proof. The result follows from Theorem 3 and Corollary 4.

Corollary 6. Let M be an Artinian left R-module. Then
u.Specs(M) = {IMp ((0 :M p)) : p is a prime ideal of R and Specsp(M) 	= ∅}.

Proof. The result follows from Corollary 4.
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A note on combinatorial numbers and

polynomials

Irem Kucukoglu1

Abstract

In this paper, we aim to introduce generating functions for higher-order of
the recently introduced family of special numbers and polynomials, which are
associated essentially with not only Apostol-type numbers and polynomials, but
also combinatorial numbers such as Simsek numbers and polynomials, by Ku-
cukoglu and Simsek [2]. Thereafter, by making use of these functions with their
functional equation, we derive some combinatorial sums including the higher-
order of λ-Apostol-Daehee polynomials in addition to the higher-order of Simsek
numbers and polynomials.

2010 Mathematics Subject Classifications : 05A10, 05A15, 11B83, 26C05,
30D05.

Keywords: Combinatorial sum, Functional Equation, Generating functions, Bi-
nomial coefficient, λ-Apostol-Daehee polynomials, Simsek numbers and polynomials,
Special numbers and polynomials

Introduction

Combinatorial numbers and polynomials arise in various kind of areas such as
mathematics, engineering and mathematical physics. Recently, these kinds of combi-
natorial numbers and polynomials have been defined by Simsek [5]. In this paper, we
focus on these numbers and polynomials. We give some new formulas and relations
on these numbers and polynomials.

In [1], higher-order of the Simsek numbers Yn (λ) and the Simsek polynomials
Yn (x;λ) were defined by the following generating functions, respectively:

F (t, k;λ) =

(
2

λ (1 + λt)− 1

)k

=
∞∑

n=0

Y (k)
n (λ)

tn

n!
, (1)

and

F (t, x, k;λ) = F (t, k;λ) (1 + λt)
x
=

∞∑
n=0

Y (k)
n (x;λ)

tn

n!
. (2)

where k is nonnegative integer and λ is a real or complex number.
Note that

Yn (λ) = Y (1)
n (λ) ,

Yn (x;λ) = Y (1)
n (x;λ) ,

and
Y (k)
n (λ) = Y (k)

n (0;λ) .

For detail information about these numbers and polynomials, the reader may
consult the recent works [1] and [5], [7].

.ls. Wels. We

numbernumber
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In [2], generating function for the numbers In,d (λ, q) and the polynomials In,d (x;λ, q
which are associated with not only the Apostol-type numbers and polynomials, but
also combinatorial numbers and polynomials, were defined as follows, respectively:

Fd (t;λ, q) =
log(1 + λt)

(λq)
d
(1 + λt)d − 1

=
∞∑

n=0

In,d (λ, q)
tn

n!
, (3)

and

Gd (t, x;λ, q) = (1 + λt)xFd (t;λ, q) =

∞∑
n=0

In,d (x;λ, q)
tn

n!
(4)

where |λt| < 1.
The generating function for the higher-order of λ-Apostol-Daehee polynomials

D
(k)
n (x;λ) was defined by Simsek in [4] as follows:

FD (t, x;λ, k) =

(
log λ+ log(1 + λt)

λ2t+ λ− 1

)k

(1 + λt)x =
∞∑

n=0

D(k)
n (x;λ)

tn

n!
, (5)

where k is nonnegative integer and λ is a real or complex number (cf. [3], [4], [6]).

Main Results

In this section, we give generating functions for higher-order of the numbers
In,d (λ, q) and the polynomials In,d (x;λ, q) which are recently introduced by Ku-
cukoglu and Simsek [2].

Let k be nonnegative integers and λ be real or complex numbers. We define the
numbers In,d (λ, q) of order k and the polynomials In,d (x;λ, q) of order k by the
following generating functions, respectively:

Fd (t;λ, q, k) =

(
log(1 + λt)

(λq)
d
(1 + λt)d − 1

)k

=
∞∑

n=0

I
(k)
n,d (λ, q)

tn

n!
, (6)

and

Gd (t, x;λ, q, k) = (1 + λt)xFd (t;λ, q) =

∞∑
n=0

I
(k)
n,d (x;λ, q)

tn

n!
, (7)

where |λt| < 1.
Note that

In,d (λ, q) = I
(1)
n,d (λ, q) ,

In,d (x;λ, q) = I
(1)
n,d (x;λ, q) ,

and
I
(k)
n,d (λ, q) = I

(k)
n,d (0;λ, q) .

Now, it is time to obtain some identities and relations involving the numbers

I
(k)
n,d (λ, q) and the polynomials I

(k)
n,d (x;λ, q).

Theorem 1 gives us a relation between the numbers I
(k)
n,d (λ, q) and the polynomials

I
(k)
n,d (x;λ, q) is given by the following theorem:

Theorem 1. Let n be a nonnegative integer. Then we have

I
(k)
n,d (x;λ, q) =

n∑
j=0

(
n

j

)
λn−j (x)n−j I

(k)
n,d (λ, q) .

.FFddFFF ((tt;;λλ

MICOPAM2018_b5.indd   104MICOPAM2018_b5.indd   104 16.1.2019.   11.26.1216.1.2019.   11.26.12



Dedicated to Professor G. Milovanović Antalya-TURKEY105

PROCEEDINGS BOOK OF MICOPAM 2018

Proof. By using equations (6) and (7) and assuming that |λt| < 1, we get

∞∑
n=0

I
(k)
n,d (x;λ, q)

tn

n!
=

∞∑
n=0

(x)n λ
n t

n

n!

∞∑
n=0

I
(k)
n,d (λ, q)

tn

n!
.

By using Cauchy product rule in the above equation and comparing the coefficient
tn

n! on both sides of the final equation, we arrive at the assertion of Theorem 1.

Theorem 2 gives us a combinatorial sum in order to compute some special values

of the polynomials I
(k)
n,d (x;λ, q) with the help of the higher-order of λ-Apostol-Daehee

polynomials and the higher-order of Simsek polynomials.

Theorem 2.

I
(k)
v,1 (x;λ, 1) =

k∑
j=0

n∑
v=0

(
k

j

)(
n

v

)(
− log λ

2

)j

D
(k−j)
n−v (x;λ)Y (j)

v (λ) . (8)

Proof. Combining(1), (5) and (7), we obtain the following functional equation:

G1 (t, x;λ, 1, k) =
k∑

j=0

(−1)
j

(
k

j

)(
log λ

2

)j

FD (t, x;λ, k − j)F (t, j;λ) .

From the above functional equation, we obtain

∞∑
n=0

I
(k)
n,1 (x;λ, 1)

tn

n!
=

k∑
j=0

(−1)
j

(
k

j

)(
log λ

2

)j
( ∞∑

n=0

D(k−j)
n (x;λ)

tn

n!

)

×
( ∞∑

n=0

Y (j)
n (λ)

tn

n!

)
. (9)

By using the Cauchy product rule in (9) and comparing the coefficient tn

n! on both
sides of the final equation, we arrive at the assertion of Theorem 2.

Theorem 3 gives us a combinatorial sum in order to compute the higher-order of

λ-Apostol-Daehee polynomials with the aid of the polynomials I
(k)
n,d (x;λ, q) and the

higher-order of Simsek polynomials.

Theorem 3.

D(k)
n (x;λ) =

k∑
j=0

n∑
v=0

(
k

j

)(
n

v

)(
log λ

2

)k−j

Y
(k−j)
n−v (λ) I

(j)
v,1 (x;λ, 1) . (10)

Proof. By making use of the binomial theorem in (5) and combining the final equation
with (1) and (7), we get the following functional equation:

FD (t, x;λ, k) =
k∑

j=0

(
k

j

)(
log λ

2

)k−j

F (t, k − j;λ)G1 (t, x;λ, 1, j) . (11)

It follows from the above functional equation that

∞∑
n=0

D(k)
n (x;λ)

tn

n!
=

k∑
j=0

(
k

j

)(
log λ

2

)k−j
( ∞∑

n=0

Y (k−j)
n (λ)

tn

n!

)

×
( ∞∑

n=0

I
(j)
n,1 (x;λ, 1)

tn

n!

)
. (12)

By using Cauchy product rule in (12) and comparing the coefficient tn

n! on both sides
of the final equation, we arrive at the assertion of Theorem 3.

.
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Power GCDQ Matrices over Euclidean

Domains

Y. A. Awad1 , H. Y. Chehade2 , R. H. Mghames3

Abstract

In this paper, we use a generalization for the Jordan totient function over
Euclidean domains (EDs) to give a full generalization of the power GCD ma-
trices. Their structures, determinants, inverses, and norms defined on arbitrary
and factor-closed q-ordered sets are also presented over EDs.

2010 Mathematics Subject Classifications : 11C20, 11A05, 15A36
Keywords: power GCDQ matrix, q-ordering, factor-closed sets, prime residue

system, Euclidean domains.

Preliminaries

Let T = {t1, t2, ..., tm} be a well ordered set of m distinct positive integers with
t1 < t2 < ... < tm and let (ti, tj) be the greatest common divisor (GCD) of ti and tj ,
respectively. The GCD matrix (T ) defined on T is anm×mmatrix whose ijth−entry
is tij = (ti, tj) and its power GCD matrix defined on T is (T r) whose ijth entry is
tij = (ti, tj)

r, where r is a non negative real number. The set T = {t1, t2, ..., tm} is
said to be factor-closed (FC) set if it contains all the divisors of its elements.

Definition 1. Let T = {t1, t2, ..., tm} be a set of non-zero non-associate elements in
an Euclidean domain S with measure q, and let {p1, p2, ..., pi, ..} be an ordered listing
of all primes in P of S that divide all the elements of T . Assume that {p1, p2, ..., pi, ..}
has the order inherited from the well ordering of P, then we define an ordering on S
via the following scheme: ti <q tj if q(ti) < q(tj), and we call it q-ordering.

We note that the relation <q is a well-defined linear ordering defined on S. Hence,
if the set T = {t1, t2, ..., tm} such that t1 <q t2 <q ... <q tm, then we say that T is
q-ordered. Note that the ring of Gaussian integers S = Z[i] with q : S−{0} → N∪{0}
defined by q (a+ bi) = a2+b2 is an ED with measure q, where N is the set of positive
integers.

Definition 2. Let S be ED with measure q. A complete set P = {p1, p2, p3, ...}
is said to be a prime residue system of S if P is a complete, well q-ordered set of
non-associate prime elements of S.

In the following, we study the GCDQ matrices defined over any Euclidean domain
S with a prime residue system P and measure q.

Definition 3. For any non-zero element x ∈ S with the unique factorization, up
to associates, x = upα1

1 pα2
2 ...pαm

m define the totally multiplicative function φs(x) =
m

Π
i=1

q
(
pαi−1
i

)
((q(pi)− 1), where pi ∈ P , αi ∈ N , and u is a unit in S such that

φs(u) = 1.

.e elemee eleme
rderingrdering
)) < q< q((
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Theorem 4. If x ∈ S and E(x) is a complete set of distinct non-associate divisors

d of x in S then q(x) =
∑

d∈E(x)

φs(d).

Definition 5. Let x = upα1
1 pα2

2 ...pαm
m be a non-zero element in S. Define the Jor-

dan totient function Jk,s on S − {0} to be the multiplicative function Jk,s(x) =
m

Π
i=1

q (pi)
k(αi−1) (

q(pi)
k − 1

)
with Jk,s(x) = 1 if x is unit.

Theorem 6. If x ∈ S and E(x) is a complete set of distinct non-associate divisors

d of x in S, then q (x)
k
=
∑

d∈E(x)

Jk,s(d).

Power GCDQ Matrices over Euclidean Domains

Definition 7. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate
elements in S, then the rth power GCDQ matrix defined on T is the m ×m matrix
(T r)q whose ij

th entries are defined as (tij)r = q ((ti, tj))
r
, where (ti, tj) is the greatest

common divisor of ti and tj in S and r is any non negative real number.

Example 8. T = {1, 1 + i, 2} is q-ordered set in Z[i] with the measure function

q (a+ bi) = a2 + b2. The 2nd power GCDQ matrix is (T 2)q =

⎡⎣ 1 1 1
1 4 4
1 4 16

⎤⎦.
Definition 9. The set T = {t1, t2, ..., tm} of non-zero non-associate elements in S is
said to be factor-closed (FC) if whenever d divides an element ti in T , then d is an
associate to some element tj in T.

Factorizations of Power GCDQ Matrices over Euclidean Do-
mains

In the following, the set D = {y1, y2, ..., yn} be the minimal FC set containing T
in S, and let E(t) be a complete set of distinct non-associate divisors d of every t in
T .

Theorem 10. Let T = {t1, t2, ..., tm} be a q-ordered set of non-zero non-associate
elements in S. Then, (T r)q = EGrE

T where Gr is a diagonal matrix and E is a
m× n lower triangular incidence matrix.

Proof. Consider the n× n diagonal matrix Gr = (gii) such that gii = Jr,s(yi) for all
i = 1, 2, ..., n, and E = (eij) to be the incidence matrix such that eij = 1 if yj ∈

E(ti) and 0 otherwise. Then, (EGrE
T )ij =

n∑
k=1

(eikJr,s(yk)ejk) =
∑

yk∈E(ti)

yk∈E(tj)

Jr,s(yk) =

∑
yk∈E((ti,tj))

Jr,s(yk) = (q(ti, tj))
r
= (tij)r.

Theorem 11. Let T = {t1, t2, ..., tm} be a q-ordered set a of non-zero non-associate
elements in S. Then,(T r)q = GrEr where Gr is a m×n matrix and Er is an incidence
matrix corresponding to the transpose of Gr with n ≥ m.

.distincdistinc
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Proof. Consider the matrix Gr = (gij)m×n such that gij = Jr,s(yj) if yj ∈ E(ti) and
0 otherwise. Let Er = (eij) be the incidence matrix such that eij = 1 if gji 	= 0 and
0 otherwise. Then,

(GrEr)ij =

n∑
k=1

(gikekj) =
∑

yk∈E(ti)

yk∈E(tj)

Jr,s(yk) =
∑

yk∈E((ti,tj))

Jr,s(yk) = (q(ti, tj))
r

Determinants of Power GCDQ Matrices over Euclidean Do-
mains

Theorem 12. If T = {t1, t2, ..., tm} is a q-ordered FC set of non-zero non-associate

elements in S, then det(T r)q =
m

Π
i=1

Jr,s(ti).

Proof. Since T is FC, then (T r)q = EGrE
T such that E is a lower triangular matrix

with diagonal entries eij = 1. Therefore, det(T r)q = det(EGrE
T ) = 1×det(Gr)×1 =

det(Gr) =
m

Π
i=1

Jr,s(ti)

Note that we may prove the above theorem by using the factorizations (T r)q =
GrBr and (T r)q = GrG

T
r .

Corollary 13. (Smith’s determinant) If T = {t1, t2, ..., tm} is FC, then det(T ) =
m

Π
i=1

φ(ti).

Proof. If S = Z and r = 1, then J1,Z = φ, where φ is Euler’s totient function, then

det(T ) =
m

Π
i=1

Jr,s(ti) =
m

Π
i=1

J1,Z(ti) =
m

Π
i=1

φ(ti)

Corollary 14. (Generalization of Smith’s Determinant) Let S be ED with
prime residue system P and measure q. If T = {t1, t2, ..., tm} is a q-ordered FC set

of non-zero non-associate elements in S, then det(T )q =
m

Π
i=1

J1,s(ti) =
m

Π
i=1

φs(ti).

Theorem 15. Let S be ED with prime residue system P and measure q. If T =
{y1, y2, ..., yn} is the minimal q-ordered FC set containing T = {t1, t2, ..., tm} in S
with m < n. Let E(k1,k2,...,km)r be the submatrix consisting of the kth1 , kth2 , ..., kthm
columns of E for some indices ki such that 1 < k1 < k2 < ... < km < n. Then,

det(T r)]q =
∑

1≤k1<k2<...<km≤n

((
detEr(k1,k2,...,km)

)2 m

Π
i=1

Jr,s(yki)

)
Proof. Let Gr = (gij) and Er = (eij) be its corresponding incidence matrix, where
gij = Jr,s(yj) if yj ∈ E(ti) and 0 otherwise. But, Gr is a diagonal matrix whose
diagonal entries are gii = Jr,s(y1) for all 1 ≤ i ≤ n, so the ijth entry of Gr may be
written as eijJr,s(yj) and (T r) = EGrE

T . Define, for some indices ki such that
1 < k1 < k2 < ... < km < n, the matrices Ar(k1,k2,...,km)

and Er(k1,k2,...,km)
to

be the submatrices consisting of kth1 , kth2 , ..., kthm columns of Gr and E respectively,
then Gr(k1,k2,...,km)

= Er(k1,k2,...,km)
Dr, where Dr is the m × m diagonal submatrix

of Gr whose diagonal elements are dii = Jr,s(yki
). Therefore, det(Gr(k1,k2,...,km)

) =

.. If. If TT

SS, then, then

MICOPAM2018_b5.indd   109MICOPAM2018_b5.indd   109 16.1.2019.   11.26.1316.1.2019.   11.26.13



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY110

det(Er(k1,k2,...,km)
)

(
m

Π
i=1

dii

)
. Now, by applying Cauchy-binet formula we obtain that

det(T r)q = detGrE
T

=
∑

1≤k1<k2<...<km≤n

((
detGr(k1,k2,..,km)

)(
detEr(k1,k2,...,km)

)T)

=
∑

1≤k1<k2<...<km≤n

(
det(Er(k1,k2,...,km)

)

(
m

Π
i=1

Jr,s(yki)

)(
detEr(k1,k2,...,km)

)T)

=
∑

1≤k1<k2<...<km≤n

((
m

Π
i=1

Jr,s(yki
)

)(
detEr(k1,k2,...,km)

)2)

Corollary 16. If (T r)q is the rth power GCDQ matrix defined on any set T in S,
then det(T r)q ≥ Jr,s(t1)Jr,s(t2)...Jr,s(tm).

Theorem 17. (Generalization of Beslin and Ligh’s Result) Let S be ED with prime
residue system P and measure q. If (T r)q is the rth power GCDQ matrix defined on

T = {t1, t2, ..., tm} in S, then det(T r)q =

m∏
i=1

Jr,s(ti) if and only if T is FC.

Proof. If T is FC in S, then, by Theorem ??, det(T r)q = Jr,s(t1)Jr,s(t2)...Jr,s(tm).
Conversely, suppose that det(T r)q = Jr,s(t1)Jr,s(t2)...Jr,s(tm) and T is not FC. Let
D = {t1, t2, ..., tm, tm+1, tm+2, ..., tm+s} be the minimal FC set containing T such
that t1 <q t2 <q .... <q tm and tm+1 <q tm+2 <q ... <q tm+s. Since D is not
associate to T in S, then there exist at least one element tm+1 in D, but not in T
such that tm+1 ∈ E(t) for some t in T . Let tk be the first element in T such that
tm+1 ∈ E(tk) then the submatrix A(1,2,...,k−1,m+1,k+1,...,m) consisting of the 1st, 2nd,

..., (k− 1)th, (m+ 1)th, (k+ 1)th, ..., mth columns of Am×(m+s) is a lower triangular
matrix of nonzero determinant. Hence, E(1,2,...,k−1,m+1,k+1,....,m) is a {0-1} matrix

whose diagonal elements are equal to 1 such that det
(
E(1,2,...,k−1,k+1,....,m,m+1)

)
=

± det
(
E(1,2,...,k−1,m+1,k+1,....,m)

)
= ±1, because E(1,2,...,k−1,k+1,....,m,m+1)r is ob-

tained from E(1,2,...,k−1,m+1,k+1,....,m)r by performing a certain number of successive
column permutations. By Theorem ??, we get

det(T r)q =
∑

1≤k1<k2.....<km≤n

((
detE(k1,k2,.....,km)r

)2 m

Π
i=1

Jr,s(tki
)

)

=
m

Π
i=1

Jr,s(tki
) +

m+1

Π
i=1
i	=k

Jr,s(tki
) + ... >

m

Π
i=1

Jr,s(tki
)

and this contradicts the necessary condition that the equality holds. Therefore D ≈ T
and T is FC.

Inverses of Power GCDQ Matrices over Euclidean Domains

Definition 18. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate
elements in S, then the inverse of the power GCDQ matrix defined on T is denoted
by (T r)

−1
q such that (T r)q (T

r)
−1
q = Im.

Theorem 19. If T = {t1, t2, ..., tm} is a q-ordered set of non-zero non-associate
elements in S. Let U = (uij) such that uij = μ( titj ) if tj ∈ E(ti) and 0 otherwise. Let

E = (eij) such that eij = 1 if tj ∈ E(ti) and 0 otherwise. Then, U = E−1.

.1, beca1, beca
by perfby perf
we getwe get
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Proof. (EU)ij =

m∑
k=i

eikukj =
∑

ukj

tk∈E(ti)

=
∑

tj∈E(tk)

tk∈E(ti)

μ( tk

tj
) =

⎧⎪⎨⎪⎩
∑

t∈E(
ti
tj

)

μ(t) if tj ∈ E(ti)

0 otherwise

=

{
1 if tj ≈ ti
0 otherwise

. Therefore, U = E−1.

Theorem 20. If T = {t1, t2, ..., tm} is a q-ordered FC set of non-zero non-associate
elements in S. Then, (T r)−1

q = UTG−1
r U , where Gr = diag(Jr,s(t1), Jr,s(t2), ...,

Jr,s(tm)).

Proof. Since, T is FC, then (T r)q = EGrE
T . Therefore,

(
(T r)−1

q

)
ij
=
(
UT (Gr)

−1U
)
ij
=

k∑
i=1

uik
1

Jr(tk)
ukj =

∑
ti∈E(tk)

tj∈E(tk)

1
Jr(tk)

μs

(
ti
tk

)
μs

(
tj
tk

)
.
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A Recurrence Relation for the q-Appell

Polynomials

Rahime Dere Paçin1

Abstract

In this work, we investigate some properties of the q-Appell polynomials
based upon the q-umbral algebra. We focus on some operators which are useful
for obtaining recurrence relations for the q-Appell polynomials. Both methods
of umbral calculus and quantum calculus are used in this study.

2010 Mathematics Subject Classifications : 05A40, 05A30, 11B83.
Keywords: q-umbral calculus, q-calculus, q-Appell polynomials.

Introduction

Throughout of this paper, we use the notation

[x]q =

{
1−qx

1−q , q 	= 1

x, q = 1,

where 0 < q < 1 when q ∈ R and |q| < 1 when q ∈ C.
Derivative operator t is defined by

txn =
xn − (qx)

n

x− qx
= [n]q x

n−1.

The q-analogue of the exponential series is defined by

εq (yt) =
∞∑
k=0

(yt)
k

[k]q!
.

One must notice that εq (yt) is well defined for all |yt| < 1
|1−q| if |q| < 1 and for

all yt ∈ C if |q| > 1 or q = 1.
For detailed information, see [8], [9], [12], [13].
The main definitions and results about umbral algebra can be found in [13].
Let P be the algebra of polynomials in the single variable x over the field complex

numbers. Let P∗ be the vector space of all linear functionals on P. Let 〈L | p(x)〉 be
the action of a linear functional L on a polynomial p(x). Let F denotes the algebra
of formal power series

f (t) =

∞∑
k=0

a
k

[k]q!
tk.

This algebra is called q-umbral algebra. Each f ∈ F defines a linear functional on P
and for all k � 0, ak =

〈
f (t) | xk

〉
.

In the special case, 〈
tk | xn

〉
= [n]q!δn,k,

.eries iseries is

∞∞
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where

δn,k =

{
0, n 	= k
1, n = k.

Let f(t), g(t) be in F, we have

〈f(t)g(t) | p (x)〉 = 〈f(t) | g(t)p (x)〉 .

The order o (f (t)) of a power series f (t) is the smallest integer k for which the
coefficient of tk does not vanish. A series f (t) for which o (f (t)) = 1 is called a delta
series. And a series f (t) for which o (f (t)) = 0 is called a invertible series.

Let f (t) be a delta series and let g (t) be an invertible series. Then there exist a
unique sequence Sn (x) of polynomials satisfying the orthogonality conditions〈

g(t)f(t)k | Sn(x)
〉
= [n]q!δn,k (1)

for all n, k ≥ 0.
The sequence Sn(x) in (1) is the q-Sheffer polynomials for pair (g(t), f(t)), where

g(t) must be invertible and f(t) must be delta series. In particular, the q-Sheffer
polynomials for pair (g(t), t) is the q-Appell polynomial for g(t).

Every q-Appell polynomials satisfy the identities listed below:
The polynomial Sn (x) is q-Appell for g (t) if and only if

1

g (t)
εq (yt) =

∞∑
k=0

Sk (y)

[k]q!
tk (2)

for all constants y ∈ C.
The polynomial Sn (x) is q-Appell for g (t) if and only if

Sn (x) = g (t)
−1

xn (3)

The polynomial Sn (x) is q-Appell for g (t) if and only if

tSn (x) = [n]q Sn−1 (x) (4)

For detailed information, see [13], [12], [4], [5], [6]
q-derivative operator defined by Dt,q : tn −→ [n]q t

n−1,

Dt,qf (t) =
f (t)− f (qt)

t− qt
,

where q 	= 1 ([13]).

Main Results

θ operator defined by

θ : xn −→ (n+ 1)

[n+ 1]q
xn+1.

One can observe that
θtxn = [n]q θx

n−1 = nxn,

and so
θt = xD

where D is the ordinary derivative ([13]).
If we investigate the relationship between operators θ and Dx,q, we get

θt =
n

[n]q
xDx,q. (5)

.qq :: tt

==
ff ((tt)).tt
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Lemma 1. Let Sn (x) be a q-Appell polynomial. Then

θSn (x) =
n

[n]q
xSn (x) . (6)

Proof. See that

θSn (x) = θ
1

[n+ 1]q
tSn+1 (x) .

By using (5) and (4), we get

θSn (x) =
1

[n+ 1]q

n

[n]q
xDx,qSn+1 (x)

=
1

[n+ 1]q

n

[n]q
x [n+ 1]q Sn (x)

=
n

[n]q
xSn (x) .

Roman ([13]) gave a recurrence formula for generalized Sheffer polynomials. After
making some necessary changes, we give the following theorem:

Theorem 2. Let Sn (x) be a q-Appell polynomials for g (t). Then

(n+ 1)Sn+1 (x) = [n+ 1]q

(
θ − Dt,q (g (t))

g (t)

)
Sn (x) . (7)

Conclusion

The family of q-Appell polynomials includes very important polynomials such as q-
Bernoulli polynomials, q-Euler polynomials and q-Hermite polynomials. The further
investigation on this polynomials is making by the author.
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Cylcic Generalized Group of Units of

Z[i]/ < β >

Haissam Y. Chehade1, Wiam M. Zeid2, Y. A. Awad3

Abstract

In this article, we study the structure of the generalized second group of
units, U2(R) of the quotient ring R = Z[i]/ < β >. In particular, we consider
the case where the generalized second group of units, U2(R) is cyclic.

2010 Mathematics Subject Classifications : 11R04, 13F15, 16U60
Keywords: Group of units, cyclic group and Gaussian primes.

Introduction

The fundamental theorem of finite abelian groups states that any finite abelian
group G is isomorphic to a direct product of cyclic groups. That is, G ∼= Zn1

×
Zn2

× ...×Znr
. Hence, the group of units of a finite commutative ring with identity is

isomorphic to a direct product of cyclic groups. The decomposition of Un, the group
of units of Zn, into a product of cyclic groups of prime power order is given in the
following theorem.

Theorem 1. Let n = pa1
1 .pa2

2 ...par
r be the decomposition of n into product of distinct

prime powers. Then, Un
∼= Up

a1
1

× Up
a2
2

× ...× Upar
r
. Moreover,

1. U2
∼= Z1.

2. U22
∼= Z2.

3. U2a
∼= Z2 × Z2a−2 , where a > 2.

4. Upa ∼= Zp−1 × Zpa−1 , where p is an odd prime.

Let G1, G2, ..., Gr be finite cyclic groups. Then G1 ×G2 × ...×Gr is cyclic if and
only if their orders are pairwise relatively prime, see [4].

Lemma 2. If G1×G2× ...×Gr is cyclic, then each Gs is cyclic and gcd(|Gs| , |Gt|) =
1.

IfR is a finite commutative ring with identity, then U(R) denotes its group of units.
It is well known that if R decomposes as a direct sum of rings, R = R1 ⊕R2...⊕Rr,
then U(R) ∼= U(R1)×U(R2)× ...×U(Rr). In [3], El-Kassar and Chehade generalized
the concept of the group of units as follows: the multiplicative group U(R) support a
ring structure by defining the operations ⊕ and ⊗ on U(R) that makes (U(R),⊕,⊗) a
ring isomorphic to U(R1)⊕U(R2)⊕ ...⊕U(Rr). The ring U(R1)⊕U(R2)⊕ ...⊕U(Rr)
will be denoted by R2 ∼= U(R) and R1 denote the ring R. They defined U2(R) to be
the group of units of the ring R2 ∼= U(R) so that U2(R) = U(R2) ∼= U(U(R)) and
U2(R) ∼= U2(R1)× U2(R2)× ...× U2(Rr).

.
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Theorem 3. Let γ1, γ2, ..., γr be distinct Gaussian prime integers and let β =

r∏
j=1

γ
nj

j ,

then
Z[i]/ < β >∼= Z[i]/ < γn1

1 > ⊕Z[i]/ < γn2
2 > ⊕...⊕ Z[i]/ < γnr

r >

and

U2 (Z[i]/ < β >) ∼= U2 (Z[i]/ < γn1
1 >)×U2 (Z[i]/ < γn2

2 >)×...×U2 (Z[i]/ < γnr
r >) .

We may also write U2 (β) ∼= U2 (γn1
1 )× U2 (γn2

2 )× ...× U2 (γnr
r ) , see [1].

For the notations, we henceforth use

• m, n and r always denote positive integers,

• p and pj always denote prime integers that are congruent to 3 modulo 4,

• γ and γj always denote Gaussian prime integers,

• π and πj always denote Gaussian prime integers of the form a+ bi where a and
b are non-zero integers,

• q = q(π) = ππ and qj = qj(πj) = πjπj are always prime integers that are
congruent to 1 modulo 4,

• S1 and S2 always denote the respective sets {3, 4, 5} and
{2, 4, ds, 2ds}, where d is an odd prime integer.

The problem of classifying the group of units of an arbitrary finite commutative
ring with identity is an open problem. However, the problem is solved for certain
cases. In the case when R = Zn, it is well-known that Un is cyclic if and only if
n = 2, 4, pα, qα, 2pα or 2qα, see [5]. Also, Cross [2] showed that the group of units of
the quotient ring of Gaussian integers, U(Z[i]/ <β>), is cyclic if and only if β = 1+ i,

(1 + i)
2
, (1 + i)

3
, p, (1 + i)p, πn, (1 + i)πn. Chehade and Al-Saleh [1] studied the

trivial case of the group of units of the ring Z[i]/ <β> and its generalization U2(β).
El-Kassar and Chehade [3] showed that U2(Zn) is cyclic if n is a product of at most
three prime power factors when n > 1. Their results are summarized in the following
theorem.

Theorem 4. U2(Zn) is cyclic if and only if one of the following is true:

1. n = 2α.3.p, where a ≤ 3.

2. n = 3.p, where p = 4k + 3 and 2k + 1 = qa.

3. n = 24.3 or 2a.3b, where a ≤ 3.

4. n = 2a, where a ≤ 4.

5. n = 5 or 2pα + 1, where 2pα + 1 = q.

The structure of the group of units of the ring Z[i]/ < β > given in the below
theorem is due to cross [2].

Theorem 5.

1. U(1 + i) ∼= Z1.

.++ ii))ππ ..
ringring ZZ
tt UU22((ZZnn

MICOPAM2018_b5.indd   118MICOPAM2018_b5.indd   118 16.1.2019.   11.26.1516.1.2019.   11.26.15



Dedicated to Professor G. Milovanović Antalya-TURKEY119

PROCEEDINGS BOOK OF MICOPAM 2018

2. U((1 + i)2) ∼= Z2.

3. U((1 + i)n) ∼= Z2m−1 × Z2m−2 × Z4 if n = 2m.

4. U((1 + i)n) ∼= Z2m−1 × Z2m−1 × Z4 if n = 2m+ 1.

5. U (πn) ∼= Zqn−qn−1 .

6. U(pn) ∼= Zpn−1 × Zpn−1 × Zp2−1.

The goal of this paper is to study cyclic property of the generalized group of units,
U2(β), of the ring Z[i]/ <β>.

Cyclic Second group of Units

We completely characterize all rings Z[i]/ < β > for which the U2(β) is cyclic. We
start with the case where β is a Gaussian prime power integer. Note that U2 (1 + i) ∼=
{0} and hence cyclic.

A Prime Power Factor

Lemma 6. Let β = (1 + i)n with n ≥ 2, then U2(β) is cyclic if and only if n ∈ S1.

Proof. If n = 2m+1, then U2 ((1 + i)n) ∼= U(Z2m−1)×U(Z2m−1)×Z2 which is cyclic
if U(Z2m−1) is cyclic of odd order. Hence, 2m−1 ∈ S2. But |U(Z2m−1)| = φ(2m−1) is
odd if m = 2 and hence n = 5. If m = 1, then n = 3 and U2 ((1 + i)n) ∼= Z2 which is
cyclic.
Now, if n = 2m then U2 ((1 + i)n) ∼= U(Z2m−1)×U(Z2m−2)×Z2 is cyclic if U(Z2m−1)
and U(Z2m−2) are cyclic with relatively prime odd orders. But U(Z2m−1) and U(Z2m−2)
are cyclic if m = 2, 3 or 4. For m = 2, U2

(
(1 + i)4

) ∼= Z2 is cyclic. The cases m = 3
or 4, φ(2m−1) is even and U2 ((1 + i)n) is not cyclic.

Lemma 7. U2(pn) is not cyclic.

Proof. U2(pn) ∼= U(Zpn−1) × U(Zpn−1) × U(Zp2−1). For n > 1, pn−1 > 2 and
gcd
(
φ(pn−1), φ(pn−1)

)
= φ(pn−1) is even and hence U2(pn) is not cyclic. If n = 1,

then U2(pn) ∼= U(Zp2−1) is cyclic if p2 − 1 ∈ {2, 4, 2ds}. The cases p2 − 1 = 2 or
4 are dismissed since no integer solution exists. Also, the case when p2 − 1 = 4 is
dismissed. Since p ≡ 3 (mod 4) , the case p2 − 1 = 2ds gives ds = 4(2k2 + 3k + 1)
which is a contradiction.

Lemma 8. U2(πn) is cyclic if and only if n = 1 and q = 5.

Proof. Since q ≡ 1 (mod 4) , then U2(πn) ∼= U(Zqn−qn−1) ∼= U(Zt) where t = 4k(4k+
1)n−1.But U(Zt) is cyclic if t ∈ S2. For t = 2, 2k(4k + 1)n−1 = 1 and no integer
solution exists. For t = 4, k(4k + 1)n−1 = 1 which is true if and only if k = n = 1
and q = 5. The case t = ds is dismissed since t is even. The case t = 2ds gives
2k(4k + 1)n−1 = ds which is also dismissed. Therefore, U2(β) is cyclic if and only if
n = 1 and q = 5. Conversely, Its easy to prove that U2(πn) is cyclic when n = 1 and
q = 5.

Summarizing the preceding three lemmas, the following theorem is obtained.

Theorem 9. If β is a Gaussian prime power integer, then U2(β) is cyclic if and only
if one of the following is true:

.−−11)) ××.UU
ven andven and

MICOPAM2018_b5.indd   119MICOPAM2018_b5.indd   119 16.1.2019.   11.26.1516.1.2019.   11.26.15



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY120

1. β = (1 + i)n with n ∈ S1.

2. β = π with q = 5.

Two Prime Power Factors

We study the case when U2(β) is cyclic and β is a product of two Gaussian prime
power integers. Since U2 (γn1

1 γn2
2 ) ∼= U2 (γn1

1 ) × U2 (γn2
2 ) and since U2(pn) is not

cyclic. The next lemma follows directly.

Lemma 10. If β ∈ {(1 + i)n1pn2 , pn1
1 pn2

2 , pn1πn2} , then U2(β) is not cyclic.

The remaining cases are β = (1 + i)n1πn2 or β = πn1
1 πn2

2 .

Lemma 11. If β = (1 + i)n1πn2 , then U2(β) is not cyclic.

Proof.
U2(β) ∼= U2((1 + i)n1)× U2(πn2).

is cyclic if U2((1 + i)n1) and U2(πn2) are cyclic with relatively prime orders. By
theorem 9, U2((1 + i)n1) is cyclic if n1 ∈ S1 and U2(πn2) is cyclic if n2 = 1 and
q = 5. The possible values of β are (1 + i)3π, (1 + i)4π or (1 + i)5π with q = 5. If
β = (1 + i)3π, then m = 1 and the first factor of the rigth hand side of (??) becomes
U2
(
(1 + i)3

) ∼= Z2. Also, U2(πn2) ∼= U(Z5−51−1) ∼= Z2. Therefore, U
2(β) ∼= Z2 × Z2

and hence not cyclic. Similarly, for β = (1 + i)4π or (1 + i)5π, U2(β) ∼= Z2 × Z2 is
not cyclic.

Lemma 12. If β = πn1
1 πn2

2 , then U2(β) is not cyclic.

Proof. Assume U2(β) ∼= U2(πn1
1 ) × U2(πn2

2 ) is cyclic, then theorem 9 gives n1 =
n2 = 1 and q1 = q2 = 5. So, U2(β) ∼= Z2 ×Z2 which contradicts the assumption that
U2(β) is cyclic.

Theorem 13. If β = γn1
1 γn2

2 , then U2(β) is not cyclic.

General Case

Let β = (1 + i)n
(

r∏
t=1

pnt
t

)(
j∏

s=1
πks
s

)
be the decomposition of β into product of

distinct Gaussian prime power integers with nt and ks are non-negative integers. We
deduce that U2(β) is not cyclic if nt > 0 for some or j > 1 with k1, k2 > 0. The proof
of the preceding theorem follows directly from theorems 3, 2, 13 and 9.

Theorem 14. Let β = (1+ i)n
(

r∏
t=1

pnt
t

)(
j∏

s=1
πks
s

)
, then U2(β) is cyclic if and only

if one of the following is true for every t, s :

1. n ∈ S1, nt = ks = 0.

2. n = nt = 0, j = k1 = 1 wih q1 = 5.

.)) be thbe th
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Conclusion

We solved completely the case when the second group of units of the ring R =
Z[i]/ < β > is cyclic. We showed that U2(R) is cyclic if and only if β is divisible by
only one Gaussian prime integer. Moreover, U2(R) is cyclic if and only if one of the
following is true:

1. β = (1 + i)n with n ∈ S1.

2. β ∈ {2 + i, 1 + 2i} or any of their associates.
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Box Coefficients for Discrete Time Systems

Şerife Yılmaz1 , Taner Büyükköroğlu2 , Vakif Dzhafarov2

Abstract

Given a discrete-time system if all roots of corresponding characteristic poly-
nomial belong to the open unit disc then the corresponding system is called
(Schur) stable. It is well-known that the stability region of two dimensional
systems in the parameter space is an open triangle. In this report, we define a
multilinear (affine linear with respect to each variable) map from the open square
(−1, 1)×(−1, 1) onto the stability region. Using this map a new multilinear map
from the multidimensional box (−1, 1) × · · · × (−1, 1) onto the stability region
in the multidimensional case and new box coefficients are defined. It should be
noted that in order to define the box coefficients the roots of a polynomial must
be known. The comparison with the classical reflection coefficients has been
made and number of examples are given.

2010 Mathematics Subject Classifications : 93D05, 93D09, 93D15
Keywords: Discrete-time system, Schur stability, Multilinear map, Reflection

coefficients

Introduction

Given monic polynomial

p(s) = a1 + a2s+ · · ·+ ans
n−1 + sn (1)

with real coefficients, corresponds n-dimensional vector p = (a1, a2, ..., an)
T ∈ Rn.

The monic polynomial (1) p(s) is called Schur stable if all roots lie in the open unit
disc of the complex plane. The vector p is called Schur stable if the corresponding
monic polynomial (1) p(s) is Schur stable. Denote by Dn the set of all Schur stable
n-dimensional vectors.

The set Dn contains the origin, is open, bounded, nonconvex for n ≥ 3 and open
triangular region with vertices (−1, 0), (1, 2) and (1,−2) in the plane (a1, a2) for n = 2
(Figure 2). (see [1]).

In [1], it has been shown that the closure convex hull of Dn is a polytope with
(n+ 1) known vertices, namely

coDn = co{V 1, V 2, . . . , V n+1}, (2)

where co stands for the closure of the convex hull, the vectors V i correspond to the
unstable vertex polynomials (s − 1)i(s + 1)n−i (0 ≤ i ≤ n). For example, if n = 3,
then V 1 = (1, 3, 3)T , V 2 = (−1,−1, 1)T , V 3 = (1,−1,−1), V 4 = (−1, 3,−3)T .

In the same paper, it has been shown how to construct Dn recursively from D1

and D2 by using the matrix multiplication.
In [2], a similar result is obtained when the stability region is a region in the

complex plane bounded by a finite number of circle arcs.
Another description of Schur stable polynomials is the reflection coefficients which

can be obtained by using the backward Levinson’s recursion (see [3, 4]). There is one

.d Schurd Schur
pp is cais ca
ble Deble De
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1

2

−1

−2

1−1

a1

a2

D2

Figure 1: D2 = {p ∈ R2 : The polynomial p(s) is Schur stable} and closure of D3 =
{p ∈ R3 : The polynomial p(s) is Schur stable}

to one and onto multilinear map R(k1, k2, . . . , kn) from n-dimensional open cube
(−1, 1)n to Dn. For a stable vector p ∈ Dn, the inverse image (k1, k2, . . . , kn) =
R−1(p) is called its reflection coefficient vector.

Reflection coefficients or Schur-Szegö parameters for polynomials have been widely
used in the stability problems of discrete systems [5]. For ki ∈ R (i = 1, 2, . . . , n) and
n ≥ 3 reflection map f : Rn → Rn is defined by

(f1, f2, . . . , fn)
T (k1, . . . , kn) = Rn(kn)

[
0T

Rn−1(kn−1)

]
· · ·
[

0T

R1(k1)

] [
0
1

]
where Rj(kj) = Ij+1 + kjEj+1, Ij is the j × j identity matrix, j × j matrix Ej is the
following:

Ej =

⎡⎢⎣ 0 · · · 1
...

. . .
...

1 · · · 0

⎤⎥⎦ .
The map f is multilinear ([5]), that is affine linear with respect to each component

ki. In the below explicit formulas for f in the cases n = 3 is given:

f1(k1, k2, k3) = k3,
f2(k1, k2, k3) = k1k2k3 + k1k3 + k2,
f3(k1, k2, k3) = k1k2 + k2k3 + k1.

For arbitrary polynomial f1 + f2s + · · · + fns
n−1 + sn there exist k1, k2, . . . , kn

such that f1 = f1(k1, . . . , kn), . . . , fn = fn(k1, . . . , kn).
The numbers k1, k2, . . . , kn are called the reflection coefficients of the polynomial

f1 + f2s+ · · ·+ fns
n−1 + sn. The following fact is important:

Proposition 1 ([5]). Monic polynomial p(s) = f1 + f2s + · · · + fns
n−1 + sn is

Schur stable if and only if its reflection coefficients satisfy the conditions |ki| < 1
(i = 1, 2, ..., n).

According the above fact there exists multilinear map f from the open cube
(−1, 1)n onto Dn.

By the known extremal property of a multilinear function defined on a box every
vertex V i of coDn = co{V 1, V 2, . . . , V n+1} has inverse image which is a vertex of the
cube [−1, 1]n.

.is affineis affine
in thein the
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Now we define a multilinear map f from the cube (−1, 1)n to Dn which is onto.
This map is defined recursively starting from D2 which is an open triangle in the
plane (a1, a2) with vertices (−1, 0), (1, 2) and (1,−2). The corresponding multilinear
map from (k1, k2) ∈ (−1, 1)× (−1, 1) to D2 is

a1 = f1(k1, k2) = k2,
a2 = f2(k1, k2) = k1k2 + k1.

Let α ∈ (−1, 1). The image of the line segment {(k1, k2) : −1 < k1 < 1, k2 = α}
under the multilinear map f is a line segment as follows (see Figure 2):{

a1 = k2
a2 = k1k2 + k1

⇒
{

a1 = α
a2 = (α+ 1)k1 (−1 < k1 < 1).

k1

k2

−1 1

−1

1

α

α

a2 = a1 + 1

a2 = −a1 − 1

−1 1

−1

−2

1

2

a1

a2

D2

Figure 2: The multilinear map f from the (−1, 1)× (−1, 1) to D2.

For n = 3, multiply s2+(k1k2+k1)s+k2 by s+k3 where k3 ∈ (−1, 1) and obtain

a1 = f1(k1, k2, k3) = k2k3,
a2 = f2(k1, k2, k3) = k1k2k3 + k1k3 + k2,
a3 = f3(k1, k2, k3) = k1k2 + k1 + k3.

For n = 4, multiply s2 + (k1k2 + k1)s + k2 by s2 + (k3k4 + k3)s + k4 where
k3 ∈ (−1, 1), k4 ∈ (−1, 1) and obtain

a1 = f1(k1, k2, k3, k4) = k2k4,
a2 = f2(k1, k2, k3, k4) = k1k2k4 + k2k3k4 + k1k4 + k2k3,
a3 = f3(k1, k2, k3, k4) = k1k2k3k4 + k1k2k3 + k1k3k4 + k1k3 + k2 + k4,
a4 = f4(k1, k2, k3, k4) = k1k2 + k3k4 + k1 + k3

and so on. By this simple procedure, we define a multilinear map
f(k1, k2, . . . , kn) from (−1, 1)n onto Dn for any n by the formula a = f(k), where
k = (k1, k2, . . . , kn)

T , f = (f1, f2, . . . , fn)
T , a = (a1, a2, . . . , an)

T .
Note that this formula for box coefficients differs from that used in [5].

Example 2. Consider the polynomial p(s) = 15
128 − 37

64s+
21
16s

2 − 7
4s

3+ s4 which roots
are 1

4 ± 1
2 i,

1
2 and 3

4 . For the polynomial p(s), the reflection map from [5] gives(
−2914550

3204073
,
138303512

223756737
,− 6112

16159
,
15

128

)T

≈ (−0.909, 0.618,−0.378, 0.117)T ,

.) =) = kk22kk
) =) = kk11kk
) =) = kk11kk
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whereas the multilinear map for n = 4 used in this paper gives the box coefficients
vector (

− 8

21
,
5

16
,−10

11
,
3

8

)T

≈ (−0.3809, 0.3125,−0.9090, 0.375)T .

Example 3. Consider one application of the box coefficients to stabilising problem.
Take the Schur stable polynomial p(s) = 0.25s2 + s3 with box coefficients vector
(0, 0.25, 0)T . By writing −1 and 1 respectively in the first, second and third entry
of this vector, we get U1 = (−1, 0.25, 0)T , U2 = (1, 0.25, 0)T , U3 = (0,−1, 0)T , U4 =
(0, 1, 0)T , U5 = (0, 0.25,−1)T , U6 = (0, 0.25, 1)T . For n = 3, the images of these
points under the multilinear map f are the polynomials p1(s) = 0.25s − 1.25s2 + s3,
p2(s) = 0.25s+1.25s2 + s3, p3(s) = −s+ s3, p4(s) = s+ s3, p5(s) = −0.25+ 0.25s−
s2 + s3 and p6(s) = 0.25 + 0.25s + s2 + s3 respectively. Using the Edge theorem [6],
It can be shown that the polytope P = co{p1, p2, . . . , p6} is contained by coD3.

Let G(s) = s+1
s2+1.3 be a transfer function and C(s, c) = c1s+c2

s be a controller.
Then the corresponding closed loop system has characteristic polynomial: p(s, c) =
s3 + c1s

2 + (c1 + c2 +1.3)s+ c2, where c = (c1, c2)
T ∈ R2. The polynomial p(s, c) can

be written in the matrix form p(c) = Pc + p0, where P =
[
p1, p2

]
, p1 = (0, 1, 1, 0)T ,

p2 = (1, 1, 0, 0)T , p0 = (0, 1.3, 0, 1)T .
The intersection of the affine subset

{
Pc+ p0 : c ∈ R2

}
of R3 and the polytope P

is
co
{
(−1.15, 0)T , (−0.92,−0.23)T , (−0.82,−0.23)T ,

(−0.6,−0.15)T , (−0.75, 0)T , (−1.07, 0.02)T
}
.

For any inner point c of this convex hull, the polynomial p(s, c) is Schur stable.

Conclusion

Given discrete-time system, by using the roots of the characteristic polynomial
box coefficients of this system are defined. These coefficients differ from the classical
reflection coefficients. The obtained result can be used in the generation of stable sets
of characteristic polynomials.
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Inner differentiability and differential

forms on tangentially locally linearly

independent sets

Aneta Velkoska1 , Zoran Misajleski2 , Ninoslav Marina3

Abstract

The De Rham theorem gives a natural isomorphism between De Rham co-
homology [4] and singular cohomology [3] on a paracompact differentiable man-
ifold. This is very important fact as singular cohomology is very topological
theory and De Rham cohomology is much more analytical. It comes from dif-
ferential forms on manifolds and the exterior derivate. Perhaps it is strange to
see that analysis and topology can be linked in such a nice way, however Stokes
theorem also shows this relationship with the left hand side of the equation
coming from topology and the right hand side coming from analysis.

This theorem the well-known mathematician G. de Rham outlined in his
theses [2], but not in a form that is common today. In [6] we prove this theorem
on a wider family of subsets of Euclidean space, on which we can define inner
differentiability.

In our paper we define this family of sets called tangentially locally linearly
independent (TLLI) sets, propose inner differentiability on these sets, postulate
usual properties of differentiable real functions and moreover show that the
integration over sets that are wider than manifolds is possible.

2010 Mathematics Subject Classifications : 26B05
Keywords: TLLI- tangentially locally linearly independent set, differential form,

exact form, closed form

Introduction

The differentiable mappings are usually defined on open sets. On arbitrary set
a function is differentiable, if there is a bigger open set that contains the set and
the function is differentiable on it. However, this is only an agreement. In this
paper we define inner differentiability on a wider family of subsets of Euclidean space
called tangentially locally linearly independent-TLLI. In the second Section of the
paper we consider this family of TLLI sets and some of their properties. The inner
differentiability of real multivariate functions is defined in the third Section. This
allows us to postulate in Section 4 the integration over class of sets called cuboidle
sets that is wider class of manifolds by defining differential forms on TLLI sets. Section
5 concludes the paper.

Tangentially locally linearly independent and full tan-
gentially locally linearly independent sets

Definition 1. A set M ⊆ Rn is called tangentially locally linearly independent
(TLLI), if for any arbitrary point x0 =

(
x0
1, ..., x

0
n

)
∈ M is valid:

.
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if D1, ..., Dn are real functions on the set M and continuous at x0 such∑n
i=1

(
xi − x0

i

)
·Di (x) = 0 , ∀x ∈ M , then Di

(
x0
)
= 0 , ∀ i ∈ { 1, ..., n } .

In [5] is given the proof of the following theorem

Theorem 2. If M ⊆ Rn is TLLI set, then all points from the set M are accumulation
points of the set M .

Note that all lines in R2 are not TLLI sets.
Let x0 ∈ Rn is an arbitrary point. The line through the point x0 and parallel
with the xk- axis, k ∈ { 1, ..., n }, is denoted by:

Gk

(
x0
)
=
{ (

x0
1, ..., x

0
k−1, xk, x

0
k+1, ..., x

0
n

)
: xk ∈ R

}
, k ∈ { 1, ..., n } .

Definition 3. A set M ⊆ Rn is full TLLI if any point x0 ∈ M is an accumulation
point of all sets M ∩Gk

(
x0
)
, k ∈ { 1, ..., n } .

Theorem 4. Any full TLLI set M ⊆ Rn is TLLI set.

Proof. Trivial by the definition of TLLI and full TLLI sets. �

Note that all open sets and all closed n-dimensional rectangular cuboids in the space
Rn are full TLLI sets.

Differentiability of multivariate real functions

Definition 5. We say that a multivariate real function f : M → R, defined on
TLLI set M ⊆ Rn is differentiable at x0 ∈ M , if there exist n real-valued functions
D1, ..., Dn on the set M and continuous at x0 ∈ M such that:

f (x) = f
(
x0
)
+

n∑
1=1

(
xi − x0

i

)
·Di (x) , ∀x ∈ M (1)

Definition 6. We say that a multivariate real function f : M → R is differentiable
on the set M ⊆ Rn, if it is differentiable at any point of the set M .

Theorem 7. Let f : M → R is a real function on the TLLI set M ⊆ Rn and let f
is differentiable at x0 ∈ M . Then the values D1

(
x0
)
, ..., Dn

(
x0
)
are unique .

It doesn’t mean that the functions D1(x), ..., Dn(x) are unique on the set M .
We say that the values D1

(
x0
)
, ..., Dn

(
x0
)
are partial derivatives of the func-

tion f at x0 and we employ the notation Di

(
x0
)
= ∂f

∂xi

(
x0
)
= fxi

′ (
x0
)
, ∀ i ∈

{ 1, ..., n } .
In [5] is given the proof of the following theorem

Theorem 8. Let f : M → R is a real function on the TLLI set M ⊆ Rn and let f is
differentiable at x0 ∈ M , then f is continuous at x0 ∈ M .

Let f : M → R is a real valued function on full TLLI set M ⊆ Rn and
x0 =

(
x0
1, x

0
2, ..., x

0
n

)
is a fixed point of the set M .

We define n real univariate functions:
gk (xk) = f

(
x0
1, ..., x

0
k−1, xk, x

0
k+1, ..., x

0
n

)
for all k ∈ { 1, ..., n }.

The domain of these functions gk for any k ∈ { 1, ..., n } is the set Ak ={
xk ∈ R :

(
x0
1, ..., x

0
k−1, xk, x

0
k+1, ..., x

0
n

)
∈ M

}
= M ∩Gk

(
x0
)
.

Since Ak , k = 1, .., n is TLLI set in R, then xk ∈ Ak , k = 1, ..., n is accumula-
tion point of the set Ak , k = 1, .., n.

It is easy to prove that for all real univariate functions gk, k ∈ { 1, ..., n } the
following theorem is valid:

.functiofunctio
aluesalues DD

(( ))
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Theorem 9. If the function f : M → R is differentiable at x0 ∈ M , then all functions
gk , k = 1, ..., n are differentiable at x0

k , k = 1, ..., n respectively and g′k
(
x0
k

)
=

f ′
xk

(
x0
)
.

Definition 10. Let f : M → R real function on TLLI set M ⊆ Rn. We say that
the function f is differentiable with respect to xk at x0 ∈ M , if the function gk is
differentiable at x0

k.

Definition 11. We say that a function f : M → R is continuously differentiable
on full TLLI M ⊆ Rn, if it is differentiable on M , and all its partial derivatives are
continuous on M .

If there exists partial derivatives fxk
for some k = 1, ..., n, that is differentiable

at x0 ∈ M with respect to some variable xj , j = 1, ..., n we say that there exists
partial derivative of second order of the function f at x0 ∈ M and it is denoted

by
(
fxk

′
)′
xj

(
x0
)
= f

′
xkxj

(
x0
)
= ∂2f

∂xj∂xk

(
x0
)
= f

′
kj

(
x0
)
, where k = 1, ..., n and

j = 1, ..., n. If there exist partial derivatives of a second order of the function f on
the whole set M then it is possible to discuss about their differentiability and partial
derivatives of higher order.

Definition 12. We say that a real multivariate function is r- times differentiable at
x0 ∈ M , where r = 2, 3, ..., if there exist an open neighborhood U of that point such
that the function f is r−1- times differentiable on the set U ∩M and all r−1-partial
derivatives of f are differentiable at x0.

A function f is r- times differentiable on the set M if it is r- times differentiable
at all points of the set M .

The partial derivtives from r-th order of the function f at x0 is denoted by
f
′
xk1

xk2
...xkr

(
x0
)
= ∂rf

∂xkr ...∂xk2
∂xk1

(
x0
)
.

Theorem 13. Let f : M → R is a multivariate real function on a closed rectangu-
lare cuboid M = {x ∈ Rn : ak ≤ xk ≤ bk , ak, bk ∈ R , k = 1, ..., n } and let all partial
derivatives of the function f are differentiable with respect to all variables at the point
x0 ∈ M . Then, fxixj

(
x0
)
= fxjxi

(
x0
)
, i, j = 1, 2, ..., n.

Proof. Without losing of generality we can prove the theorem assuming that x0 = 0
but first showing that it is enough to validate its statement for any bivariate real
function by using the mean value theorem. �

Differential forms on TLLI sets

Definition 14. Differential form of k order on the set M (or k−form in M) is a
mapping ω , ω =

∑
1≤i1<...<ik≤n ai1...ik (x) dxi1 ∧ ...∧dxik , where ai1...ik : M → R are

continuous real functions for any k−variation {i1, i2, ..., ik} of the set of n elements
{1, 2, ..., n}, and we will denote by ω =

∑
i ai (x) dxi, where dxi = dxi1 ∧ ... ∧ dxik

and ai = ai1...ik for any variation i = {i1, ..., ik} , 1 ≤ i1 < ... < ik ≤ n. such
that it mapps a real number to any singular k−cube φ : Ik → M(that is continuously
differentiable function on cube, i.e., φ ∈ C1) obtained by integration:

ω (φ) =

∫
φ

ω =
∑
i

∫
Ik

ai (φ (t))
∂ (φi1 , ...φik)

∂ (t1, ..., tk)
dt1 ∧ ... ∧ dtk,

where
∂(φi1 ,...φik)
∂(t1,...,tk)

=

∣∣∣∣∣∣∣∣
∂φi1

∂t1
· · · · · · ∂φi1

∂tk
...

...
∂φik

∂t1
· · · · · · ∂φik

∂tk

∣∣∣∣∣∣∣∣ is the Jacobian of φ = (φ1, φ2, ..., φn).

.can procan pro
validatvalidat
em.em.
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If Γ =
∑

φ nφφ is continuously differentiable k−chain on M , then the k−form on
M , ω maps a real number to the k−chain Γ =

∑
φ nφφ

ω (Γ) =

∫
Γ

ω =
∑
φ

∑
i

nφ

∫
Ik

ai (φ (t))
∂ (φi1 , ...φik)

∂ (t1, ..., tk)
dt1 ∧ ... ∧ dtk.

Note that if φ : Ik → M is degenerated singulare k−cube, i.e., there exists singulare
k − 1−cube φ

′
: Ik−1 → M such that

φ (t1, ..., ti−1, ti, ti+1, ...tn) = φ′ (t1, ..., ti−1, ti+1, ..., tn) for some integer i , 1 ≤ i ≤ n,
then for any k− form ω on M is valid that ω (φ) = 0. So, we conclude that a k−
form ω on M is a real function from the free abelian group of all nondegenerated
continuously differentiable singulare k- cubes, Ck (M).

The set of all k−forms for any k ≤ n on M is denoted by Dk (M) , i.e., Dk (M) =
{ω | ω : Ck (M) → R is k − form on M }. If k > n then Dk (M) = 0. Moreover,
the set of all k−forms on M , Dk (M) with respect to sum and product defined in [1]
is a vector space.

Next we define an operator d : Dk (M) → Dk+1 (M) and state some theorems
about its properties that can be easily proved.

Definition 15. Let f : M → R is 0−form on M , where f is continuously dif-
ferentiable function. Its differential is a 1−form on M , df =

∑n
i=1

∂f
∂xi

dxi. Let
ω =

∑
i ai (x) dxi is an arbitrary k−form on M , such that ai continuously differen-

tiable real function. Its differential is a k + 1−form on M , dω =
∑

i dai ∧ dxi =∑
i

∑n
j=1

∂ai

∂xj
dxj ∧ dxi .

Theorem 16. The mapping d : Dk (M) → Dk+1 (M) , k ∈ Z is linear

Theorem 17. Let f : M → R and g : M → R are 0−forms on M , where f and g
are continuously differentiable functions, then d (fg) = df · g + f · dg.

Theorem 18. Let ω and λ are arbitrary k and m− forms on M , respectively. Then
d (ω ∧ λ) = dω ∧ λ+ (−1)

k
ω ∧ dλ.

Definition 19. We say that ω is an exact differential k- form on M , then there
exists k − 1- form λ ∈ Dk−1 (M) such that ω = dλ. We say that ω is a closed
differential k- form on M if dω = 0.

Definition 20. We say a set M ⊆ Rn is cuboidle, if for any point x ∈ M there
exists rectangular cuboid

K =
{
y ∈ Rn

∣∣ ai ≤ yi ≤ bi , ai, bi ∈ R , i = 1, n
}

such that K ⊆ M .
A cuboidle set is TLLI set.

Theorem 21. Let ω =
∑

i aidxi
is two times differentiable k- form on cuboidle set

M ⊆ Rn, i.e., for all indices i the functions ai : M → R are two times differentiable
on the set M . Then ddω = 0 on the set M .

Proof. The proof of this theorem is obtained by using Theorem 13, Theorem 18 and
considering the Definition 20. �

Theorem 22. Let ω =
∑

i aidxi is a differentiable k- form on a cuboidle set M ⊆ Rn.

If ω =
∑

i aidxi
is an exact k− form on the set M , then it is closed.

.exactexact
h thath that
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Proof. Since ω is an exact k− form on the set M , then there exists k − 1 - form
λ ∈ Dk−1 (M) such that ω = dλ. Because ω is a differentiable k- form on a cuboidle
set then λ is two times differentiable k − 1- form on cuboidle set M ⊆ Rn and by
Theorem 17 ddλ = 0 on the set M .Therefore, dω = ddλ = 0 on the set M , so ω is
closed k- form on the set M . �

The opposite statement of Theorem 22 is not always true, but if we assume addi-
tionaly that the cuboidle set M ⊆ Rn is also star set then it can be shown that any
continuously differentiable closed k- form on M is exact.

Conclusion

In our paper we consider a family of sets in n dimensional real space so called TLLI
sets that is wider than the family of open sets. Moreover, we define differentiability
and differential forms on this family of sets. So we show that it is possible to integrate
over singulare cube not only in a manifold as we know by now but in a cuboidle set
defined by the TLLI sets. At last we prove and state some theorems which are
necessary for the definition of de Rham cohomology [4] in order to complete the proof
of the De Rham Theorem in [2] on a wider family than manifolds.
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Some Results On Suborbital Graphs

Seda Öztürk

Abstract

In this work, we study some special subgraphs of the subgroup Γ3 of the
modular group Γ and give some special number theoretical results.

2010 Mathematics Subject Classifications : 05C25,11B39
Keywords: Modular group, Graph theory, Number theory

Introduction

Let Γ = PSL(2,Z) be the modular group acting on the extended rational numbers

Q̂ = Q ∪ {∞} with the action defined by

∓
(
a b
c d

)
.
x

y
=

ax+ by

cx+ dy

where a, b, c, d ∈ Z, and ad− bc = 1. In [1], the subgroup Γ3 of Γ is defined by{
( a b
c d ) ∈ Γ : ab+ cd ≡ 0 (mod 3)

}
It follows from definition that the elements of Γ3 are one of the forms ( 3a b

c 3d ), (
a 3b
3c d ), ( a b

c d )
where a, b, c and d 	≡ 0(mod3). Hence, the subgroup Γ3 acts transitively on the sub-

set Q̂ and the stabilizer of ∞ is the group {∓( 1 m
0 1 ) : m ∈ Z}. The diagonal action,

given by g(α, β) = (gα, gβ), of the group Γ3 on Q̂× Q̂ defines the suborbitals, which
are actually orbits. The orbit O3(α, β) containing (α, β) gives the suborbital graph
G3(α, β) defined as follows:

The set of vertices is Q̂, and there is an edge γ → δ in G3(α, β) if and only
if (γ, δ) ∈ O3(α, β). Since the action is transitive, every suborbital contains a pair

(∞,
u

n
) for some u

n ∈ Q̂, (u, n) = 1, n > 0. As in [2], the congruence subgroup Γ3
0(n)

defines the following equivalence relation on Q̂ by g1(∞) � g2(∞) for g1, g2 ∈ Γ3, if
g1Γ

3
0(n) = g2Γ

3
0(n).

If g1(∞) =
r

s
and g2(∞) =

x

y
, we have r

s � x
y ⇔ ry − sx ≡ 0(modn)

We denote the suborbital graphs by G3
u,n for short, and the subgraphs of G3

u,n

whose vertice set is just the equivalence class or block

[∞] =

{
x

y
∈ Q̂ : y ≡ 0 (mod n)

}
will be denoted by F 3

u,n.
More knowledge about modular group, subgroups and group actions can be seen

in [2-6].
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Main Results

Theorem 1. [2] F 3
u,n = F 3

u′ ,n′ if and only if n = n
′
and u ≡ u

′
(mod3n)

Theorem 2. [2] There is an edge
r

s
→ x

y
in F 3

u,1 if and only if either

(i) if r ≡ 0(mod3), then y ≡ ∓us(mod3) and ry − sx = ∓1, or

(ii) if s ≡ 0(mod3), then x ≡ ∓ur(mod3) and ry − sx = ∓1, or

(iii) if r, s 	≡ 0(mod3), then x 	≡ ∓ur(mod3), y 	≡ ∓us(mod3) and
ry − sx = ∓1

The following theorems will be given without proofs.

Theorem 3. Let K =

(
−23 599
−1 26

)
be in Γ3. Then,

(i) ∀m ∈ N, Km(
1

0
) → Km(

u

1
) in Fu,1.

(ii) ∀m ∈ N, Km(
1

0
) → Km+1(

1

0
) in Fu,1.

(iii) The sequence {Km}m∈N
is increasing and the path

K(
1

0
) → K2(

1

0
) → K3(

1

0
) → · · ·

is infinite path.

(iv) The fixed points of K are z1,2 =
49∓

√
5

2
.

Theorem 4. Let K =

(
−23 599
−1 26

)
be in Γ3 and a, b ∈ N such that

23

1
≤ a

b
<

49−
√
5

2
. Then,

(i)
a

b
< K(

a

b
) <

49−
√
5

2
,

(ii)
a

b
→ K(

a

b
) is an edge in F23,1 if and only if a =

49b−
√
5b2 + 4

2
and there exists

some t ∈ N such that 5b2 + 4 = t2.

Corollary 5. Let k ∈ N. Then,

(i)
1

0
→ 23 +

0

1
→ 23 +

1

3
→ · · · → 23 +

ak
bk

→ 23 +
bk

3bk − ak
→ · · · is an infinite

path.

(ii) All above vertices are less than
49−

√
5

2
.

(iii) For the numbers ak, bk in (i), the numbers 5a2k + 4, 5b2k + 4 are perfect square,

and ak =
3bk −

√
5b2k + 4

2
.

Corollary 6. The integers b ∈ Z+ ∪ {0} in the equality 5b2 + 4 = t2 are

0, 1, 3, · · · , x, y, 3y − x, · · ·

Now we take K =

(
−23 599
−1 26

)
and we get that S = K−1 =

(
26 −599
1 −23

)
.

d onlyd only
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Theorem 7. Let a, b ∈ N such that
25

1
≤ a

b
<

49 +
√
5

2
. Then,

(i)
a

b
< S(

a

b
) <

49 +
√
5

2
,

(ii)
a

b
→ S(

a

b
) is an edge in F23,1 if and only if a =

49b+
√
5b2 − 4

2
and there exists

w ∈ N such that 5b2 − 4 = w2.

Corollary 8. Let be k ∈ N.

(i) 26 − 1
1 → 26 − 1

2 → 26 − 2
5 → · · · → 26 − ak

bk
→ 26 − bk

(3bk − ak)
→ · · · is an

infinite path.

(ii) The vertices are in (i) less than
49 +

√
5

2
.

(iii) For the numbers ak, bk in (i), the numbers 5a2k −4, 5b2k −4 are perfect square and

ak =
3bk −

√
5b2k − 4

2
.

Corollary 9. The numbers bk ∈ Z+ making 5b2k+4 perfect square are 0, 1, 3, 8, · · · , x, y, 3y−
x, · · ·

Corollary 10. The numbers bk ∈ Z+ making 5b2k−4 perfect square are 1, 2, 5, · · · , x, y, 3y−
x, · · ·

Corollary 11. Let the sequences {ak}k∈N, {bk}k∈N be (0, 1, 3, 8, · · · , x, y, 3y − x, · · · )
and (1, 2, 5, · · · , x, y, 3y−x, · · · ), respectively. Then, the sequence {ck}k∈N, defined by
(0, 1, 1, 2, 3, 5, 8, · · · , ak, bk, ak+1, bk+1, · · · ) is the Fibonacci sequence.
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Pascal Trapezoids Emerging from

Hypercomplex Polynomial Sequences

Isabel Cação1 , M. Irene Falcão2 , Helmuth R. Malonek3 , Graça Tomaz

Abstract

The construction of two different representations of special Appell polynomi-
als in (n+1) real variables with values in a Clifford algebra suggested to explore
the relation between the respective coefficients. Properties of sequences result-
ing from such relation and an interesting trapezoidal array of their elements are
pointed out.

2010 Mathematics Subject Classifications : 11B83, 05A10, 30G35
Keywords: special sequences, binomial coefficients, Pascal trapezoids, hyper-

complex polynomials

Introduction

In this paper we focus on polynomial sequences in (n+1) real variables with values
in the real vector space of paravectors in the corresponding Clifford algebra C�0,n. We
start by introducing some basics of that algebra. The reader can find more details in
[4].

Let {e1, e2, · · · , en} be an orthonormal basis of the real Euclidean vector space Rn

endowed with a product according to the multiplication rules

eiej + ejei = −2δij , i, j = 1, · · · , n,

where δij is the Kronecker symbol. This non-commutative product generates the
associative 2n−dimensional Clifford algebra C�0,n over R. The elements z of C�0,n,
called hypercomplex numbers, are of the form z =

∑
A zAeA, where zA ∈ R and the

basis {eA : A ⊆ {1, · · · , n}} is formed by eA = eh1
eh2

· · · ehr
, 1 ≤ h1 < · · · < hr ≤

n, e∅ = e0 = 1.
The vector space Rn+1 is embedded in C�0,n by the identification of the real

(n+ 1)−tuple (x0, x1, · · · , xn) with the paravector

x = x0 + x = x0 + x1e1 + · · ·+ xnen ∈ An := spanR{1, e1, . . . , en} ⊂ C�0,n.

The conjugate of x ∈ An is given by x̄ = x0 − x. The so-called scalar part x0

and the vector part x of x can be written in the form x0 = (x + x̄)/2 and x =

(x− x̄)/2, respectively. The norm of x is given by |x| = (xx̄)
1
2 = (x2

0+x2
1+ · · ·+x2

n)
1
2 .

Consequently, the inverse of each non-zero x is x−1 = x̄|x|−2.
We consider C�0,n-valued functions defined as mappings

f : Ω ⊂ Rn+1 ∼= An �−→ C�0,n

such that f(x) =
∑

A fA(x)eA, fA(x) ∈ R and Ω is an open subset of Rn+1, n ≥ 1.

.−−22δδijij , i, i

This noThis no
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The generalized Cauchy-Riemann operator in Rn+1 is defined by ∂̄ := 1
2 (∂0 + ∂x),

with ∂0 := ∂
∂x0

and ∂x :=
∑n

k=1 ek
∂

∂xk
. Its conjugate, also called the hypercomplex

differential operator, is denoted by ∂ := 1
2 (∂0 − ∂x).

The analogue of a holomorphic function is now a C1-function f that is a solution
of the differential equation ∂̄f = 0 (resp.f∂̄ = 0) and is called left monogenic (resp.
right monogenic).

The concept of hypercomplex differentiability as a generalization of complex differ-
entiability reads as follows. A function f defined in Ω is hypercomplex differentiable
if and only if it has a uniquely defined areolar derivative f ′ in each point of Ω (for
details, see [10]). A hypercomplex differentiable function f is real differentiable and
consequently f ′ is given by f ′ = ∂f = 1

2 (∂0 − ∂x)f . Since a hypercomplex differen-
tiable function f is monogenic, it follows that f ′ = ∂0f = −∂xf (see [9]).

Noting that ∂̄x = 1−n
2 , it is clear that the identity function f(x) = x (and its

integer powers) belongs to the class of monogenic functions only if n = 1, i.e., in the
complex case. Thus, the construction of polynomials which behave with respect to
the derivative like simple powers of x ∈ An is a problem of its own interest. Applying
Appell’s ideas [3], authors of this paper started a systematic study on Appell sequences
in the framework of Hypercomplex Function Theory ([5, 8, 11]).

There are two natural representations of An-valued homogeneous polynomials,
one by using (x, x̄) and the other by using (x0, x). Both representations involve
coefficients whose relation leads to sequences of nonnegative integers. The main goal
of the present paper is to emphasize properties of those sequences and their relation
with Pascal’s like triangles.

Main Results

We focus on the following two representations of An-valued homogeneous mono-
genic polynomials Pn

k (x) introduced in [7, 12]:

Pn
k (x) =

k∑
s=0

T k
s (n)x

k−sx̄s (1)

and

Pn
k (x) =

k∑
s=0

(
k

s

)
cs(n)x

k−s
0 xs, (2)

where the coefficients T k
s (n) and cs(n) take the form

T k
s (n) =

(
k

s

)(
n+1
2

)
k−s

(
n−1
2

)
s

(n)k

((a)r denotes the Pochhammer symbol, i.e., (a)0 := 1, (a)r :=
r−1∏
t=0

(a+ t), r ≥ 1), and

cs(n) =

{ s!!(n−2)!!
(n+s−1)!! , if s is odd

cs−1(n), if s is even
,

respectively.
The sequences (Pn

k (x))k≥0 are generalized Appell sequences, with Pn
0 (x) = 1,

according to the following definition ([7]).

.ss=0=0

((
kk
))
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Definition 1. A sequence of An-valued monogenic polynomials (Qk(x))k≥0 is called
a generalized Appell sequence, if Qk(x) is of exact degree k, for each k = 0, 1, . . ., and
∂Qk(x) = kQk−1(x), k = 1, 2, . . ..

The relation between the representations (1) and (2) is intrinsically linked to
the one of respective coefficients. In order to point out such relation we start by
considering the (k + 1)−dimensional vectors

Tk(n) =
[
T k
0 (n) T k

1 (n) . . . T k
k−1(n) T k

k (n)
]T

and
Ck(n) =

[
c0(n) c1(n) . . . ck−1(n) ck(n)

]T
.

Each component of Tk(n) can be written as linear combination of the components
of Ck(n) as follows:

T k
s (n) =

1
2k

(
k

s

) k∑
j=0

σk
s,jcj(n), k = 0, 1, · · · ; s = 0, · · · , k (3)

where

σ k
s,j =

s∑
m=0

(−1)m
(
s

m

)(
k − s

j −m

)
. (4)

(cf. [6, Thm. 6]).
Reciprocally, each component of Ck(n) can also be written in the following way:

ck−i(n) =
1(
k
i

) k∑
s=0

(−1)sσk
s,iT

k
s (n), k = 0, 1, · · · ; i = 0, 1, . . . , k (5)

(cf. [6, Thm. 7]).
The transformation from Ck(n) to Tk(n) can be derived in matrix form. Define

the diagonal matrix Dk = diag[
(
k
0

) (
k
1

)
· · ·
(
k
k

)
] and the matrix Sk :=

[
skij
]k+1

i,j=1
such

that skij = σk
i−1,j−1. Thus, (3) can be written in the form

Tk(n) = NkCk(n),

where Nk = 1
2k
DkSk. Analogously, the matrix form of (5) is obtained as

Ck(n) = ÑkTk(n),

where Ñk = D−1
k S̃kD, D = diag[1 − 1 · · · (−1)k] and the entries of S̃k are given by

s̃kij = σk
j−1,k−i+1.

We observe that the connection between Ck(n) and Tk(n) relies indeed on the
nonnegative integers (4).

The importance of the Pascal’s triangle in issues related to Appell polynomials
has already been studied. For instance, it appears in the matrix representation of real
and hypercomplex Appell polynomials. For details we refer to [1, 2] and references
therein. That relation led us to believe that the integers (4) would also be somehow
linked to triangles of that type.

Let i, j, k be arbitrary nonnegative integers such that j ≤ k. For each fixed i, we
arrange the numbers σ k

i,j in a triangle with rows k and ordered from j = 0 to j = k
(see Table 1).

.written iwritten i

== NNkkNN CC
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For each fixed value of i, the coeficients σ k
i,j satisfy the recurrence relation

σ
(k+1)
i,j+1 = σk

i,j + σk
i,j+1, (0 ≤ j ≤ k − 1, k ≥ i) (6)

with boundary conditions

σk
i,0 = 1, σk

i,k = (−1)i, (k ≥ i) (7)

and initial values

σ
(i)
i,j =

(
i

j

)
(−1)j , j = 1, . . . , i− 1 (8)

(cf. [6, Thm. 10]).
Notice that when i = 0, formulae (6)-(7)-(8) coincide with the Pascal recurrence(

k+1
j+1

)
=
(
k
j

)
+
(

k
j+1

)
, for all integers k, j : 0 ≤ j ≤ k − 1, with initial/boundary

values
(
k
0

)
=
(
k
k

)
= 1. As is well known, this formula allows the construction of the

Pascal triangle. Now, the general formulae (6)-(7)-(8) permit, for each fixed i, the
construction of Pascal trapezoids, i.e., each triangle (Table 1) encloses a trapezoidal
substructure in itself (see Table 2) for the cases i = 1 and i = 2).

More details on this subject can be seen in [6].

Conclusion

Two particular representations of generalized Appell polynomials in the hyper-
complex context lead to special integer sequences satisfying a Pascal recurrence. The
construction of Pascal trapezoids resulting from that recurrence has been examined.
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Trapezoids presented in this paper, but not obtained as emerging from hypercom-
plex Appell polynomials, occure also in the expansion of (1− x)i(1 + x)k−i. Indeed,

(1− x)i(1 + x)k−i =
∑k

j=0 σ
k
i,j x

j .
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Some result for binomial convolution sums

of restricted divisor functions
Ho Park1 , Daeyeoul Kim2 , Ji Suk So3

Abstract

Besge presented the result about the convolution sum of divisor functions.
Since then Liouville obtained the generalized version of Besge’s formula, which
is the binomial convolution sum of divisor functions. In 2004, Hahn obtained
the results about the convolution sums of

∑
d|n(−1)d−1d and

∑
d|n(−1)n/d−1d.

In this talk, we present the results for the binomial convoltion sums, generalized
convolution sums of Hahn, of these divisor functions.

2010 Mathematics Subject Classifications : 11A25, 11B68
Keywords: Convolution sums, Divisor functions

Introduction

For a positive integer n and a nonnegative integer k, let σk(n) be the usual divisor
function defined by σk(n) =

∑
d|n d

k. The well-known identity

n−1∑
m=1

σ1(m)σ1(n−m) =
1

12
(5σ3(n) + (1− 6n)σ1(n))

first appeared in a letter from Besge to Liouville in 1862(see [1]). The generalized
version of Besge’s identity, that is said to the binomial convolution sums of divisor
functions was obtained by Liouville(see [5]).

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ2k−2s−1(m)σ2s+1(n−m) =
2k + 3

4k + 2
σ2k+1(n)

+

(
k

6
− n

)
σ2k−1(n) +

1

2k + 1

k∑
j=2

(
2k + 1
2j

)
B2jσ2k+1−2j(n),

where for a nonnegative integer n, Bn is the n-th Bernoulli number.

We introduce another divisor functions. For a positive integer n and a nonnegative
integer k,

σ∗
k(n) =

∑
d|n

n/d≡1(2)

dk and σk,i(n; 2) =
∑
d|n

d≡i(2)

dk (i ∈ {0, 1}).

Recently, Kim and Bayad(see [3]) obtained the convolution sum of σ∗
k(n)

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ∗
2k−2s−1(m)σ∗

2s+1(n−m) =
1

2
σ∗
2k+1(n)−

n

2
σ∗
2k−1(n)

.[ ])[ ])
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and Kim, Bayad and Park(see [4]) computed the convolution sum of σk,1(n; 2)

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ2k−2s−1,1(m; 2)σ2s+1,1(n−m; 2)

= 22k−1σ2k+1(n/2) +
22k

2k + 1

∑
d|n

d≡1(2)

B2k+1

(
d+ 1

2

)
,

where for a nonnegative integer n, Bn(x) is the Bernoulli polynomial.

Hahn has defined for k, r ∈ N

σ̃k(n) =
∑
d|n

(−1)d−1dk and σ̂k(n) =
∑
d|n

(−1)n/d−1dk.

Hahn obtained the convolution sums of the these divisor functions(see [2]).

n−1∑
m=1

σ̃1(m)σ̃1(n−m) = −1

4
σ̃3(n) +

(
1

2
n− 1

4

)
σ̃1(n),

n−1∑
m=1

σ̂1(m)σ̃1(n−m) = − 1

12
σ̃3(n) +

(
1

4
n− 1

8

)
σ̂1(n)−

1

24
σ̃1(n).

Later, Williams(see [6]) computed

n−1∑
m=1

σ̂1(m)σ̂1(n−m) =
5

42
σ̂3(n)−

1

28
σ̃3(n)−

1

12
σ̂1(n).

Main Results

In this talk, we present the binomial convolution sums of two version of (restricted)
divisor functions. The first binomial convolution sums(Theorem 1) have a combina-
tion of σk(n), σ

∗
k(n) and σk,1(n; 2). The second binomial convolution sums(Theorem

2) are the generalized versions of the results of Hahn and Williams..onvolutionvoluti
e secone secon

lt flt f
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Theorem 1. For each k, n ∈ N, we have

(i)
k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ∗
2k−2s−1(m)σ2s+1,1(n−m; 2) =

1

4
σ∗
2k+1(n)− 22k−2σ∗

2k+1(n/2)

−n

4

(
σ2k−1,1(n; 2)− 22k−1σ∗

2k−1(n/2)
)
+

1

4

∑
d|n

2
n/2
d
≡1(2)

E2k(2d) +
2

2k + 1

∑
d|n

2
n/2
d
≡1(2)

B2k+1(d)

+
22k−1

2k + 1

( ∑
d|n

n
d
≡1(2)

B2k+1

(d+ 1

2

)
−

∑
d|n

2
n/2
d
≡1(2)

B2k+1

(2d+ 1

2

))
,

(ii)
k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ∗
2k−2s−1(m)σ2s+1(n−m) =

1

2
σ2k+1(n) +

1

2
σ2k+1(n/2)

+
3

4
σ2k(n) +

1

4
σ2k(n/2)−

5n

4
σ2k−1(n)−

n

2
σ2k−1(n/2)

+
1

2(2k + 1)

(
3
∑
d|n

B2k+1(d) +
∑
d|n/2

B2k+1(d)
)
,

(iii)

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ2k−2s−1(m)σ2s+1,1(n−m; 2) =
1

4
(σ2k+1(n)− 22kσ(n/2)) +

1

4
σ2k,1(n; 2)

−n

2
σ2k−1,1(n; 2) + 22k−2σ2k−1(n/2)−

1

2(2k + 1)

(∑
d|n

B2k+1(d) + 22k
∑
d|n2

B2k+1(d)

−22k
∑
d|n

d≡1(2)

B2k+1

(d+ 1

2

))
..
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Theorem 2. For each n, k ∈ N, we have

(i)
k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ̂2k−2s−1(m)σ̂2s+1(n−m) =
1

2
σ2k+1(n)−

1

2
σ̂2k(n)

− 1

2k + 1

∑
d|n

B2k+1(d) +
2

2k + 1

∑
d|n2

B2k+1(d),

(ii)

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ̃2k−2s−1(m)σ̃2s+1(n−m) = −1

2
σ̃2k+1(n)− 22kσ2k+1(n/2)

−1

2
σ̃2k(n) + nσ̃2k−1(n) + 22kσ2k−1(n/2)−

1

2k + 1

(∑
d|n

B2k+1(d)

−22k+1
∑
d|n2

B2k+1(d)− 22k+1
∑
d|n

d≡1(2)

B2k+1

(d+ 1

2

))
,

(iii)

k−1∑
s=0

(
2k

2s+ 1

) n−1∑
m=1

σ̂2k−2s−1(m)σ̃2s+1(n−m) = −22k−1σ̂2k+1(n/2)−
1

4
(σ̂2k(n) + σ̃2k(n))

+
n

2
σ̂2k−1(n) + 22k−1nσ∗

2k−1(n/2)− 22k−1σ2k−1(n/2) +
∑
d|n

2
n/2
d
≡1(2)

E2k(2d)

+
8

2k + 1

∑
d|n

2
n/2
d
≡1(2)

B2k+1(d) +
22k+1

2k + 1

⎛⎜⎜⎜⎝ ∑
d|n

n
d
≡1(2)

B2k+1

(
d+ 1

2

)
−

∑
d|n

2
n/2
d
≡1(2)

B2k+1

(
2d+ 1

2

)⎞⎟⎟⎟⎠
− 1

2k + 1

∑
d|n

B2k+1(d) +
1 + 22k

2k + 1

∑
d|n2

B2k+1(d)−
22k

2k + 1

∑
d|n

d≡1(2)

B2k+1

(
d+ 1

2

)
.

Conclusion

The value of

n−1∑
m=1

σ1(m)σ1(n−m) =
1

12
(5σ3(n) + (1− 6n)σ1(n))

convolution sum first appeared in a letter from Besge to Liouville in 1862. The
evaluation also appears in the work of Glaisher, Lahiri, Lehmer, Ramanujan and
Skoruppa. We obtain Besge’s formula as a simple application of Liouville’s identity.
In 2004, Hahn obtained the results about the convolution sums of

∑
d|n(−1)d−1d and∑

d|n(−1)n/d−1d. In this talk, we present the results for the binomial convoltion sums,
generalized convolution sums of Hahn, of these divisor functions.
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des nombres, N. Math. Pures Appl. 3, 143–152, (1858)

[6] K. Williams, Number Theory in the Spirit of Liouville, Cambridge University
Press, (2011)

1Department of Mathematics and Institute of Pure and Applied Math-
ematics, Chonbuk National University, Chonju, Chonbuk 561-756

2Department of Mathematics and Institute of Pure and Applied Math-
ematics, Chonbuk National University, Chonju, Chonbuk 561-756

3Department of Mathematics and Institute of Pure and Applied Math-
ematics, Chonbuk National University, Chonju, Chonbuk 561-756

E-mail : parkho.1982@gmail.com, kdaeyeoul@jbnu.ac.kr, goleta961@jbnu.ac.kr.
MICOPAM2018_b5.indd   146MICOPAM2018_b5.indd   146 16.1.2019.   11.26.2016.1.2019.   11.26.20



Dedicated to Professor G. Milovanović Antalya-TURKEY147

PROCEEDINGS BOOK OF MICOPAM 2018

Note on Möbius-Bernoulli numbers

Daeyeoul Kim1 , Abdelmejid Bayad2 , Hyungyu Ahn3

Abstract

Let k be a non-negative integer. We define the Möbius-Bernoulli numbers
which is denoted by Mk(n) and double Möbius-Bernoulli numbers Mk(n, n

′) for
some n, n′ ∈ N. In this article, we find fourmula of Mk(n, n

′) and applications.

2010 Mathematics Subject Classifications : 11A05, 33E99
Keywords: Möbius-Bernoulli numbers

Introduction

The Bernoulli polynomial Bn(x) is usually defined by means of the following gen-
erating functions:

ueux

eu − 1
=

∞∑
k=0

Bk(x)
uk

k!
.

Note that Bk(x) are monic polynomials with rational coefficients and Bernoulli num-

bers Bk := Bk(0). The Bernoulli numbers B
(n)
k of order n are defined by(

u

eu − 1

)n

=
∞∑
k=0

B
(n)
k

uk

k!
. (1)

For n ∈ N, k ∈ Z and k ≥ 0 the number Mk(n) is defined as follows:

∞∑
k=0

Mk(n)
tk

k!
=
∑
d|n

μ(d)
t

edt − 1
, |t| < 2π

n
.

The Möbius-Bernoulli numbers Mk(n) are analogue Bernoulli numbers with Mk(1) =
Bk, where μ(n) is the Möbius function. Let n′ be a positive integer, we investigate
the double Möbius-Bernoulli numbers Mk(n, n

′) given by

Mk(n, n
′) =

k∑
j=0

(
k

j

)
Mj(n)Mk−j(n

′). (2)

Lemma 1. Let k be any non-negative integer, and n be a positive integer. Then

Mk(n) = Bk

∏
p|n

(1− pk−1). (3)

Here, p are prime numbers with p|n.

.rr MMkkMM ((nn

∑∑
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By Lemma 1 and (2), we get

Mk(n, n
′) =

k∑
j=0

(
k

j

)
BjBk−j

∏
p|n

(1− pj−1)
∏
q|n′

(1− qk−j−1). (4)

Consider the generating function :

∞∑
k=0

Mk(n, n
′)
tk

k!
= (

∞∑
k=0

Mk(n)
tk

k!
·)(

∞∑
k=0

Mk(n
′)
tk

k!
) =

∑
d|n

d′|n′

μ(d)μ(d′)
t2

(edt − 1)(ed′t − 1)
.

(5)

Note that, by definition,

t2

(edt − 1)(ed′t − 1)
=

∞∑
k=0

Bk((d, d
′))

tk

k!
, (6)

where Bk((d, d
′)) are Bernoulli-Barnes numbers (for the general definition, see (8)).

By (5) and (6), we have the following result:

Lemma 2. Let n and n′ be positive integers. Then by (4),

Mk(n, n
′) =

∑
d|n,

d′|n′

μ(d)μ(d′)Bk((d, d
′)),

(7)

where Bk((d, d
′)) are Bernoulli-Barnes numbers defined by (6).

In particular, if n, n′ are relative prime then,

μ(dd′) = μ(d)μ(d′).

Lemma 3. Let n, n′ be positive integers and n∗, n′∗ be their square free parts,
respectively. Precisely, let p1, · · · , pr and q1, · · · , qs be the distinct prime factors of n
and n′, respectively. Then, clearly, n∗ = p1 · · · pr and n′∗ = q1 · · · qs. Then we have
Mk(n, n

′) = Mk(n
∗, n′∗) and Mk(n) = Mk(n

∗).

Similarly, we get

Mk(p
α
1 , p

β
2 ) = B

(2)
k −

k∑
j=0

(
k

j

)
BjBk−j(p

j−1
1 + pk−j−1

2 ) +
k∑

j=0

(
k

j

)
BjBk−jp

j−1
1 pk−j−1

2

= B
(2)
k − 1

p1

k∑
j=0

(
k

j

)
BjBk−jp

j
1 − 1

p2

k∑
j=0

(
k

j

)
BjBk−jp

k−j
2 +

pk−1
2

p1

k∑
j=0

(
k

j

)
BjBk−j(

p1
p2

)j ,

where p1, p2 are primes and α, β are positive integers. If p1 = p2 = p, then

Mk(p
α, pβ) = (1 + pk−2)B

(2)
k − 2

p

k∑
j=0

(
k

j

)
BjBk−jp

j .

Hence, to compute Mk(p
α
1 , p

β
2 ) explicitly, we need to compute

k∑
j=0

λj

(
k

j

)
BjBk−j

with λ ∈ R.

.
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Main Results

The Bernoulli-Barnes numbers Bk(a), defined for a fixed vector a = (a1, · · · , an) ∈
Rn through

zn

(ea1z − 1) · · · (eanz − 1)
=

∞∑
k=0

Bk(a)
zk

k!
. (8)

Combining (1) and (8), we get the relation between Bernoulli-Barnes numbers and
Bernoulli numbers:

Bk(a) =
∑

m1+···+mn=k

(
k

m1, · · · ,mn

)
am1−1
1 · · · amn−1

n Bm1
· · ·Bmn

, (9)

where
(

k
m1,··· ,mn

)
= k!

mn!···mn!
.

In particular, for any prime p, we have

Bk((p, 1)) =
k∑

j=0

(
k

j

)
pj−1BjBk−j .

In the following, we want to compute Bk((p, 1)). By definition,

t2

(et − 1)(ept − 1)
=

∞∑
k=0

Bk((p, 1))
tk

k!
.

Lemma 4. Let p a prime. Then

1

(x− 1)(xp − 1)
=

1

p

1

(x− 1)2
− p− 1

2p

1

x− 1
+

p−1∑
j=1

1

p(ζ−j
p − 1)

· 1

ζjpx− 1
,

where ζp = e
2πi
p ∈ C.

From Lemma 4, we get

∞∑
k=0

Bk((p, 1))
tk

k!

=
t2

(et − 1)(etp − 1)

=
1

p

t2

(et − 1)2
− p− 1

2p

t2

et − 1
+

p−1∑
j=1

1

p(ζ−j
p − 1)

· t2

ζjpet − 1

=
∞∑
k=0

⎛⎝1

p
B

(2)
k − p− 1

2p
kBk−1 +

p−1∑
j=1

1

p(ζ−j
p − 1)

kBk−1((ζ
j
p))

⎞⎠ tk

k!
,

(10)

where Bk((ζ
j
p)), so called Apostol-Bernoulli numbers, are exactly defined this way.

And we assume Bk and Bk((ζ
j
p)) are both zero if k < 0.

Extracting the coefficient of both dide of tk

k! by (10) yields the following theorem.

Theorem 5. Notations as above, for k ≥ 0, we have,

Bk((p, 1)) =
1

p
B

(2)
k − p− 1

2p
kBk−1 +

p−1∑
j=1

k

p(ζ−j
p − 1)

Bk−1((ζ
j
p)).

.
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For ω ∈ C − {0} and x being a variable, the n-th Apostol-Bernoulli polynomial
Bn(x;ω) is defined by the generating function

∞∑
n=0

Bn(x;ω)
tn

n!
=

text

ωet − 1
, (|t+ log(ω)| < 2π),

where ω = |ω|eiθ, −π ≤ θ < π and log(ω) = log |ω|+ iθ.
Let n be a positive integer and ω 	= 1. It is well known that

Bn(x;ω) =
n∑

k=0

(
n

k

)
Bk(0;ω)x

n−k

and where, by definition, the Apostol-Bernoulli numbers Bk((ω)) = Bk(0;ω)

Bk((ω)) = Bk(0;ω) =
k

ω

k−1∑
j=0

(−1)jj!S(k − 1, j)(
ω

ω − 1
)j+1, for k ≥ 0 (see [1], [3] ),

(11)

with S(k, j) being Stirling numbers of the second kind.
It is well known that

B
(2)
k = −kBk−1 − (k − 1)Bk, for k ≥ 0. (12)

By Theorem 5, (11) and (12), we get

pBk((p, 1)) = −(
p− 1

2
+ k)Bk−1 − (k − 1)Bk

+ k(k − 1)

p−1∑
j=1

1

1− ζjp

k−2∑
l=0

(−1)ll!S(k − 2, l)

(
ζjp

ζjp − 1

)l+1

, for k ≥ 0.

Conclusion

In this section, we want to compute Mk(n, n
′) with n, n′ being positive integers.

First, assume (n, n′) = 1. By Lemma 2, we have

Mk(n, n
′) =

∑
d|n,d′|n′

μ(dd′)Bk((d, d
′)).

To prove Theorem 8, we need a lemma.

Lemma 6. Let (d, d′) = 1. Then we have

1

(xd − 1)(xd′ − 1)

=
1

dd′
1

(x− 1)2
− d+ d′ − 2

2dd′
1

(x− 1)

+

d−1∑
j=1

1

d(ζ−jd′
d − 1)

· 1

(ζjdx− 1)
+

d′−1∑
j=1

1

d′(ζ−jd
d′ − 1)

· 1

(ζjd′x− 1)
,

where ζd = e
2πi
d and ζd′ = e

2πi
d′ are roots of unity.

.ee MMkkMM ((n,n,
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Remark 3. In Lemma 6, if d = p and d′ = 1, then we recover Lemma 4.

Theorem 7. Let n ≥ 1 and x, y ∈ R. Then we have

n∑
k=0

(
n

k

)
dkd′n−k

Bk(x)Bn−k(y)

=(1− n)Bn(dx+ d′y) + (d(x− 1

2
) + d′(y − 1

2
))nBn−1(dx+ d′y)

+ nd′
d−1∑
j=1

1

(ζ−jd′
d − 1)

Bn−1(dx+ d′y; ζjd) + nd
d′−1∑
j=1

1

(ζ−dj
d′ − 1)

Bn−1(dx+ d′y; ζjd′).

Theorem 8. Let (n, n′) = 1. Then we have

Mk(n, n
′) =

∑
d|n

d′|n′

μ(dd′)
dd′

(1− k)Bk −
∑
d|n

d′|n′

μ(dd′)
2

(
1

d
+

1

d′
)kBk−1 +A1 +A2,

where

A1 = k
∑
d|n

d′|n′

μ(dd′)
d

d−1∑
j=1

1

ζ−jd′
d − 1

Bk−1(0; ζ
j
d),

A2 = k
∑
d|n

d′|n′

μ(dd′)
d′

d′−1∑
j=1

1

ζ−jd
d′ − 1

Bk−1(0; ζ
j
d′).

Proof. By (6) and (7),

Mk(n, n
′) =

∑
d|n

d′|n′
μ(dd′)Bk((d, d

′)) (13)

and
∞∑
k=0

Bk((d, d
′))

tk

k!
=

t2

(edt − 1)(ed′ − 1)
=

1

dd′
(

dt

edt − 1
)(

d′t
ed′t − 1

).

By formula (9), we have

Bn((d, d
′)) =

n∑
k=0

(
n

k

)
dkd′n−k

BkBn−k.

In Theorem 7, putting x = y = 0, we get

dd′Bk((d, d
′))

=(1− k)Bk − (
d+ d′

2
)kBk−1 + kd′

d−1∑
j=1

1

(ζ−jd′
d − 1)

Bk−1(0; ζ
j
d) + kd

d′−1∑
j=1

1

(ζ−dj
d′ − 1)

Bk−1(0; ζ
j
d′).

(14)

By (13) and (14), we get the theorem. �

Example 9. We consider a special case of Theorem 8.

1. Case d = 2, d′ = 1 :

Mk(2, 1) =
∑
d|2

μ(d)

d
(1− k)Bk −

∑
d|2

μ(d)

2
(1 +

1

d
)kBk−1 + k

μ(2)

2
(
1

−2
)Bk−1(0;−1)

= −1

4
kBk−1 − 1

2
(k − 1)Bk − k(k − 1)

8
Ek−2(0).

.ddkkdd′′nn−−
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Remarks on Special Sums Associated with

Hardy Sums

Elif Cetin

Abstract

A new special finite sum was defined in [11] as C(h, k; 1). This special finite
sum is related with other well known sums such as Dedekind sums and Hardy
sums. In this paper two of useful identities of this sum will be given which are
related with Hardy sum S(h, k).

2010 Mathematics Subject Classifications : 11F20, 11C08.
Keywords: Special Finite Sums, Hardy Sums, The Mean Value Function, The

Sawtooth Function.

Introduction

The special finite sums are related with many areas in mathematics, particularly
in analytic number theory. They have many applications which are also used in
approximation theory and combinatorics. These sums are mostly depend on the
greatest integer function [x], and the sawtooth function ((x)), where

((x)) =

{
x− [x]− 1/2, if x is not an integer,

0, if x is an integer.

Thus the mathematicians wanted to find out more results about these functions.
Hardy sums are related with these functions. There are eleven Hardy sums, which
were defined by the famous mathematician Godfrey Harold Hardy. But mostly six of
them studied by other mathematicians. There are many useful resulst and applica-
tions about them. In this paper some relations will be given about just for the sum
S(h, k). The definition of the Hardy sum S(h, k) which will be helpful in the following
sections, is given by the next identity: If h and k are integers with k > 0, the Hardy
sums are defined by

S(h, k) =
k−1∑
j=1

(−1)j+1+[ jhk ],

In some sources the Hardy sums are also called as Hardy-Berndt sums because of
the American matematician Bruce C. Bernd’s contributions to the subject. The next
reciprocity theorem’s proof was given by Hardy [14] and Berndt [6]:

Theorem 1. Let h and k be coprime positive integers. Then

S(h, k) + S(k, h) = 1, if h+ k is odd. (1)

Apostol [2] gave the next identity with the help of the equation (1):

.ctions.ctions.
cian Gocian Go

ThereThere
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Theorem 2. If both h and k are odd and (h, k) = 1, then

S(h, k) = S(k, h) = 0.

The sum B1(h, k) is defined by Cetin et al. in [11]. It will be helpful for other
sections so its definition is as follows:

B1(h, k) =

k−1∑
j=1

(−1)j+[
hj
k ]
[
hj

k

]
, (2)

which (h, k) = 1 and k > 0. In [9], basic properties of the sum B1(h, k), and the
relations of this sum with other well known sums was studied. The following theorem,
which gives the relationship between the sum B1(h, k) and Hardy sum S(h, k), was
also given in [9].

Theorem 3. If h+ k is odd, k > 0, and (h, k) = 1, then

B1(h, k) =
1

2
(1− h)S(h, k). (3)

Main Results

In this section some properties of the sum C(h, k; 1), which is related with Hardy
sums, are given. In [11], the sum C(h, k; 1) was defined as follows:

C(h, k; 1) =

k−1∑
j=1

(−1)j+[
hj
k ]j

which (h, k) = 1 and k > 0.
Now some relations between the sum C(h, k; 1) and the Hardy sum S(h, k) will

be given for h+ k is an odd positive integer.

Theorem 4. If h+ k is odd, k > 0, and (h, k) = 1 then the following equality holds:

B1(h, k) =
h

k
C(h, k; 1) +

1

2
S(h, k) (4)

Proof. With the help of the definition of the sum B1(h, k) and the definition of the
mean value function

B1(h, k) =
k−1∑
j=1

(−1)j+[
hj
k ]
(
hj

k
−
((

hj

k

))
− 1

2

)
The last equation is can be also expressed as

B1(h, k) =
h

k

k−1∑
j=1

(−1)j+[
hj
k ]j −

k−1∑
j=1

(−1)j+[
hj
k ]
((

hj

k

))
+

1

2

k−1∑
j=1

(−1)j+[
hj
k ]+1

so the desaired result is obtained. �

The next theorem gives a direct relationship between the sum C(h, k; 1) and the
Hardy sum S(h, k). In this case usege of the sum B1(h, k) is not necessary.

.ndnd ((h, kh, k

CC((h kh k

MICOPAM2018_b5.indd   154MICOPAM2018_b5.indd   154 16.1.2019.   11.26.2216.1.2019.   11.26.22



Dedicated to Professor G. Milovanović Antalya-TURKEY155

PROCEEDINGS BOOK OF MICOPAM 2018

Theorem 5. If h+ k is odd, k > 0, and (h, k) = 1 then the following equality holds:

C(h, k; 1) = −k

2
S(h, k)

Proof. From the previous theorem, it is known that the equation 4 holds. If the
equation 3 is written down into the equation 4, then the desired result is obtained. �

Conclusion

In this paper, the connection between the sum C(h, k; 1) and the Hardy sum
S(h, k) is given. This new C(h, k; 1) sum has also relations with the Dedekind sums
and other Hardy sums. Moreover it has a connection with Fibonacci numbers. So it
functions as a bridge bewteen analysis and the number theory. These relations will
be very usefull for the future investigations about the new defined special finite sums.

References

[1] Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory,
Springer-Verlag (1976).

[2] Tom M. Apostol and T. H. Vu, Elementary proofs of Berndt’s reciprocity laws,
Pasific J. Math. 98 (1982), 17-23.

[3] M. Beck, Geometric proofs of polynomial reciprocity laws of Carlitz, Berndt, and
Dieter, M. Beck, in Diophantine analysis and related fields, Sem. Math. Sci. 35
(2006), 11–18.

[4] B. C. Berndt, Analytic Eisenstein series, Theta-functions, and series relations in
the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-150.

[5] B. C. Berndt and U. Dieter, Sums involving the greatest integer function and
Riemann Stieltwes integration, J. Reine Angew. Math. 337 (1982), 208-220.

[6] Bruce C. Berndt and Ronald J. Evans, Problem E2758, American Math. Monthly,
v. 86(1979), p. 128, and v. 87(1980), p. 404.

[7] B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising
in the theory of the classical Theta-functions, SIAM. J. Math. Anal. 15 (1984),
143-150.

[8] L. Carlitz, Some polynomials associated with Dedekind sums, Acta Math. Sci.
Hungar, 26 (1975), 311-319.

[9] E. Cetin, Analytic Properties of The Sum B1(h, k), Math. Comput. Appl., 21,
31 (2016).

[10] E. Cetin, A Note on Hardy type Sums and Dedekind Sums, FILOMAT (2016).

[11] E. Cetin, Y. Simsek and I. N. Cangul, Some special finite sums related to the
three-term polynomial relations and their applications, Advances in Difference
Equations, 283 (2014), 1-18.

[12] L. A. Goldberg, Transformation of Theta-functions and analogues of Dedekind
sums, Thesis, University of Illinois Urbana (1981).

.ns, Prons, Pro
0), p. 400), p. 40

MICOPAM2018_b5.indd   155MICOPAM2018_b5.indd   155 16.1.2019.   11.26.2216.1.2019.   11.26.22



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY156

[13] H. Rademacher, E. Grosswald, Dedekind sums, Carus Mathematical Mono-
graphs, The Mathematical Association of America (1972).

[14] G. H. Hardy, On certain series of discontinues functions connected with the
modular functions, Quart. J. Math. 36 (1905), 93-123.

[15] M. R. Pettet and R. Sitaramachandraro, Three-Term relations for Hardy sums,
J. Number Theory 25 (1989), 328-339.

[16] H. Rademacher, Generalization of the reciprocity formula for Dedekind sums,
Duke Math. J. 21 (1954), 391-397.

[17] Y. Simsek, On Generalized Hardy Sums s5(h, k), Ukrainian Math. J. 56 (10)
(2004), 1434-1440.

[18] Y. Simsek, Theorems on Three-Term relations for Hardy sums, Turkish J. Math.
22 (1998), 153-162.

[19] Y. Simsek, A note on Dedekind sums, Bull. Cal. Math. Soci. 85 (1993), 567-572.

[20] Y. Simsek, On Analytic properties and character analogs of Hardy Sums, Tai-
wanese J. Math. 13 (2009), 253-268.

[21] R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith. XLVIII (1978).

Department of Mathematics, Manisa Celal Bayar University
E-mail : elifc2@gmail.com .

MICOPAM2018_b5.indd   156MICOPAM2018_b5.indd   156 16.1.2019.   11.26.2216.1.2019.   11.26.22



Dedicated to Professor G. Milovanović Antalya-TURKEY157

PROCEEDINGS BOOK OF MICOPAM 2018

Parikh Matrices of Binary Picture Arrays

Somnath Bera1 , Atulya K. Nagar2 , Linqiang Pan3 , Sastha Sriram4 ,
K.G. Subramanian5

Abstract

A word is a finite sequence of symbols. Parikh matrix of a word is an upper
triangular matrix with 1 in the main diagonal and non-negative integers above
the main diagonal which give the counts of certain scattered subwords in the
word. On the other hand a picture array which is a rectangular arrangement
of symbols is an extension of the notion of word to two dimensions. Parikh
matrices associated with a picture array have been introduced and studied.
Here we obtain certain properties of Parikh matrices of a binary picture array
based on the notions of power and fairness of an array in terms of subwords,
extending the corresponding notions studied in the case of words.

2010 Mathematics Subject Classifications : 68R15
Keywords: Words, Subwords, Parikh matrix, Picture Array

Introduction

“Combinatorics on words” [3] is a comparatively new branch of Discrete Mathe-
matics with applications in many fields. A finite word or simply a word is a finite
sequence of symbols in a finite set called an alphabet. The recently introduced notion
of Parikh matrix [5] of a word over an ordered alphabet is an extension of the Parikh
vector which has played a significant role in the theory of formal languages [6] and
is based on subwords (also called scattered subwords) of the word. Parikh matrix is
a very interesting and effective tool in the study of certain numerical properties of
a word. Intensive work has taken place investigating properties of words based on
associated Parikh matrices. On the other hand, a picture array or simply an array,
having a rectangular arrangement of symbols in rows and columns, is an extension
of a word to two-dimensions [6]. Recently, the notion of Parikh matrix of a word
has been extended to row and column Parikh matrices of picture arrays in [7] and
their properties have been studied. Here we obtain certain properties of the Parikh
matrices of power of an array and also study fairness of an array in terms of subwords,
extending the corresponding notions investigated in the case of words.
For notions of formal string language theory and two-dimensional languages, not ex-
plained here, the reader is referred to [6]. We recall only some basic notions. A set Σ,
called an alphabet, is a finite set of symbols. A word w over Σ is a finite sequence of
symbols over Σ. The set of all words over Σ is denoted by Σ∗ and λ is the empty word
with no symbols. An alphabet Σ = {a1, a2, · · · , ak} with an order a1 < a2 < · · · < ak
defined on it, is called an ordered alphabet and we write Σ = {a1 < a2 < · · · < ak}.
A word u is said to be a scattered subword or simply called a subword, of a word
w ∈ Σ∗ if there exist words x1, x2, · · · , xn, y0, y1, · · · , yn ∈ Σ∗ (possibly empty) such
that u = x1x2 · · ·xn and w = y0x1y1 · · · yn−1xnyn. The length of a word w ∈ Σ∗,
denoted by |w|, is the number of symbols present in w. The number of occurrences of

.ole in tole in t
ered subered sub.the stuthe stu
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a word u as a subword of w is denoted by |w|u. A picture array (or simply an array)
A over Σ of size m× n, m, n ≥ 1 is a rectangular arrangement of symbols in Σ in m

rows and n columns. For example,
a b a
b a b

is a 2× 3 binary array over the binary

alphabet Σ = {a < b}. We denote the set of all m× n arrays over Σ as Σm×n.

Throughout the rest of the paper we consider only a binary ordered alphabet Σ
with two symbols and binary arrays over Σ unless specified otherwise. We now recall
the definition of Parikh matrix mapping [5] restricting it to a binary alphabet. Let
M3 be the monoid of 3×3 upper triangular matrices with non-negative integer entries
and unit diagonal with respect to multiplication of matrices. For a matrix M ∈ M3,
the (i, j)th entry is denoted by Mij .

Definition 1. [5] Let Σ2 = {a1 < a2} be an ordered alphabet. The Parikh matrix
mapping, denoted by ψ3, is the morphism: ψ3 : Σ∗

2 −→ M3 defined as follows: ψ3(λ) =
I3 and for 1 � k � 2, ψ3(ak) = (mij)1�i,j�3 where mii = 1 for 1 ≤ i ≤ 3, mk(k+1) = 1
and all other entries are zero.

For a word w = w1w2 · · ·wn with wi ∈ Σ2, the Parikh matrix of w is obtained by
ψ3(w) = ψ3(w1)ψ3(w2) · · ·ψ3(wn).
If M1,M2 ∈ M3 are two matrices then the partial sum M = M1 ⊕ M2 is defined [4]
as the usual sum of matrices M1 and M2 except that the diagonal entries of M by
definition have the value 1.
The notion of Parikh matrix of a word has been extended to a picture array by
Subramanian et al. [7] by introducing row Parikh matrix and column Parikh matrix
of an array, which we recall now again restricting to a binary alphabet.

Definition 2. Let Σ = {a1 < a2} and the array A ∈ Σm×n. Let the words in the
m rows of A be xi, 1 ≤ i ≤ m and the vertical words in the n columns of A be yj,
1 ≤ j ≤ n. Let the Parikh matrices of xi and yj be respectively M(xi), 1 ≤ i ≤ m
and M(yj), 1 ≤ j ≤ n. Then the row Parikh matrix Mr(A) of A is defined as
Mr(A) = M(x1)⊕ · · · ⊕M(xm) and the column Parikh matrix Mc(A) of A is defined
as Mc(A) = M(y1)⊕ · · · ⊕M(yn).

We give an example. Consider the array A =
a b a
b a b

. Denoting the words in

the first and second rows as u and v respectively, the row Parikh matrix of A is

M(u)⊕M(v) =

⎛⎝1 2 1
0 1 1
0 0 1

⎞⎠ ⊕

⎛⎝1 1 1
0 1 2
0 0 1

⎞⎠ =

⎛⎝1 3 2
0 1 3
0 0 1

⎞⎠ .

Main Results

We first obtain a property of the row and column matrices of a binary picture
array which is analogous to a corresponding property [4] of the Parikh matrix of a
binary word.

Theorem 3. For m,n(≥ 1) ∈ N, suppose M =

⎛⎝1 r t
0 1 s
0 0 1

⎞⎠ ∈ M3. Then

1. r + s = mn and t ≤ nr −
m∑
i=1

r2i , where ri (1 ≤ i ≤ m) is the number of a’s in

the ith row of an m× n binary array A, if M is the row Parikh matrix of A.

.arrayarray
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2. r + s = mn and t ≤ mr −
n∑

i=1

c2i , where ci (1 ≤ i ≤ n) is the number of a’s in

the ith column of an m × n binary array A, if M is the column Parikh matrix
of A..

Proof. We prove the first statement and the second statement can be proved in a
similar manner. Suppose M be the row Parikh matrix of an m × n binary array A.
Then A has mn symbols, r a’s and s b’s, we have r + s = mn. Let ri be the number

of a’s in the ith (1 ≤ i ≤ m) row of A. Then
m∑
i=1

ri = r, and the number of b’s in the

ith row is (n− ri). Therefore the maximum number of ab’s in the ith row is ri(n− ri).

Thus the maximum number of ab’s in the row Parikh matrix of A is
m∑
i=1

ri(n− ri) so

that t ≤ nr −
m∑
i=1

r2i . �

Corollary 4. Let M be as in Theorem 3. If M is the row (respy. column) Parikh

matrix of an m× n array, then r + s = mn and t ≤ nr − r2

m (respy. t ≤ mr − r2

n ).

This result follows from Theorem 4 using the Cauchy Schwarz inequality (
m∑
i=1

r2i ≥

(
m∑

i=1

ri)
2

m

Parikh matrix of a word raised to an arbitrary power has been studied in [1]. Here
we consider power of an array.

Definition 5. Let A be an m × n array. Then p × q power of A, denoted by Ap×q,
is the pm× qn picture array such that Ap×q

ij = A(i mod p)(j mod q).

Theorem 6. Let M =

⎛⎝1 r t
0 1 s
0 0 1

⎞⎠ be the row Parikh matrix of a binary m × n

array A over {a < b}. Then the row Parikh matrix of the power Ap×q is given by⎛⎝1 pqr α
0 1 pqs
0 0 1

⎞⎠ , where ri and si denote respectively the number of a’s and b’s in the

ith row of A and α = qpt+ qp(p−1)
2

m∑
i=1

ri · si

Proof. We have Ap×q = (Ap×1)1×q.
Now Ap×1 is the vertical concatenation of A p times. Let ri, si and ti denote the

number of a’s, b’s and ab’s in the ith row xi, (1 ≤ i ≤ m) of A. Then The ith row of
Ap×1 is xp

i .
Using the formula in ([1], Theorem 3.1), the Parikh matrix of xp

i is given by

ψ3(x
p
i ) =

⎛⎝1 pri pti +
p(p−1)

2 ri · si
0 1 psi
0 0 1

⎞⎠ Therefore the row Parikh matrix of Ap×1

is =

⎛⎜⎜⎝1 pr pt+ p(p−1)
2

m∑
i=1

ri · si
0 1 ps
0 0 1

⎞⎟⎟⎠. Using the fact that Ap×q is the horizontal

concatenation of Ap×1 q times, the required result can be proved. �

.ParikhParikh

te respete respe

MICOPAM2018_b5.indd   159MICOPAM2018_b5.indd   159 16.1.2019.   11.26.2316.1.2019.   11.26.23



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY160

Fair words and their properties have been studied in [2]. We extend the the notion
of fair words to two dimensional arrays as follows.

Definition 7. An m× n binary array A ∈ Σ is said to be fair if the total number of
subword ab equals the total number of subword ba in the rows (respy. columns) in A.

A weak ratio property for an array is introduced in [7]. We recall this notion
restricting it to binary arrays.

Definition 8. Let A and B be two m× n binary arrays over Σ = {a < b}. Denoting
the number of occurrences of a symbol x in an array X by |X|x, the arrays A and

B are said to satisfy a weak ratio property if |A|a
|B|a = |A|b

|B|b = k where k, is non-zero
constant.

Theorem 9. For any two fair m×n binary arraysA and B over Σ = {a < b} having
weak ratio property, the product arrays [6] AB and BA are also fair.

We omit a formal proof due to space restrictions but only note that the weak ratio
property ensures fairness of the product of the corresponding words in the product
arrays. Other properties Parikh matrices of arrays such as restricted shuffle of arrays,
geometric operations on arrays, will be considered in an extended version of this work.
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Vietoris’ number sequence and its

generalizations through hypercomplex

function theory

I. Cação1, M. I. Falcão2, H. R. Malonek1

Abstract

The so-called Vietoris’ number sequence is a sequence of rational numbers
that appeared for the first time in a celebrated theorem by Vietoris (1958)
about the positivity of certain trigonometric sums with important applications in
harmonic analysis (Askey/Steinig, 1974) and in the theory of stable holomorphic
functions (Ruscheweyh/ Salinas, 2004). In the context of hypercomplex function
theory those numbers appear as coefficients of special homogeneous polynomials
in R3 whose generalization to an arbitrary dimension n lead to a n-parameter
generalized Vietoris’ number sequence that characterizes hypercomplex Appell
polynomials in Rn.

2010 Mathematics Subject Classifications: 30G35, 11B83, 05A10
Keywords: Vietoris’ number sequence, monogenic Appell polynomials, generat-

ing functions

Introduction

The Vietoris’ number sequence S is the following sequence of rational numbers

1, 1
2 ,

1
2 ,

3
8 ,

3
8 ,

5
16 ,

5
16 ,

35
128 ,

35
128 ,

63
256 ,

63
256 ,

231
1024 ,

231
1024 , . . . . (1)

which by means of the generalized central binomial coefficient
( k

�k2 �
)
can be written

in compact form (cf. [3]) as S = (ck)k≥0, where

ck =
1

2k

(
k

 k
2 !

)
=

(
1
2

)
�k+1

2 �(
1
)
�k+1

2 �
. (2)

Here, as usual,  ·! denotes the floor function and (·)k is the raising factorial in the
classical form of the Pochhammer symbol.

Seemingly this sequence appeared, for the first time, in the context of positive
trigonometric sums in a celebrated paper of L. Vietoris [11]. Askey’s version [2, p. 5]
of Vietoris’ theorem is the following:

Theorem 1 (L. Vietoris).

n∑
k=1

ak sin kθ > 0, 0 < θ < π, and

n∑
k=0

ak cos kθ > 0, 0 ≤ θ < π,

where

a2k = a2k+1 =
( 12 )k

k!
, k = 0, 1, . . . . (3)

.tral bintral bin

wherwher
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We call attention to the fact that because of (3), the coefficients in the sine sum
are exactly the elements of S in (2) or, explicitly, in (1). Compared with the tra-
ditional way of defining the coefficient sequence by (3), the use of the properties of
the generalized central binomial coefficient allows a unique representation (2) with
consecutively running index k.

In the context of hypercomplex function theory, the sequence S characterizes a
special homogeneous polynomial sequence that can be considered in higher dimensions
as the counterpart of the sequence of holomorphic powers.

In the sequel we will use the following basic concepts and notations. Let {e1, e2, . . . , en}
be an orthonormal basis of the Euclidean vector space Rn endowed with a non-
commutative product according to the multiplication rules

eiej + ejei = −2δij , i, j = 1, 2, . . . , n,

where δij is the Kronecker symbol. This generates the associative 2n-dimensional
Clifford algebra C�0,n over R, whose elements are of the form a =

∑
A aAeA, aA ∈ R,

with A ⊆ {1, · · · , n}, eA = el1el2 · · · elr , where 1 ≤ l1 < · · · < lr ≤ n and e∅ = e0 = 1.
In general, the vector space Rn+1 is embedded in C�0,n by identifying the element
(x0, x1, . . . , xn) ∈ Rn+1 with the element (paravector)

x = x0 +
n∑

k=1

ekxk = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C�0,n.

Its conjugate is x̄ = x0 − x and the norm of x is given by |x| = (xx̄)1/2 = (x̄x)1/2 =(∑n
k=0 x

2
k

)1/2
.

We consider C�0,n-valued functions defined as mappings

f : Ω ⊂ Rn+1 ∼= An �−→ C�0,n
such that f(x) =

∑
A fA(x)eA, fA(x) ∈ R and Ω is an open subset of Rn+1, n ≥ 1.

The generalized Cauchy-Riemann operator in Rn+1 is ∂ := 1
2 (∂0+∂x), with ∂0 :=

∂
∂x0

, and ∂x :=
∑n

k=1 ek
∂

∂xk
. A C1-function f is called left (right) monogenic,

or simply monogenic in Rn+1 if it is a solution of the differential equation ∂f = 0
(f∂ = 0).

Notice that the operator ∂ := 1
2 (∂0 − ∂x) is the conjugate generalized Cauchy-

Riemann operator and acts as derivative of a monogenic function (cf.[9]). Therefore
the hypercomplex derivative of a monogenic function f can be calculated as ∂f =
1
2 (∂0 − ∂x)f = ∂0f , i.e. in the same way as the complex derivative of a holomorphic
function.

Main Results

In the center of our attention is the sequence of paravector-valued monogenic
polynomials (Pn

k )n∈N
such that

∂Pn
k (x) = kPn

k−1(x), x ∈ An, k = 1, 2, . . . . (4)

Choosing as initial value Pn
0 = 1, the recurrence (4) together with the requirement of

monogeinity,
∂Pn

k (x) = 0, x ∈ An,

lead to the explicit representation

Pn
k (x) =

k∑
s=0

(
k

s

)
cs(n)x

k−s
0 xs, x ∈ An, (5)
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where

cs(n) :=
( 12 )� k+1

2 �
(n2 )� k+1

2 �
, s = 0, . . . , k, k = 1, 2, . . . . (6)

See [4, 7, 8] for details.
The equality (4) for monogenic homogeneous polynomials generalizes to higher

dimensions the classical concept of Appell polynomials (cf.[1]). We remark that the
initial value of a Clifford algebra-valued Appell polynomial sequence can be a real, a
Clifford number or a vector-valued monogenic polynomial of a fixed degree (a mono-
genic constant) (see [6, 10]).

Taking into account that for n = 2, (6) gives exactly the rational numbers (2)
that constitute the Vietoris’ number sequence S, the coefficients sequence (S(n))n∈N

characterizing the Appell polynomials (5) and whose general term is given by (6) is
a n-parameter generalization of S.

Moreover, the representation (6) in terms of quotients of numbers represented by
the Pochhammer symbol suggests the use of the well known Gauss’ hypergeometric
function

2F1(a, b; c; z) =

+∞∑
k=0

(a)k (b)k
(c)k

zk

k!
, |z| < 1, a, b ∈ C, c ∈ C \ Z−

0

to derive a generating function of the generalized Vietoris’ sequence (S(n))n∈N
. In

fact, in [5] the following result was obtained.

Theorem 2. Let G(., n) be the following real-valued function depending on a param-
eter n ∈ N:

G(t;n) =

{
1
t

[
(1 + t) 2F1(

1
2 , 1;

n
2 ; t

2)− 1
]
, if t ∈]− 1, 0[∪]0, 1[

1, if t = 0.

Then, for any fixed n ∈ N, G(., n) is a one-parameter generating function of the
sequence S(n).

It is clear that we can obtain a closed formula for the generating function of the
sequence (S(n))n∈N

as long as a closed formula for the corresponding hypergeometric
series is known. As examples we list some cases where closed formulae can be easily
obtained:

1. n = 1

In this case, ck(1) = 1 (k ≥ 0) and the corresponding generating function is
given by

G(t; 1) = 1
t

[
(1 + t) 2F1(

1
2 , 1;

1
2 ; t

2)− 1
]
= 1

1−t ,

because 2F1(
1
2 , 1;

1
2 ; t

2) reduces to the geometric function.

2. n = 2

Recalling (2), we have c2k(2) = c2k−1(2) =
( 1

2 )k
k! and

G(t; 2) = 1
t

[
(1 + t) 2F1(

1
2 , 1; 1; t

2)− 1
]
=

√
1+t−√

1−t
t
√
1−t

.

3. n = 3

The generalized Vietoris’ numbers are c2k(3) = c2k−1(3) =
1

2k+1 and the corre-
sponding generating function is given by

G(t; 3) = 1
t

[
(1 + t) 2F1(

1
2 , 1;

3
2 ; t

2)− 1
]
= 1

t

(
t+1
t ln

√
1+t
1−t − 1

)
.

.formulaformula
me casme cas
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4. n = 4

In this case, c2k(4) = c2k−1(4) =
( 1

2 )k
(k+1)! and

G(t; 4) = 1
t

[
(1 + t) 2F1(

1
2 , 1; 2; t

2)− 1
]
= 2t+1−√

1−t2

t(1+
√
1−t2)

.

Conclusion

By providing a link between the Vietoris’ number sequence and hypercomplex Ap-
pell polynomials, we were able to define one-parameter generalized Vietoris’ number
sequences and obtain their generating functions.
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On the construction of fuzzy topology

induced by a fuzzy metric

Ebru Aydoğdu1, Abdulkadir Aygünoğlu1, Halis Aygün1

Abstract

In this study we establish a way to construct a stratified fuzzy topology from
a fuzzy metric by means of some particular level topologies. Then we compare
their induced fuzzy topology with the one induced by the Lowen functor w.

2010 Mathematics Subject Classifications : 54A40
Keywords: Fuzzy metric, Fuzzy topology

Introduction

One of the basic branches of fuzzy theory is fuzzy topology which has grow into an
area of active research in recent years owing to the wide range of applications. After
Chang [1] introduced the fuzzy topological space, the concepts in the general topology
began to move into fuzzy topological space. In Chang’s topology, a fuzzy topology
itself was a crisp subset of the family of all fuzzy subsets of X. Many researchers have
worked to generalize the theory of general topology to the fuzzy setting with crisp
methods. In 1976, Lowen [5] introduced a more natural definition of fuzzy topology
in order to obtain generalized version of some topological concepts such as continuity
and compactness. Lowen’s definition is as follows:

Definition 1. [5] An stratified fuzzy topological space is an ordered pair (X, T ) such
that X be a set and T ⊂ IX satisfy the following condition

LT1 T contains all constant fuzzy sets in X

LT2 If λ1, λ2 ∈ T , then λ1 ∧ λ2 ∈ T

LT3 If λi ∈ T for all i ∈ I then
∨
i∈I

λi ∈ T .

After the introduction of the concept of a fuzzy metric by Kramosil and Michalek
[4], topological structure of fuzzy metric space attracted the attention of many re-
searchers [3, 7, 10]. Definition of fuzzy metric space as follows:

Definition 2. [4] A fuzzy metric space is an ordered triple (X,M, ∗) such that X is
a (non-empty)set, ∗ is a continuous t-norm and M : X×X× [0,∞) → [0, 1] is a map
satisfying the following conditions for all x, y, z ∈ X and t, s > 0:

(F1) M (x, y, 0) = 0

(F2) M (x, y, t) = 1 for all t > 0 if and only if x = y

(F3) M (x, y, t) = M (y, x, t)

(F4) M (x, y, t) ∗M (y, z, s) ≤ M (x, z, t+ s) for all t, s > 0

.followifollowi

inin XX
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(F5) M (x, y, ·) : [0,∞) → [0, 1] is left continuous.

In most paper the topology induced by a fuzzy metric was crisp topology under-
lying set. However, recently few researchers [3, 7, 8, 13] have addressed the problem
of construction of fuzzy-type topological structures induced fuzzy metric. In general,
most study consist of to determine a fuzzifying topology.

Main Result

Construction of fuzzy topology

In this section we intend to construct a stratified fuzzy topology with the help of
level topologies. For this we consider the family Bα = {B(x, r, t) : x ∈ X, r > α, t >
0}. In the following lemma we show that Bα is a base of a topology Tα.

Lemma 3. Let (X,M,∧) be a fuzzy metric space and α ∈ [0, 1).Then the family Bα =
{B(x, r, t) : x ∈ X, r > α, t > 0} is a base for topology Tα.

Proof. Let z ∈ B (x, r1, t) ∩ B (y, r2, s) where r1, r2 > α. Then we have M (x, z, t) >
1−r1 and M (y, z, s) > 1−r2. There exists t0 < t and s0 < s such that M (x, z, t0) >
1− r1 and M (y, z, s0) > 1− r2.
Let r = min {r1, r2} and p = min {t− t0, s− s0}. We consider B (z, 1− r, p). We
claim thatB (z, 1− r, p) ⊂ B (x, r1, t)∩B (y, r2, s). Let u ∈ B (z, r, p) ⊂ B (z, r, t− t0).
Then M (u, z, t− t0) > 1− r.
Therefore M (x, u, t) ≥ M (x, z, t0) ∧ M (z, u, t− t0) > (1− r1) ∧ (1− r) = 1 − r1.
Then u ∈ B (x, r1, t) and we have B (z, r, p) ⊂ B (x, r1, t).
On the other hand let u ∈ B (z, r, p) ⊂ B (z, r, s− s0). Then M (u, z, s− s0) >
1 − r. Therefore M (y, u, s) ≥ M (y, z, s0) ∧ M (z, u, s− s0) > (1− r2) ∧ (1− r) =
1 − r2. Then u ∈ B (y, r2, s). We have B (z, r, p) ⊂ B (y, r2, s). Hence B (z, r, p) ⊂
B (x, r1, t) ∩B (y, r2, s). �

The topology Tα is chacterized in the following theorem.

Theorem 4. Let (X,M,∧) be a fuzzy metric spaces, G ⊂ X. Then G ∈ Tα if and
only if for each x ∈ G there exists t > 0 and r ∈ (0, 1) such that B (x, r, t) ⊂ G.
Equivalently;

G ∈ Tα ifandonlyif G =
⋃
r>α

B(x,r,t)⊂G

B(x, r, t). (1)

and this topology is
Tα = {G ⊂ X : ∀x ∈ G ∃t > 0 and r ∈ (0, 1) such that B (x, r, t) ⊂ G}.

From the definition of Tα, we have T0 = TM .
Since Bα ⊂ Bβ whenever β < α, we have the following corollary.

Corollary 5. {Tα : α ∈ [0, 1)} is a decreasing family of topologies.

Theorem 6. Let (X,M,∧) be a fuzzy metric spaces and {Tα : α ∈ [0, 1)} be the
family of topologies induced by this metric. Then

T M := {λ : λα ∈ Tα for all α ∈ [0, 1)}

is the finest stratified fuzzy topology satisfying ıα
(
T M
)
= Tα.

.metricmetric
00 andand rr
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As a consequence we have ı
(
T M
)
= TM .

Definition 7. [10] Let (X,M,∧) be a fuzzy metric space, x ∈ X, r ∈ (0, 1) , t > 0
and β ∈ (0, 1). Then the fuzzy set βB (x, r, t) is called β open ball with the center x
and radius r and defined by

βB (x, r, t) (y) =

{
β, y ∈ B (x, r, t)
0, other

.

In the following proposition we show that the collection of β open balls is a base
for w

(
TM
)
.

Proposition 8. Let (X,M,∧) be a fuzzy metric space. Then the family
B1 = {βB (x, r, t) : x ∈ X, r ∈ (0, 1) , t > 0, β ∈ (0, 1)} is a base for w

(
TM
)
.

Proof. Obviously, B1 ⊂ w
(
TM
)
. Let λ ∈ w

(
TM
)
and λ (x) > 0. Since λ is lower

semicontinuous for all ε ∈ (0, 1) satisfying λ (x) − ε > 0 there exists r ∈ (0, 1) and
t > 0 such that λ (y) ≥ λ (x) − ε for all y ∈ B (x, r, t). Choose β = λ (x) − ε, we get
βB (x, r, t) ≤ λ. �

On the other hand if M is co-principle, it can be easily shown that Tα = Tβ for all
α 	= β. By the Proposition ?? in [11] and Theorem 6, we have the following corollary:

Corollary 9. The fuzzy topological space (X, T M ) is topologically generated if M is
co-principle, i.e T M = w

(
ı
(
T M
))

.

In the next example we show that T M 	= w
(
ı
(
T M
))

in general.

Example 10. Let f : [0, 1) →
(
1
2 , 1
]
be a nondecreasing left continuous surjective

function. Consider the fuzzy metric space (X,M,∧) in [9] M is given by

M (x, y, t) =

⎧⎪⎨⎪⎩
0, t = 0

f
(

t
|x−y|

)
x 	= y, t ≥ 0

1 x = y, t ≥ 0

.

Let α = 1
4and r = 1

3 > α. Then B
(
x, 1

3 , t
)
= {x} and 2

3B
(
x, 1

3 , t
)
∈ w
(
ı
(
T M
))
.

On the other hand for α = 1
2 < β = 2

3 we have
[
2
3B
(
x, 1

3 , t
)] 1

2 = {x} /∈ T 1
2
, T 1

2
is

trivial topology since B (x, r, t) = X for r > 1
2 . It follows that 2

3B
(
x, 1

3 , t
)
/∈ T M .

On the other hand, by considering a relation between β and r, we can construct
a base for the fuzzy topology T M in the following proposition:

Proposition 11. Let (X,M,∧) be a fuzzy metric space. Then the family
B2 = {βB (x, r, t) : x ∈ X, r ∈ (0, 1) , t > 0, β ∈ (0, r)} is a base for T M .

Proof. First we show that B2 ⊂ T M . If α < β then [βB (x, r, t)]
α
= B (x, r, t).

Since r > β we have r > α. It follows that B (x, r, t) ∈ B2 ⊂ Tα. Hence βB (x, r, t) ∈
T M .
Let λ ∈ T M and λ (x) > 0. Then [λ]

α ∈ Tα and x ∈ [λ]
α
for all α ∈ [0, 1) satisfy

λ (x) > α > 0. By the definition of Tα there exists r > α such that B (x, r, t) ⊂ [λ]
α
.

That is λ (y) > α for each y ∈ B (x, r, t). It follows that αB (x, r, t) ≤ λ. �

., t, t)) == {{
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Conclusion

In this study we focused on investigate of the relationship between fuzzy metric
spaces and Lowen-type fuzzy topology. We present a construction to determine a fuzzy
topology by the help of an ordered family of induced topologies. We have to restrict
to consider only fuzzy metric in order to construct the fuzzy topology, since there are
some difficulties as pointed out in [7]. We compare the induced fuzzy topology with
the fuzzy topology induced by the Lowen functor w and show that they are different
for non-coprinciple fuzzy metric spaces.
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València, 2016.
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Multi Hypergroups

Dilek Bayrak1 , Canan Akın2

Abstract

In this paper, we first define the notion of multi hypergroups over a canonical
hypergroup and investigate some of their properties.

2010 Mathematics Subject Classifications : 20N20, 03E99
Keywords: multigroup, hypergroup, multi hypergroup

Introduction

Algebraic hyperstructures are a generalization of classical algebraic structure. As
a generalization of algebraic structures, hyper structure was introduced by Marty [5]
in 1934. Since then this theory has enjoyed a rapid development. Also theory of
multisets is an important generalization of classical set theory. Many studies have
investigated the theory of multisets. So, it may be interesting to study multi hyper-
groups.
In this presentation, we first define the notion of multi hypergroups over a canonical
hypergroup and investigate some of their properties. In this section, we first give
some fundamental definitions and results from literature. For more details, we refer
to the references quoted in [2, 3].

Let H be a nonempty set and let P∗(H) be the set of all nonempty subsets
of H. A hyperoperation on H is a map ∗ : H ×H −→ P∗(H) and the couple (H, ∗)
is called a hypergroupoid. If A and B are nonempty subsets of H, then we denote
A ∗B = ∪{a ∗ b | a ∈ A, b ∈ B},
A ∗ x = A ∗ {x},
x ∗A = {x} ∗A.
A hypergroupoid (H, ◦) is called semihypergroup if for all a, b, c of H we have a ◦ (b ◦
c) = (a ◦ b) ◦ c.
A hypergroupoid (H, ◦) is called quasihypergroup if for all a of H we have a ◦ H =
H ◦ a = H.
A hypergroup is a hypergroupoid which is both a semihypergroup and a quasihyper-
group.

A canonical hypergroup is a nonempty set H endowed with an additive hyperop-
eration ◦, satisfying the following axioms:

i) for every x, y, z ∈ H, x ◦ (y ◦ z) = (x ◦ y) ◦ z,

ii) for every x, y ∈ H, x ◦ y = y ◦ x,

iii) there exists 0 ∈ H such that 0 ◦ x = {x} for all x ∈ H,

iv) for every x ∈ H there exists a unique element x′ ∈ H such that 0 ∈ x ◦ x′,
(We shall write x−1 for x′ and we call it the opposite of x.)

v) z ∈ x ◦ y implies y ∈ x−1 ◦ z and x ∈ z ◦ y−1.

.a e oare non
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For the sake of simplicity of notations we write 0 ◦ x = x instead of 0 ◦ x = {x}. It
can be easily proved that 0 is unique. For A ⊆ H, the set {a−1 | a ∈ A} is denoted
by A−1.

A nonempty subset K of a hypergroup (H, ◦) is called a subhypergroup of H if
K ◦ K ⊆ K and K is a hypergroup under the hyperoperation ◦. In other words,
it is a hypergroup according to the hyperoperation on H. K provides the following
conditions:

1) a ◦ b ⊆ K for all a, b ∈ K.

2) a ◦K = K ◦ a = K, for all a ∈ K.

A subhypergroup of a hypergroup (H, ◦) is called a canonical subhypergroup of H if
it is a canonical hypergroup with respect to the hyperoperation ◦ of H.
Definition 1.1 [1] A multiset M drawn from the set X is represented by a Count
function CM defined as CM : X −→ N where N represents the set of non negative
integers.
Definition 1.2 [6] Let {Mi|i ∈ I} be a nonempty family of msets drawn from the
set X. Then
Their intersection, denoted by

⋂
i∈I

Mi where

C⋂
i∈I

Mi
(x) =

∧
i∈I

CMi
(x), ∀x ∈ X

Their union, denoted by
⋃
i∈I

Mi where

C⋃
i∈I

Mi
(x) =

∨
i∈I

CMi
(x), ∀x ∈ X.

Definition 1.3 [6] Let X be a group. A multiset G over X is said to be a multigroup
over X if the Count function G or CG satisfies the following two conditions.
(i) CG(xy) ≥ CG(x) ∧ CG(y), ∀x, y ∈ X
(ii) CG(x

−1) ≥ CG(x), ∀x ∈ X.
The set of all multigroups over X is denoted by MG(X).

Main Results

Definition 2.1 Let (H, ◦) be a canonical hypergroup. A multigroup G over H
is said to be a multi hypergroup if the Count function G or CG satisfies the following
two conditions.
(i)

∧
z∈x◦y

CG(z) ≥ CG(x) ∧ CG(y), ∀x, y ∈ X

(ii) CG(x
−1) ≥ CG(x), ∀x ∈ X

The set of all multi hypergroups over H is denoted by MHG(H).

Example 2.2 Let A(n) = {e0, e1, ..., ek(n)}, where k(n) =

{
n
2 , if 2|n,
n−1
2 if 2 	 |n. For

all es, et of A(n), define es ◦et = {ep, ev}, where p = min{s+t, n−(s+t)}, v = |s−t|.
So (A(n), ◦) is a canonical hypergroup.
Let G = {e0, e0, e0, e1, e1, e2, e2} be a multiset over A(5) canonical hypergroup. In
this hypergroup,
e0 ◦ e0 = {e0}, e0 ◦ e1 = {e1}, e0 ◦ e2 = {e2}
e1 ◦ e1 = {e0, e2}, e1 ◦ e2 = {e1, e2}, e2 ◦ e2 = {e0, e1}

.
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e0 is identity element of A(5) and e−1
0 = e0, e

−1
1 = e1, e

−1
2 = e2. So,

3 = CG(e0) ∧ CG(e0) ≤
∧

z∈e0◦e0
CG(z) = 3

2 = CG(e0) ∧ CG(e1) ≤
∧

z∈e0◦e1
CG(z) = 2

2 = CG(e0) ∧ CG(e2) ≤
∧

z∈e0◦e2
CG(z) = 2

2 = CG(e1) ∧ CG(e1) ≤
∧

z∈e1◦e1
CG(z) = 2

2 = CG(e1) ∧ CG(e2) ≤
∧

z∈e1◦e2
CG(z) = 2

2 = CG(e2) ∧ CG(e2) ≤
∧

z∈e2◦e2
CG(z) = 2

Thus G is a multi hypergroup over H.
Theorem 2.3 Let (H, ◦) be a canonical hypergroup and G be a multi hypergroup
over H. Then CG(e) ≥ CG(x), ∀x, y ∈ X.
Proof. Since CG(x

−1) ≥ CG(x) and CG(x) ≥ CG(x
−1), then CG(x) = CG(x

−1).
Thus
CG(x) = CG(x) ∧ CG(x

−1) ≤
∧

z∈x◦x−1

CG(z) ≤ CG(e).

Definition 2.4 Let (H, ◦) be a canonical hypergroup and G ∈ MHG(H). Then
Gn = {x ∈ H|CG(x) ≥ n, n ∈ N}.
Theorem 2.5 If G is a multi hypergroup over H, then Gn is a subhypergroup of H,
for all n ∈ N .
Proof. Let x, y ∈ Gn, so CG(x) ≥ n and CG(y) ≥ n.

n ≤ CG(x) ∧ CG(y) ≤
∧

z∈x◦y
CG(z)

Since CG(z) ≥ n for all z ∈ x ◦ y, then x ◦ y ⊆ Gn . . . (∗)
Now, for all x ∈ Gn x ◦Gn = Gn should be shown. It is easily seen x ◦Gn ⊆ Gn.
Let a ∈ Gn. Since x ∈ Gn, then CG(x) = CG(x

−1) ≥ n. So x−1 ∈ Gn and
x−1 ◦ a ⊆ Gn form (∗).Then
x ◦ (x−1 ◦ a) ⊆ x ◦Gn

(x ◦ x−1) ◦ a ⊆ x ◦Gn

a ∈ x ◦Gn

Gn ⊆ x ◦Gn. Thus Gn = x ◦Gn. Gn is a subhypergroup of H.
Theorem 2.6 Let (H, ◦) be a canonical hypergroup. If Gn is a canonical sub-
hypergroup of H, for all n ∈ N , then G is a multi hypergroup over H, define

CG(x) =
∑
n∈N

χGn(x).

Proof. Let x, y ∈ H and x ∈ Gp and y ∈ Gq so that x /∈ Gp+n y /∈ Gq+n, for all
n ∈ N . Let min{p, q} = p. So y ∈ Gp. Since Gp is a subhypergroup, then x◦y ⊆ Gp.
We obtain CG(z) ≥ p. Thus∧
z∈x◦y

CG(z) ≥ p = CG(x) ∧ CG(y)

Since Gn is a canonical subhypergroup, CG(x
−1) ≥ CG(x). As a result, G is a multi

hypergroup over H.
Theorem 2.7 Let (H, ◦) be a canonical hypergroup. If G1 and G2 are multi hyper-
groups over H, then G1 ∩G2 is a multi hypergroup over H.
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Proof. For all x, y ∈ H,∧
z∈x◦y

CG1∩G2(z) =
∧

z∈x◦y
(CG1(z) ∧ CG2(z))

= (
∧

z∈x◦y
CG1(z)) ∧ (

∧
z∈x◦y

CG2
(z))

≥ (CG1(x) ∧ CG1(y)) ∧ (CG2(x) ∧ CG2(y))
= (CG1

(x) ∧ CG2
(y)) ∧ (CG1

(x) ∧ CG2
(y))

= CG1∩G2
(x) ∧ CG1∩G2(y)

CG1∩G2
(x−1) = CG1

(x−1) ∧ CG2
(x−1)

≥ CG1
(x) ∧ CG2(x)

= CG1∩G2
(x)

Thus G1 ∩G2 is a multi hypergroup over H.

If {Gi|i ∈ I} be a family of multi hypergroups over a hypergroup H, then their

intersection
⋂
i∈I

Gi is a multigroup over H but their union is not a multi hypergroup

in general.
Example 2.8 G1 = {e0, e0, e0, e1} and G2 = {e0, e0, e0, e2} are two multi hyper-
group over A(6) canonical hypergroup.
Really, A(6) = {e0, e1, e2, e3} and
e0 ◦ e0 = {e0}, e0 ◦ e1 = {e1}, e0 ◦ e2 = {e2}, e0 ◦ e3 = {e3}
e1 ◦ e1 = {e0, e2}, e1 ◦ e2 = {e1, e3}, e1 ◦ e3 = {e1}
e2 ◦ e2 = {e0, e2}, e2 ◦ e3 = {e1}, e3 ◦ e3 = {e0}
Here, G1 ∪G2 = {e0, e0, e0, e1, e2}
Since

∧
z∈e1◦e2

CG(z) = 0 	≥ 1 = CG(e1) ∧ CG(e2). Then G1 ∪G2 is not a multi hyper-

group over A(6).
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New Results on Edge and Vertex Deletion

in Graphs

Sadik Delen1 , Muge Togan2 , Aysun Yurttas3 , Ismail Naci Cangul4

Abstract

Recently the authors defined a new graph characteristic similar to the well-
known Euler characteristic to determine several topological and combinatorial
properties of a given graph. This new characteristic is defined only by means
of a given degree sequence, This number gives direct information on the realiz-
ability, number of realizations, connectedness, being acyclic or cyclic, number of
components, chords, loops, pendant edges, faces, bridges etc. In this paper, the
effect of the deletion of vertices and edges in graphs on this new characteristic
is studied.

2010 Mathematics Subject Classifications : 05C07, 05C10, 05C30
Keywords: degree sequence, omega invariant, vertex deletion, edge deletion

Introduction

Throughout this paper, we assume that G = (V,E) be a graph with | V (G) |= n
vertices and | E(G) |= m edges. For a vertex v, the degree of v is denoted by by dv.
In particular, a vertex with degree one will be called a pendant vertex. As usual, the
biggest vertex degree in a graph will be denoted by Δ. An edge e connecting two
neighbouring vertices u and v will be denoted by e = uv and the vertices u and v are
called adjacent vertices while the edge e is said to be incident with u and v. If there
is a path between every pair of vertices in a graph G, then G is called connected.

A degree sequence D is D = {1(a1), 2(a2), 3(a3), · · · ,Δ(aΔ)}, where ai’s are non-
negative integers. When the graph has vertices of degree 0, the corresponding graph
will certainly be disconnected and the degree sequence will also have zeroes.

Let D = {d1, d2, d3, · · · ,Δ} be a set of non-decreasing non-negative integers. We
say that a graph G is a realization of the set D if the degree sequence of G is equal to
D. It is well known that there is at least one graph having a given degree sequence.
Some realizations of a given degree sequence could be connected and some could be
disconnected. A graph having no cycle will be called acyclic. For example, all trees
are acyclic. The remaining graphs are called cyclic graphs. An edge connecting a
vertex to itself is called a loop, and at least two edges connecting two vertices will be
called multiple edges. The number a1 of leaves of any tree T is given by

a3 + 2a4 + 3a5 + 4a6 + · · ·+ (Δ− 2)aΔ − a1 = −2. (1)

The authors tried to determine the conditions which give some information about
the topological and combinatorical properties of the given graph and came up with
similar sums. Trying to unify those sums resulted in noticing a number which gives
more information than expected, see [1]:

.in a grin a gr
)),, 22((aa22)),,
verticevertice
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Definition 1. Let D = {1(a1), 2(a2), 3(a3), · · · ,Δ(aΔ)} be a set which also is the degree
sequence of a graph G. The Ω(G) of the graph G is defined only in terms of the degree
sequence as

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (Δ− 2)aΔ − a1 =

Δ∑
i=1

(i− 2)ai. (2)

Ω is even by the definition. It is shown, in [1] and [2], that all graphs with
Ω(G) ≤ −4 are disconnected, and if Ω(G) ≥ −2, then the graph could be con-
nected or disconnected. As most of the degree sequences can be realizable in dif-
ferent ways, the number of ways the given degree sequence can be realizable as a
connected/disconnected graph is determined.

Also it is shown that if the realization is a connected graph and Ω(G) = −2, then
certainly the graph should be acyclic. Similarly, it is shown that if the realization is
a connected graph G and Ω(G) ≥ 0, then certainly the graph should be cyclic. Also,
when Ω(G) ≤ −4, the components of the disconnected graph could not all be cyclic
and if all the components of G are cyclic, then Ω(G) ≥ 0.

In [2], the same authors obtained solutions of some extremal graph theory problems
by studying the maximum number of componenets and the maximum number of loops
in three types of realizations of a given degree sequence. In [1], the authors gave a
new result using Ω to determine the realizability of a degree sequence:

Corollary 2. Let D be a set of non-negative integers. If Ω(D) is odd, then D is not
realizable.

In [1], the authors determined the number r for connected graphs:

Theorem 3. Let D = {1(a1), 2(a2), 3(a3), · · · ,Δ(aΔ)}. If D is realizable as a connected

planar graph G, then the number r of faces (closed regions) is given by r = Ω(G)
2 + 1.

As Ω is additive over the set of the components of G, they generalized this result

to all graphs with c components as r = Ω(G)
2 + c. This implies the following useful

result, see [1]:

Corollary 4. For each graph G, we have c ≥ −Ω(G)
2 . Equivalently, c ≥ n−m.

Effect of Vertex and Edge Deletion on Ω

In this section, we study edge-deleted, vertex-deleted, path-contracted and cycle-
contracted graphs and calculate the change in Ω for these operations. Given a graph
G. Let u, u1, u2, · · · , uk be some of the vertices of G and let e, e1, e2, · · · , et be some
of the edges of G. The graph obtained by deleting the vertices u1, u2, · · · , uk to-
gether with all the incident edges to these vertices is denoted by G−{u1, u2, · · · , uk}.
Similarly, the graph obtained by deleting the edges e1, e2, · · · , et will be denoted by
G−{e1, e2, · · · , et}. We shall call these operations vertex deletion and edge deletion.
When only one vertex v or one edge e is deleted from G, the resulting graph will
shortly be denoted by G − v and G − e, respectively. Recall that when we delete a
pendant edge e from a graph G, the pendant vertex in G at the end of this pendant
edge becomes an isolated vertex in G− e. Therefore there are many occasions where
we face with isolated vertices in a given graph. If these vertices had no effect, then
we could easily omit them. When studying with Ω, the contribution of each isolated
vertex of G to Ω(G) is −2:

.aveave cc ≥≥
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Lemma 5. Let G = {v} be a graph consisting of one vertex v and no edges. Then

Ω(G) = Ω({v}) = −2.

Proof. As the degree sequence of G = {v} is {0(1)}, the result follows by the definition
of Ω. �

Recall that we had already shown the equality Ω(G) = −2 for all connected acyclic
graphs. In some sense, a graph consisting of a single vertex can be counted as acyclic.
So this result is expected.

When the graph has isolated vertices, we need to adjust our definition of Ω as fol-
lows. LetG be a graph with degree sequenceDS(G) = {0(a0), 1(a1), 2(a2), 3(a3), · · · ,Δ(aΔ)}.
Then the Ω of G can be reformulated by

Ω(G) = a3 + 2a4 + 3a5 + · · ·+ (Δ− 2)aΔ − a1 − 2a0 =
Δ∑
i=0

(i− 2)ai. (3)

Let G be a graph and let u1, u2, · · · , un ∈ V (G). We denote Ω(G)−Ω(G−u1) by
Δ(G, u1) and Ω(G)− Ω(G− {u1, u2, · · · , un}) by Δ(G, {u1, u2, · · · , un}). That is

Δ(G, u1) = Ω(G)− Ω(G− u1)

and
Δ(G, {u1, u2, · · · , un}) = Ω(G)− Ω(G− {u1, u2, · · · , un}).

Then we have

Theorem 6. Let the graph G have no loops. Deleting a vertex v ∈ G of degree dv
reduces Ω(G) by 2dv − 2. That is

Δ(G, v) = 2dv − 2.

Proof. Let the neighbours of v be v1, v2. · · · , vk where k = dv, see Fig. 1. Let
d1, d2, · · · , dk be the degrees of v1, v2, · · · , vk in G, respectively. The contribution of
v and its neighbours in G to Ω(G) is

d1 − 2 + d2 − 2 + · · ·+ dk − 2 + dv − 2 = d1 + d2 + · · ·+ dk + dv − 2k − 2

and the contribution of the neighbours of v in G− v is

d1 − 3 + d2 − 3 + · · ·+ dk − 3 = d1 + d2 + · · ·+ dk − 3k.

Figure 1 The neighbours of v
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So the decrease in Ω(G) is

Ω(G)− Ω(G− v) = dv − 2k − 2 + 3k
= dv − 2dv − 2 + 3dv
= 2dv − 2.

�

Theorem 7. Let v be a vertex in a graph G which is incident to l ≥ 1 loops. Let dv =
k be the degree of v. Then deleting v from G reduces Ω(G) by Δ(G, v) = 2(k− l− 1).

Proof. Let G be a graph with loops at a vertex v ∈ V (G), see Fig. 2.

Figure 2 A graph G with l loops at the same vertex

The contribution of v and its neighbours v1, v2, · · · , vk−2l to Ω(G) is

dv1
− 2 + dv2

− 2 + · · ·+ dvk−2l
− 2 + dv − 2.

Now delete v from G, see Fig. 3:

Figure 3 A graph G− v

The contribution of the neighbours of v to Ω(G− v) is

dv1 − 3 + dv2 − 3 + · · ·+ dvk−2l
− 3

as the degree of each neighbour is reduced by 1 in G − v. Therefore the decrease in
Ω(G) will be

Δ(G, v) = [dv1 + dv2 + · · ·+ dvk−2l
+ k − 2(k − 2l + 1)]

−[dv1 + dv2
+ · · ·+ dvk−2l

− 3(k − 2l)]
= 2(k − l − 1).

�
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Lemma 8. If u1, u2, · · · , un are the vertices of G no two of them are adjacent, then

Δ(G, {u1, u2, · · · , un}) =
n∑

i=1

Δ(G, ui).

That is, Δ(G, {u}) is additive on every set of non-adjacent vertices.

Theorem 9. Let G be a graph. Deleting an edge reduces Ω(G) by 2.

Proof. Let e = uv be an edge and du and dv be the degrees of u and v, respectively.
When the edge e is deleted, the numbers of du’s and dv’s in DS(G) decrease by 1
and the numbers of du − 1’s and dv − 1’s increase by 1. Therefore the Ω decreases by
2. �

As a special case, we have

Theorem 10. Let G be a graph. Deleting a loop reduces Ω(G) by 2.

Proof. Let L be a loop in G with its unique vertex is of degree d. Deleting L reduces
the number of d’s in DS(G) by 1 and increases d − 2’s in DS(G) by 1. As a result,
Ω(G) is reduced by 2. �

Theorem 11. Contracting a path which does not belong to a cycle preserves Ω(G).

Proof. Contracting a path which does not belong to a cycle does not change the
number r(G) of regions bounded by the edges of the graph G. So Ω(G) does not
change as Ω(G) = 2(r(G)− c(G)) where c(G) is the number of components of G. �

The following special case follows directly:

Corollary 12. Contracting bridges and pendant edges preserves Ω(G).

Proof. Clear from Theorem 11 as both a pendant edge and a bridge are paths of
length one which does not belong to any cycle. �

Note that although Ω(G) is preserved when the bridges and pendant edges are
contracted, the DS(G) does not have to stay unchanged. Because of Theorem 11 and
Corollary 12, instead of calculating Ω of any graph G, we can first contract all bridges,
paths which do not belong to any cycle, and pendant edges to obtain a smaller graph
G′ and we could calculate Ω(G′) as Ω(G) = Ω(G′).
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A Survey on Z Transforms and q-Analysis

Erkan Agyuz1

Abstract

The Z-transforms have many applications in physics, engineering and math-
ematics. In mathematics, these transforms extensively apply to partial dif-
ferential equations, numerical analysis, difference equations and approximation
theory. Also, summation of infinite series easily obtain by using Z- transforms.
Recently, some mathematicians derived Z-transforms of notations and functions
in q- analysis. In this study, we give some results for q- type functions by aid of
Z-transforms.

2010 Mathematics Subject Classifications : 81Q10, 35A22, 39A13
Keywords: Z-transforms, q-Analysis, Difference equations.

Introduction

Mathematical transforms, Laplace, Fourier and Z-Transforms, appear in many
fields of mathematics, especially in ordinary and partial differential equations, in
mathematical statistics, in mathematical physics and also in numerical analysis.
These transforms are also used in applied sciences such as engineering, computer-
ing and physics. For instance, the Fourier transforms are known to be suitable for
measuring the resistance and strength of the earthquakes in geophysical engineer-
ing. Laplace transforms are used in electrical circuits, current and load calculation,
network currents and loads in electrical networks, in signaling problems, harmonic
pendulum problems in environments.

Z- transform method may be traced back to A. De Moivre around the year
1730 when he introduced the concept of ”generating functions” in probability theory.
Closely related to generating functions is the Z-transform, which may be considered
as the discrete analogue of the Laplace transform. The Z-transform is widely used
in the analysis and design of digital control and signal processing. The Z-transforms
have many applications in physics, engineering and mathematics. In mathematics,
these transforms extensively apply to partial differential equations, numerical analy-
sis, difference equations and approximation theory. Also, summation of infinite series
easily obtain by using Z- transforms. Applications of Z- transforms are important
in sampling system theory. It is also common in warning modulation systems and
recycling systems where digital computers are one of the common elements.

Z- transform of a sequence x [n] is given by the sum

X(z) =

∞∑
n=0

x [n] z−n (1)

for all z such that(1) converges. Here, z is a complex variable and the set of values
of z for which the sum (1) converges is called the region of convergence (ROC) of the
z-transform. This transform have important properties as follows:

.ced bacced bac
f ”generf ”gener
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1. Linearity property

Z [c1xn + c2yn] = c1X (z) + c2Y (z) .

where c1 and c2 are constant.

2. Delay shift property

Z [x [n−N ]u [n−N ]] = X (z) z−N .

3. Advance shift property

Z [x [n+N ]] = zN
(
X (z)− x [0]− x [1] z−1 − x [2] z−2 − ...− x [N − 1] z−N+1.

)
4. Multiplication by n property

Z [nxn] = −z
d

dz
X (z) .

q- Analysis is an mathematical structure that can be studied and used in many
areas such as approximation theory, analytic number theory and numerical analysis.
Recently, the Z-transforms are used in q-matrices and q- type mathematical tools.
For example, Z-transform of some q-sequences obtained as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q-Sequences (Z |q ) -Transform
[n]q

z
(z−1)2q[

n
k

]
q

z
(z−1)k+1

q

exq
z

z−exq

Ex
q

z
z−Ex

q

sinq (x)
z sinq(x)

z2−2z cosq(x)+1

cosq (x)
z cosq(x)

z2−2z cosq(x)+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Main Results

In this section, we give some new results with related to q- type functions and
series under the Z-transforms as follows:

Corollary 1 Let be f1(n) =
1

[n]q !
and f2 (x) =

q
n.(n−1)

2

[n]q !
. The Z- transform of f(n)

is defined

Z

(
1

[n]q!

)
= e−z

q

Z

(
q

n.(n−1)
2

[n]q!

)
= E−z

q

where e−z
q and E−z

q , respectively, are called first and second type q- expo-
nential functions (cf. [2]).

.zz22−−22
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Corollary 2 The Z- transform of coshq x and COSHqx are defined

Z(coshq x) =
z(z − coshq x)

z2 − 2z coshq x+ 1
,

Z(COSHq) =
z(z − COSHqx)

z2 − 2zCOSHqx+ 1

where coshq x =
exq+e−x

q

2 and COSHqx =
Ex

q +E−x
q

2 .

Corollary 3 The Z- transform of sinhq x and SINHqx are defined

sinhq x =
z sinhq x

z2 − 2z coshq x+ 1

SINHqx =
zSİNHqx

z2 − 2z coshq x+ 1

where sinhq x =
exq−e−x

q

2 and SINHqx =
Ex

q −E−x
q

2 .

Conclusion

The Z- transforms are used for important applications in electric-electronical en-
gineering, applied mathematics and statistics. Hence we investigate the applications
of our new transforms for q- type functions and series. Our new results may apply
to many branches of mathematics and the other sciences such as analytic number
theory, approximation theory and sampling theory.
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Prediction of modulus of elasticity by using

artificial bee colony optimization

Niyazi Ugur KOCKAL1 , Ibrahim AYDOGDU2

Abstract

In the study, approximate functions have been developed to estimate modu-
lus of elasticity for concrete concerning compressive strength, unit weight, water-
cement ratio, consistency, cement amount, fine aggregate coarse aggregate ratio
and air content parameters. The developed functions have non-linear form, dis-
crete variables, and the minimum truncation error. In order to determine the
functions, curve fitting applications were converted to the optimization prob-
lem. The objective function of the optimization problem is the maximization of
determination coefficient. Artificial bee colony (ABC) optimization algorithm
was utilized to solve the optimization problem. Six different function types were
derived using combinations of the proposed parameters. Obtained results were
compared to actual data in order to test the performance of the ABC algorithm.
Function coefficients were also compared to discuss the efficiency of the proposed
parameters in the functions.

Keywords: Concrete, modulus of elasticity, optimization, artificial bee colony

Introduction

The equation models are obtained using a nonlinear regression model. In order
to solve the nonlinear regression model, one of the well-known metaheuristic opti-
mization technique called Artificial Bee Colony (ABC) optimization method is used.
The ABC method is previously used to solve regression models such as symbolic re-
gression [1], support vector regression system [2, 3], stepwise regression correlation [4].

In the literature, there are few studies available which contain a numerical model
for prediction of behaviour of concrete. N. Ahmadi-Nedushan predicted elastic modu-
lus of normal and high strength concrete using adaptive-network-based fuzzy inference
system (ANFIS) and optimal nonlinear regression models [5]. Yan and Shi predicted
elastic modulus of normal and high strength concrete by support vector machine
[6]. Aydin et al. predicted concrete elastic modulus using an adaptive neuro-fuzzy
inference system [7]. Topu and Sardemir predicted elastic modulus of waste AAC
aggregate concrete using artificial neural network [8]. In these studies, the numerical
models depend on few parameters, and the ABC method is not utilized. According
to a used method and comprehensive equation model, the current study is evaluated
as a novel study.

Mathematical model

In the study, the equation models have been investigated to determine the modulus
of elasticity of concrete with respect compressive strength, unit weight, water-cement

.ColonyColony
o solve ro solve r
stem [2stem [2
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ratio, consistency, cement amount, fine aggregate course aggregate ratio and air con-
tent. The regression models were evaluated as optimization problems to obtain the
best equation models, which is described as follows:

Find the most appropriate equation constants �x = [x1, x2, . . . , x8] in order to
maximize coefficient of determination(R2);

R2(�x) =

∑n
i=1(E(est)i − Ei)

2∑n
i=1(E(est)i − Eave)2

(1)

where E is the modulus of elasticity of concrete obtained from experimental tests, Eave

is the average value of the modulus of elasticity of concrete obtained from experimental
tests, Eest is estimated modulus of elasticity the from equation model and n is the
specimen number in the experimental tests. In the study, six different equation models
are optimized which are described as follows:

E(σB , γ) = x1 · σx2

B · γx3 (2)

E(σB , γ, w/c) = x1 · σx2

B · γx3 · (w/c)x4 (3)

E(σB , γ, w/c, S) = x1 · σx2

B · γx3 · (w/c)x4 · Sx5 (4)

E(σB , γ, w/c, S, C) = x1 · σx2

B · γx3 · (w/c)x4 · Sx5 · Cx6 (5)

E(σB , γ, w/c, S, C,A) = x1 · σx2

B · γx3 · (w/c)x4 · Sx5 · Cx6 ·Ax7 (6)

E(σB , γ, w/c, S, C,A,AC) = x1 · σx2

B · γx3 · (w/c)x4 · Sx5 · Cx6 ·Ax7 ·ACx8 (7)

In the equations, σB , γ, w/c, S, C,A andAC respectively represent compressive strength
unit weight, water cement ratio, consistency, cement amount, fine aggregate course
aggregate ratio and air content.

In order to find the best equation constants �x, the ABC method is utilized. The
ABC method is developed by Karaboga and Basturk [9, 10, 11] adopting the natu-
ral behaviour of honey worker bees. In the theory, the bees are classified into three
groups which are called as employed bees, onlooker bees and scout bees. Employed
bees search neighbourhood of the nest to find nectar sources and share information
about the nectar sources with the onlooker bees. The onlooker bees select the best
nectar sources and collect nectars from the nectar sources. If the nectar is consumed
in the nectar source, the scout bees searches new nectar source instead of the con-
sumed nectar source.

In the optimization problem, the candidate equation model is represented by the
nectar source. The location of the nectar source represents the values of the equation
constants �x, the quality of the nectar sources represents the R2 value of the equation.
Consuming of the nectar source means that the equation cannot improve its R2 value
until the defined number of iteration (limit of nectar source). According to the defi-
nitions the optimization algorithm can be defined as follows;

Step 1: Optimization and problem parameters called number of nectar source
(NS), nectar source limit (NLS), number of function constants (NC) and the max-
imum function evaluations (MFE) are defined.

Step 2: Initial equation models are generated randomly using the following equa-
tion.

(xj)i = round(lbj + (ubj − lbj · rnd); i = 1, 2, . . . , NS; j = 1, 2, . . . , NC (8)

.to findto find
oker beoker be
the necthe nec
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where; lbj and ubj respectively are the lower and the upper boundaries of the equation
constants, rnd is a random number generated from interval the [0-1] and round is a
function which rounds the result with respect to predefined decimal. Then R2 values
of the equation models are calculated and saved into the algorithm database.

Step 3: The equation models in the algorithm database are modified concerning
the following formula;

(xj)
new
i = round((xj)i + ((xj)k − (xj)i) · (rnd− 0.5)); (9)

Where, k is an index of the equation model which is randomly chosen in the algorithm
database. The R2 values of the new equations are calculated and compared to their
previous versions. If the R2 value of the modified equation is lower than the previous
equation, the previous equation remains, and trial number of the equation (nectar
source) is increased by one. If the R2 value of the modified equation is higher than a
previous equation, the modified equation substitutes with the previous equation and
its trial number become zero. This process is called Greedy Selection.

Step 4: The selection probabilities (Pr) of the equation models are as follows:

Pri =
R2

i∑
j = 1NSR2

j

(10)

Then the equations models are chosen according to these probabilities. Chosen
equations are modified, and greedy selection is applied in the same way described in
step 3.

Step 5: trial number of all equations are controlled in this step. If the trial number
of the equation exceeds NLS, the equation removed from the algorithm database and
the algorithm adds a new equation which is generated randomly. After this process,
the algorithm goes back to the step 2. The algorithm repeats by the time that MFS
is reached.

Text example

Twenty seven different concrete mixtures are provided from a previous research
[12] for finding the equation models. the lower boundaries, the upper boundaries, and
increments of the equation constants are shown in Table 1. The initial parameters of
the ABC method are given in Table 2.

The equation models were optimized using the developed algorithm. The optimum
equation constants and R2 values of the models are illustrated in Table 3.

Conclusion

The algorithm established is effective because R2 values are above 0.95. The scale
factor (x1) value of the equations varies between 3500-4500. When the distribution
of this value is examined, it is not possible to associate with the number of equation
coefficient. The coefficients of some parameters were always positive. For this rea-
son, it can be said that these parameters are directly proportional to the modulus of
elasticity. Although the water-cement ratio coefficient is positive, the modulus of elas-
ticity is inversely proportional to this parameter since water-cement ratio values are

.
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Table 1: Limitations of the function constants
Coefficient Upper Boundary Lower Boundary Increment

x1 5000 1000 10
x2 0.5 0 0.001
x3 0.5 0 0.001
x4 0.5 0 0.001
x5 0.5 -0.5 0.001
x6 0.5 0 0.001
x7 0.5 0 0.001
x8 0 -0.5 0.001

Table 2: Initial parameters of the ABC method
Parameter Value

NS 100
NLS 30
NC 3–8
MFE 50000

Table 3: the optimum equation constants and R2 values of the models.
Coefficient Eq.1 Eq.2 Eq.3 Eq.4 Eq.5 Eq.6

x1 3980 3980 4000 3760 3760 3760
x2 0.363 0.42 0.442 0.441 0.441 0.441
x3 0.085 0.067 0.069 0.1 0.1 0.1
x4 N.A 0.076 0.094 0.078 0.078 0.078
x5 N.A N.A -0.03 -0.124 -0.124 -0.124
x6 N.A N.A N.A 0.013 0.013 0.013
x7 N.A N.A N.A N.A 0 0
x8 N.A N.A N.A N.A N.A 0
R2 0.95678 0.961034 0.969338 0.979121 0.979121 0.979121

N.A: Not available

in the range of 0-1. When the number of parameters used in the equation increased,
R2 values were also higher. As a result, the use of more parameters will allow more
accurate prediction of the modulus of elasticity of the concrete.
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Boundedness of the B-Maximal

Commutators on B-Morrey Spaces

Simten Bayrakci1 , Veli Semih Uygur2

Abstract

In this paper the boundedness of the B-maximal commutators generated by
the generalized translation operator is proved on the B-Morrey space

2010 Mathematics Subject Classifications : 42B20, 42B35
Keywords: Commutators, Maximal Commutators, Generalized shift operator,

Maximal function, B-Morrey Space, BMO Space

Introduction

The Laplace-Bessel differential operator

Δν =
n−1∑
k=1

∂2

∂x2
k

+ (
∂2

∂x2
n

+
2ν

xn

∂

∂xn
), ν > 0

is known as an important operator in analysis and its applications. The relevant
harmonic analysis, known as Fourier-Bessel harmonic analysis associated with the
Bessel differential operator

Bν =
d2

dt2
+

2ν

t

d

dt
, ν > 0

amounts to pioneering works by Delsarte, Levitan and was developed in subsequent
publications by many mathematicians such as Kipriyanov, Klyuchantsev, Löfström,
Peetre, Trimeche, Stein, Gadjiev, Aliev, Guliyev, Hasanov, Bayrakci and others (see[3,
?, 6, 7, 8, 12, 15, 16, 17, 18]).

Let Rn is the n-dimensional Euclidean space, x = (x1, ..., xn) ∈ Rn, B(x, r) denote
the open ball centered at x of radius r, |B(x, r)| be the Lebesque measure of the ball
B(x, r) and Rn

+ = {x : x = (x1, ...xn) ∈ Rn, xn ≥ 0}, B+(x, r) = {y ∈ Rn
+ : |x − y| <

r}. For a measurable set E ⊂ Rn
+ let |E|ν =

∫
E

x2ν
n dx, ν > 0.

Denote by T y (y ∈ Rn
+), generalized translation operator acting according to the

law:

T yf(x) =
Γ(ν + 1/2)

Γ(ν)Γ (1/2)

π∫
0

f(x′ − y′,
√

x2
n − 2xnyn cosα+ y2n) sin2ν−1 α dα,

where x = (x′, xn), y = (y′, yn) and x′, y′ ∈ Rn−1. We remark that T y is closely
connected with Bessel differential operator Bν , see [3, 6, 10] for details.

.tt dd

te, Levte, Lev
such assuch as
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The weighted space Lp,ν ≡ Lp,ν(R
n
+), 1 ≤ p < ∞ consists of equivalence classes

of measurable functions on Rn
+ such that

∫
Rn

+

|f(x)|px2ν
n dx < ∞ and the Lp,ν−norm

of f ∈ Lp,ν is defined by

‖f‖Lp,ν
=

⎛⎜⎝∫
Rn

+

|f(x)|px2ν
n dx

⎞⎟⎠
1/p

.

In the case p = ∞, we denote by L∞ the space of all essentially bounded functions
with norm ‖f‖L∞ = ess supx∈Rn

+
|f(x)|.

In the theory of partial differential equations, Morrey spaces play important role.
The classical Morrey spaces Lp,λ ≡ Lp,λ(R

n), 1 ≤ p < ∞, 0 ≤ λ ≤ n introduced
by Morrey [13] in 1938 in relation to the study of partial differential equations are
defined to be the subset of all functions f ∈ Lloc

p (Rn), 1 ≤ p < ∞ for which

‖f‖Lp,λ
= sup

x∈Rn, r>0

⎛⎜⎝ 1

rλ

∫
B(x,r)

|f(x)|px2ν
n dx

⎞⎟⎠
1/p

is finite. These spaces are an expansion of Lp in the sense that Lp,0 ≡ Lp and
Lp,n ≡ L∞. If λ < 0 or λ > n, then Lp,λ = Θ, where Θ is the set of all functions
equivalent to 0 on Rn.

In recent years there has been an explosion of interest in the study of the bounded-
ness of operators on Morrey and Morrey type spaces. For instance, In [4], Chiarenza
and Frasca showed the boundedness of the Hardy-Littlewood maximal operator, the
Riesz potential and the Calderon-Zygmund singular integral operator and D.R. Adams
[1] proved Hardy-Littlewood-Sobolev theorem on Riesz potentials in Morrey spaces.
For the properties and applications of the Morrey spaces, we refer the readers to
[13, 14, 15].

The B-Morrey space Lp,λ,ν ≡ Lp,λ,ν(R
n
+) associated with the Laplace-Bessel

differential operator, introduced in [7] are defined as the set of locally integrable
functions with the finite norm

‖f‖Lp,λ,ν
= sup

x∈Rn
+, r>0

⎛⎜⎝ 1

rλ

∫
B+(0,r)

T y|f(x)|py2νn dy

⎞⎟⎠
1/p

,

where 1 ≤ p < ∞, 0 ≤ λ ≤ n + 2ν. Note that Lp,o,ν ≡ Lp,ν , Lp,n+2ν,ν ≡ L∞,ν

and if λ < 0 or λ > n+ 2ν, then Lp,λ,ν = Θ. The boundedness of the B-maximal
operator and the Hardy-Littlewood-Sobolev theorem for the B-Riesz potentials on
these spaces is proved by Guliyev and Hasanov [7, 8].

Moreover, we denote by the weak B-Morrey space WLp,λ,ν = WLp,λ,ν(R
n
+), 1 ≤

p < ∞, 0 ≤ λ ≤ n + 2ν, defined by Guliyev [7] as the locally integrable functions
with finite norm

‖f‖Lp,λ,ν
= sup

t>0
t sup
x∈Rn

+, r>0

⎛⎜⎝ 1

rλ

∫
{y∈B+(0,r): Ty|f(x)|>t}

y2νn dy

⎞⎟⎠
1/p

and by the B-maximal operator Mν is defined by

(Mνf)(x) = sup
r>o

1

|B(0, r)|ν

∫
B+(0,r)

T y|f(x)|y2νn dy.

.11 ∫∫
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The boundedness of the B-maximal operator Mν on the B-Morrey spaces is proved
by V.Guliyev and J. Hasanov [7, 8].

The space of functions of Bounded Mean Oscillation BMO, plays an important
role in harmonic analysis, introduced by John and Nirenberg in 1961, in the study
of partial differential equations. These space has been to be the “good space” to
study instead of L∞. In fact, many of the operators, which are ill-behaved on L∞,
are bounded on BMO.

Denote by B-BMO = B-BMO(Rn
+) space is defined the following

‖f‖B−BMO = sup
x∈Rn

+, r>0

1

|B(0, r)|ν

∫
B+(0,r)

|T yf(x)− fB+(0,r)| y2νn dy

where fB+(0,r) =
1

|B(0,r)|ν
∫

B+(0,r)

T yf(x)y2νn dy.

Let b ∈ Lloc(Rn). Suppose that T is a linear or sublinear operator on some
measurable function space, then the commutator formed by T for the measurable
function f is defined by

[b, T ] f(x) = b(x)Tf(x)− T (bf)(x).

The Lp boundedness for the commutator [b, T ] is obtained by Coifman and Meyer
[5] when T is standart Calderon-Zygmund singular integral operator and b ∈ BMO.
In recent years, Alvarez, Babgy, Kurtz and Perez [2] developed the idea of Coifman
and Meyer and established a general boundedness criteria for the commutators of
linear operator.

In [9] Hasanov, A. Mashiyev, Bayrakci proved that maximal commutators, com-
mutators of singular integral operators and B-Riesz potentials associated with the

Laplace-Bessel differential operator ΔB =
n∑

i=1

∂2

∂x2
i
+

k∑
i=1

γi

xi

∂
∂xi

are bounded on B-

Morrey Spaces.
Given a measurable function b the B-maximal commutator generated by the

generalized translation operator is defined by

Mb,νf(x) = sup
r>o

1

|B(0, r)|ν

∫
B+(0,r)

|T y (b(x)− b(y)) f(x)| y2νn dy,

for all x ∈ Rn
+.

In this paper the boundedness of the B-maximal commutator generated by the
generalized translation operator is proved on the B-Morrey space Lp,λ,ν for all
1 < p < ∞ and 0 ≤ λ < n+ 2ν, b ∈ B-BMO.

Main Results

Theorem 1. a) Let 1 < p < ∞, 0 ≤ λ < n + 2ν. Then the B-maximal commutator
Mb,ν is bounded on Lp,λ,ν if and only if b ∈ B-BMO.

b) Let b ∈ B-BMO. Then the B-maximal commutator Mb,ν is bounded from
L1,λ,ν to WL1,λ,ν .
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[5] R. Coifman, Y. Meyer, Au déla des operateurs pseudo-differentiles, Asterisque
57, 1978.

[6] A.D. Gadjiev, I.A. Aliev, On classes of operators of potential types, generated
by a generalized shift, Reports of enlarged Session of the Seminars of I.N.Vekua
Inst. of Applied Mathematics, Tbilisi. 3 (1988), 21–24.

[7] V.S. Guliev, Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-
Bessel spaces, Doklady academy Nauk Russia 2, 367 (1999), 155–156.

[8] V.S. Guliev, J.J. Hasanov, Necessary and sufficient conditions for the bound-
edness of B-Riesz potential in the B-Morrey spaces, J. Math. Anal. Appl. 347
(2008), 113–122.

[9] J.J Hasanov, R. Ayazoglu Mashiyev, S.Bayrakci, The Boundedness of Maximal
Commutators, Commutators of Singular Integral Operators and B-Riesz Poten-
tials in B-Morrey Spaces, Submitted.

[10] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi
Mat. Nauk., 6 (1951), 102–143 .

[11] M.I. Klyuchantsev, On singular integrals generated by the generalized shift op-
erator, I, Sibirsk. Mat. Zh., 1970, 11, 810–821; translation in Siberian Math. J.,
11, (1970) 612–620.

[12] J. Lofstrom, J. Peetre, Approximation Theorems connected with generalized
translation, Math. Ann. 181 (1969), 255–268.

[13] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equa-
tions, Trans. Amer. Math. Soc. 43 (1938), 126–166.

[14] B. Muckenhoupt, RWheeden, Weighted norm inequalities for fractional integrals,
Trans. Amer. Math. Soc. 192 (1974), 261–274.

[15] J.Peetre, On the theory of Mp,λ,J. Funct. Anal. 4 (1969), 71–87.

[16] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Os-
cillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

[17] K. Stempak, Almost everywhere summability of Laguerre series, Stud. Math. 2,
(1991), 129–147.

[18] K. Trimeche, Inversion of the Lions transmutation operators using generalized
wavelets, Appl. Comput. Harmon. Anal. 4, (1997) 97–112.

1Akdeniz University, Antalya, TURKEY
2Akdeniz University, Antalya, TURKEY

E-mail : simten@akdeniz.edu.tr, vsemihuygur@gmail.com

.mation Tmation T
), 255–2), 255–2

MICOPAM2018_b5.indd   191MICOPAM2018_b5.indd   191 16.1.2019.   11.26.2916.1.2019.   11.26.29



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY192

Facility Location Determined by an

Iterative Technique

Emre Demir1,∗, Niyazi Ugur Kockal2

Abstract

For many decades, mathematical models and methodologies have been es-
sential in order to provide the understanding of countless engineering processes
and technologies. Using mathematical models in many academic research, it
was demonstrated that numerous infrastructural problems can be solved, such
as locating several facilities related to a specific industry. In this study, a facil-
ity location was determined by considering some parameters. A mathematical
problem named Weber problem supported the decision of the process of allocat-
ing the factory. Additionally, limitations and weights were taken into account
in order to solve the mathematical problem. Moreover, in accordance with the
findings, a discussion between this study and the previous studies has been
made. As a result, by optimizing the case, the losses such as time wasting and
distance traveled unnecessarily are minimized.

Keywords: Algorithm, Iterative technique, Optimization, Weber problem

Introduction

Researchers [1] studied on locating undesirable facilities in terms of waste or po-
tential pollution effects. They utilized maps such as land use, soil, river, road network
maps, etc. in order to overlay them in a geographical information system. By decid-
ing the musts and the needs (e.g. a facility that is 3km away from cultivable lands,
within a distance of few kilometers from an asphalt road, etc.) for locating an indus-
trial waste facility, alternative areas were revealed using the tools of a geographical
information system.

Another study [2], in order to site an alumina-cement plant, suggested a multicri-
teria estimation method that was to compare a couple of alternative sites analyzing
the important factors of accessibility to raw materials in terms of distance, water and
power supply, and the land concerns. The model proposed a location of a plant by
the integration of typical inputs of a facility such as transport, water, power, fuel
consumption, and land.

A study [3] proposed an approach of type-2 fuzzy sets and compared their method
with few other fuzzy approaches in order to solve a single-facility location problem.
Additionally, several criterion of fixed and variable costs such as the costs of land,
transportation, raw material, energy, environment and insurance were considered in
their study.

A recent study [4] utilized an analytical hierarchy process and Geographic In-
formation System (GIS) techniques to find out a decision making process for site
selection of a common industrial area. While the candidate areas were weighted by
the criteria related to the industry, the characteristics of the areas were evaluated
according to their sustainability concerns.
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Recently, another study [5] proposed a methodology of an optimization model in
the area of multi-objective decision making problems having conflicting objectives.
The study sought for the set of Pareto solutions rather than optimal solutions to
determine a facility location.

Methodology

Weber Problem (WP) is an operational research that constructed by Alfred Weber
in 1909 [6]. In this operation research problem, the optimization of location is the
main purpose. This problem mainly solved by minimizing the weighted Euclidean
distances in order to find an optimal location serving the demand locations [7], [8],
[9], [10]. A brief description of WP can be seen as follows.

min
n∑

j=1

wj |x̄− x̄j | (1)

subject to, x̄ = (x, y) and x̄j = (xj , yj). Additionally, the location points of x̄j are
the points of the surface of E2. Thus the description (1) discovers the most suitable
location of x̄. The following part introduces an effective solution of WP.

The Application of Weber Problem to Weiszfeld Algorithm

WP provides a useful mathematical problem to apply in many regional location as-
sessments. Most importantly, WP can be solved by the Weiszfeld Method or Weiszfeld
Algorithm (WM), which was built by Enrich Weiszfeld [11]. In the market, there are
computer programs or software which are used for running and achieving solutions
from WM. Because the computer program of LINGO can achieve the solution of WP
by applying WM [12], it is used as a tool for analyzing the location and thus optimiz-
ing in this study. The reason of optimizing the problem in this study by using the
computer software of LINGO is it is able to analyze and detect the optimum location
of a solution point with regards to the weighted Euclidean distances of demand points
in a predetermined surface of a topography [13]. The program goes on the iterations
until all the demand points in the analysis are satisfied in terms of their weights [14].
As soon as the location of solution does not change according to the iterations run-
ning repeatedly, the iterations are stopped and the final decision of the optimization
is reported by the program.

The location allocation problem, which is a mathematical problem, discussed in
this study previously and the way of assessing the solution can be possessed by WM.
Since the location of a facility and the weighted importance (i.e. including the capacity
of the facility, production rate, accessibility to the resources etc.) are the inputs, the
methodology discussed in this section can be transformed to apply in the problem of
this study. Related formulation can be found as follows:

min
n∑

i=1

aiDi (2)

such that aiDi is the weighted Euclidean distance to the location of facility
(Xf , Yf ) where n is the number of resources around the facility. Also the position of
the location should be (Xf , Yf ) ≥ 0.
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The Case Study

The data are derived synthetically and include totally 17 resources that the facility
needs to receive materials and goods. In the resources there are two types of goods
having specific weights. The weights show the importance or the amount needed from
that particular good in the resource. While the good-1 has the weight of 0.35, the
good-2 has the weight of 0.65. Therefore, the total weight of the goods from each
source is equal to 1.00. Moreover, the location information such as positional data of
those 17 resources are taken into account in order to determine the location of the
facility. Location information provides a very important parameter of cost which can
be described as distance in this study.

Main Results

For assessing the results of the optimization, the data were processed in LINGO
16.0 x64 [12]. The data as input and the objective function (2) was entered into
the software. Further, the solver was run by a computer with the properties of
Intel R©CoreTM i7-2640M CPU @ 2.80GHz. When the program was run with the
help of the inputs, the coordinate of (Xf , Yf ) which is the optimum solution was
determined as (0.6687733, 0.6278632). For the Mercator projection, the spatial results
of 0.6687733 and 0.6278632 corresponds to 38◦19′04.4′′ N, 33◦49′10.4′′ E respectively.
Additionally, though this is the local optimal solution with totally 0.00 infeasibilities
reported by the solver, this local minimum is actually the global minimum. The
reason is that our problem is convex. Consequently, the results are verified.

Conclusion

Several infrastructural problems including the locations of many buildings, struc-
tures or even facilities can be solved by using mathematical models. A facility location
was determined by a commonly used iterative methodology of WM by considering
some parameters of the weights and the distances. For this case, a mathematical
problem of WP supported the model used in this study. Therefore, according to the
mathematical evaluation in this paper, the location of the facility is proposed with
the help of the spatial results. This article can contribute to not only the regional
planning, also the state planning which is vital for the economic development of a
country. As an outcome, important losses for many industries such as time wasting
and extra traveled distances or unnecessary mileage use can be minimized by applying
the technique in this study.
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Assigning Convenient Paths by an

Approach of Dynamic Programming

Emre Demir1,∗

Abstract

In order to increase the welfare of the public and provide an understanding
of lots of engineering processes, decision makers have been executing several ap-
proaches of mathematical methods. In this study, transportation area is focused
for finding one of the most essential issues in trip assignment: determining the
shortest paths in transportation. Implementing a mathematical approach called
dynamic programming in this study, a shortest path transportation problem has
been solved for a case. A mathematical problem named dynamic programming
illustration supported the decision of the process of the shortest paths assign-
ment. Furthermore, in accordance with the findings, a discussion between this
study and the previous studies completed has been made. As a result, by the
decision of finding the shortest paths in the case and illustrating them, not only
the travel distances are minimized but also the travel times between the origins
and destinations.

Keywords: Algorithm, Dynamic programming, Shortest path, Transportation

Introduction

Mathematical methodologies and techniques have been used for many important
scientific areas for many years. For the particular engineering area, transportation
engineering, the mathematical methods and related algorithms are commonly applied
to real cases. For instance, on a transportation network of a region may need a solution
to solve its travel assignment issues. At this point, network flow problems which have
been used to identify the amount of flows on transportation networks take place.
Since the problem needs a specific mathematical structure and solution algorithms
to solve, many approaches have been studied on the transportation problem [1]. As
the formulation of the transportation problem has been firstly discussed [2, 3], the
algorithm of the solution was close to the general-used simplex method [1, 4, 5].
The problem was applied and still being applied to many engineering optimization
processes [5, 6]. For example, while a research proved that the transportation problem
can solve a case of shipment ways and times [7], another research demonstrated that
directing the services on a residential or commercial network can be done by the
transportation problem [8, 9].

A wide range of the studies of transportation problem takes place in determining
the shortest path. In this case, the shortest route or the least cost path problems
are solved in transportation related issues by again implementing the mathematical
algorithms [1, 10, 11]. For instance, one of the most popular practice is to assign
the least-cost path by assuming all of the nodes in a network are for the same travel
purpose [12, 13]. Those studies used linear-integer mathematical procedures.
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Methodology

In transportation related issues, many parameters including the cost (i.e. distance)
between an origin and a destination location may be exposed to changes very often. In
such non-static cases, the dynamic programming which is one of the best way to find
the shortest routes on a transportation network can be confidently applied [1, 14].
Since the dynamic programming is an approach to discover an optimal solution in
large scale algorithmic problems by dividing the problem into smaller pieces, it is an
efficient way to solve relatively large scale transportation problems. In the following,
to demonstrate the methodology and the ability of the dynamic programming with
its application steps in order to find the optimal solution, a case study is introduced.

The Case Study

In this study, the data are derived synthetically on a transportation network and
include totally 15 nodes with 28 arcs connecting particular origin and destination
nodes. Although the calculations of dynamic programming may take long time, com-
puter programs or software in the market may be used for quick solutions. Because
the computer program of LINGO can achieve the solution of the dynamic program-
ming to reveal the shortest path, it is used as a tool for analyzing the shortest route
and thus optimizing in this study [15]. The script illustrating the dynamic program-
ming already publicized is applied in order to find the shortest transport paths in
the network of the case. The reason of running the dynamic programming to assess
the shortest paths by using the particular software in this study is that it is able to
analyze the network and detect the optimum transportation paths.

In the case, the crucial interest is to identify the shortest path from the first origin
node (i.e. node-1) to the final destination node (i.e. node-15). However, since there
may be trips joining to the network from the internal nodes (e.g. node-2, node-3, and
the others), the shortest paths heading to the final destination from those nodes are
also in the concern. Therefore, the dynamic programming works in this manner by
the following steps mainly: Stage-1 seeks an answer of which node (node-12, node-13,
or node-14) should be used to arrive at the final destination node (i.e. node-15) along
the shortest path, because node-12, node-13, or node-14 are the only ones should be
visited just before the final destination for our case study. Then, using the results of
Stage-1, Stage-2 seeks an answer of which node should be used to arrive at the nodes
of 12, 13, or 14 to reach to node-15 along the shortest route. Further, the stages do
seek the answers until the first departing point of the network which is node-1. The
last stage in this manner should be Stage-final seeking an answer of where should
one go from node-1 so that the route reaches the final destination node can be the
shortest route.

Main Results

For achieving the results of the dynamic programming, the data in the case study
were processed in LINGO 17.0 x64. The script as well as the data were entered into
the software [15]. Further, the solver was run by a processor with the properties of
Intel R©CoreTM i7-2640M CPU @ 2.80GHz.

As the program was run by evaluating the inputs, the least cost path was deter-
mined as follows in Table 1. The path starts from node-1 as the origin node and
terminates at the destination node of 15. In other words, one should be visiting the
nodes of 1, 2, 4, 9, 14, and 15 respectively in order to access node-15 from node-1
with the least cost path.
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Table 1: The least cost path used from the origin node-1 to the main destination
node-15.

node-1 to node-2
node-2 to node-4
node-4 to node-9
node-9 to node-14
node-14 to node-15

Additionally, while totally 0.000 infeasibilities are reported by the solver, the short-
est routes with their costs (i.e. distances) from each node to the final destination node
of 15 are also successfully provided, as can be seen in Table 2. For example, the short-
est route distance in the network from node-9 as an origin to the destination node-15
is 71 units totally. Likewise, the shortest path distance from node-15 to node-15
should be zero as computed well by the solver.

Table 2: The costs of the shortest paths from the origins to the main destination
node-15.

from distance from distance from distance
node-1 185 node-6 124 node-11 127
node-2 141 node-7 195 node-12 85
node-3 131 node-8 166 node-13 41
node-4 109 node-9 71 node-14 39
node-5 160 node-10 93 node-15 0

Conclusion

By applying mathematical techniques and models, several problems related to
transportation engineering come up with solutions including the assignment of the
shortest paths according to the structure of a network topology. The shortest trans-
portation routes were determined by a commonly used methodology of dynamic pro-
gramming considering the parameters of a network in a case given. Surely, the main
origin can create trips for a final destination, while the other nodes in the network
can also create trips to the same destination. Since dynamic programming can solve
such large issues, this article demonstrates the application of it for the solutions of
transportation. The contribution of this article can be on not only making valuable
decisions on selecting the transportation ways for non-static phases of regional traffic,
but also increasing the comfort of many commuters by proposing the most convenient
routes. Thus, the time loss which is vital for many travelers can be minimized, and
also the economic development of a country is certainly contributed.
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Lorentz-Schatten Characteristic of

Compact Inverses of First Order Normal

Differential Operators
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Abstract

In this work, the Lorentz-Schatten characteristic of compact inverses of nor-
mal extensions of a minimal operator generated by linear differential-operator
expression for first order in the Hilbert space of vector-functions at finite interval
in terms of unbounded normal operator coefficients is investigated.

2010 Mathematics Subject Classifications : 47A05, 47A10, 47A20
Keywords: Differential and normal operators, s-numbers of compact operator,

Lorentz-Schatten operator classes

Introduction

It is known that operator theory plays an exceptionally important role in modern
mathematics and physics, quantum mechanics, deformation theory and etc. And also
spectral analysis of operators is one of the most important area of modern mathe-
matical physic. In addition the investigation of normal extensions of densely defined
closed formal normal operators in any Hilbert space is among the fundamental math-
ematical problems arising in any physical model. It should be noted that the detail
analysis of selfadjoint extensions of any linear closed densely defined having equal
deficiency indexes in Hilbert space of vector-functions has been given in [1].

Let us remember that a linear densely defined closed operator T in any Hilbert
space H is called formally normal if D(T ) ⊂ D(T ∗) and ‖Tx‖H = ‖T ∗x‖H for all
x ∈ D(T ). If a formally normal operator has no formally normal non-trivial extension,
then it is called maximally formally normal operator. If a formally normal operator
T : D(T ) ⊂ H → H satisfies the condition D(T ) = D(T ∗), then it is called nor-
mal operator (see [2]). The general theory of normal extensions of linear unbounded
densely (and non-densely) defined formally normal operators has been given in [2].
Some application of this theory to the theory of differential operators in Hilbert space
of vector-functions can be found in [3], [4], [5] ( see references in it).

The general theory of singular numbers and operator ideals was given by A. Pietsch
in [6], [7] and the case of linear compact operators was investigated by I. C. Gohberg
and M. G. Krein in [8]. However, the first result in this area can be found in the works
of E. Schmidt [9] and J. von Neumann, R. Schatten [10] who used these concepts in
the theory of non-selfadjoint integral equations.

Later on, the main aim of the mini-workshop hold in Oberwolfach (Germany) was
to present and discuss some modern applications of the functional-analytic concepts
of s−numbers and operator ideals in areas like numerical analysis, theory of function
spaces, signal processing, approximation theory, probability of Banach spaces and
statistical learning theory (see [11]).
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Let H be a Hilbert space, S∞(H) be a class of linear compact operators in H
and sn(T ) be the n − th singular numbers of the operator T ∈ S∞(H). in [6]. The
Lorentz-Schatten operator ideals are defined as

Sp,q(H) =

{
T ∈ S∞(H) :

∞∑
n=1

n
q
p−1sqn(T ) < ∞

}
, 0 < p ≤ ∞, 0 < q < ∞

and

Sp,∞(H) =

{
T ∈ S∞(H) : sup

n≥1
n

1
p sn(T ) < ∞

}
, 0 < p ≤ ∞

in [6], [7], [12], [13].
In this work, the problem of belonging to Lorentz-Schatten classes of the inverses

(consequently of resolvent operators) of the normal extensions of the minimal operator
generated by differential-operator expression for first order in the Hilbert space of
vector-functions at finite interval in terms of unbounded normal operator coefficients
is studied.

On the Singular Numbers of Inverses of Normal Ex-
tensions of the Minimal Operator

Let H be a separable Hilbert space and L2 = L2(H, (a, b)) be a Hilbert space of
H−valued vector-functions at finite interval.

In the space L2(H, (a, b)) consider the following linear differential-operator expres-
sion for first order in form

l(u) = u′(t) +Au(t), (1)

where:
(1) A : D(A) ⊂ H → H is a linear unbounded normal operator,
(2) real part AR of the operator A satisfies the condition AR ≥ E, where E denotes
the identity operator in H.

By standard method the minimal L0(L
+
0 ) and maximal L(L+) operators corre-

sponding to differential expression l

(
l+ = − d

dt
+A∗

)
in L2(H, (a, b)) can be easily

defined (see [4]). In this case the minimal operator L0 is formally normal, but it is
not maximal in L2(H, (a, b)).

Now let U(t, s), t, s ∈ [a, b] be a family of evolution operators corresponding to
the homogeneous equation

U ′
t(t, s)f + iAIU(t, s)f = 0, t, s ∈ [a, b],

U(s, s)f = f, f ∈ D(A)

where, AI indicates imaginary part of A.
Now give a few auxiliary three propositions from [4] .

Theorem 2.1. Let A
1/2
R [D(L)∩D(L+)] ⊂ W 1

2 (H, (a, b)). Each normal extension Ln

of the minimal operator L0 in L2 is generated by the differential-operator expression
(1) with the boundary condition

(u)(b) = U(b, a)W (u)(a), (2)

where W and A
1/2
R WA

−1/2
R are unitary operators in H. The unitary operator W is

determined uniquely by the extension Ln, i.e. Ln = LW .
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On the contrary, the restriction of the maximal operator L to the linear manifold
of vector-functions u(t) ∈ D(L) ∩ D(L+) that satisfy condition (2) for some unitary

operator W, where A
1/2
R WA

−1/2
R also unitary operator in H, is a normal extension of

the minimal operator in the space L2.

Theorem 2.2. If A−1
R ∈ S∞(H) and the operator LW is any normal extension of

minimal operator L0, then L−1
W ∈ S∞(L2). In addition, in this case for any λ ∈

ρ(LW ), Rλ(LW ) ∈ S∞(L2).

Theorem 2.3. If A−1
R ∈ S∞(H) and λn(AR) ∼ cnα, 0 < c, α < ∞ and LW is any

normal extension of minimal operator L0, then

sn
(
L−1
W

)
∼ dn−β , 0 < d < ∞, β =

α

1 + α
.

Lorentz-Schatten Characteristic of Inverses of Nor-
mal Extensions of the Minimal Operator

Now give the main results of this work in following theorems.

Theorem 3.1. Let A−1
R ∈ S∞(H), λn(AR) ∼ cnα, 0 < c, α < ∞ and LW be any

normal extension of the minimal operator L0. In order to L−1
W ∈ Sp,q(L

2), 0 < q < ∞
the necessary and sufficient condition is p > 1 +

1

α
.

Proof. In this case from mentioned above Theorem 2.3. it is known that

sn
(
L−1
W

)
∼ dn−β , 0 < d < ∞, β =

α

1 + α
.

Consequently, for the convergence of the series
∞∑

n=1
n

q
p−1sqn

(
L−1
W

)
,

0 < p, q < ∞, i.e.,
∞∑

n=1
n

q
p− αq

1+α−1 the necessary and sufficient condition is 1+
αq

1 + α
−

q

p
> 1. From this implies that

1

p
<

α

1 + α
. From last inequality it is obtained that

p > 1 +
1

α
.

Theorem 3.2. If A−1
R ∈ S∞(H), λn(AR) ∼ cnα, 0 < c, α < ∞ and LW be any

normal extension of the minimal operator L0. In order to L−1
W ∈ Sp,∞(L2), 0 < p ≤ ∞

the necessary and sufficient condition is p > 1 +
1

α
.

Proof. In this case from Theorem 2.3 it is known that sn
(
L−1
W

)
∼ dn−β ,

0 < d < ∞, β =
α

1 + α
.

Then for the validity of following condition sup
n≥1

n
1
p sn
(
L−1
W

)
< ∞, that is,

sup
n≥1

n
1
pn

−α
1+α = sup

n≥1
n

1
p− α

1+α < ∞,

the necessary and sufficient is
1

p
<

α

1 + α
. From this it is obtained that p > 1 +

1

α
.

.ecessaryecessary

αα.++ αα
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Corollary 3.2. Under the conditions of above two theorems L−1
W /∈ Sp,q(L

2),
0 < p ≤ 1, 0 < q ≤ ∞.

Corollary 3.2. Under the conditions of Theorem 3.1, L−1
W ∈ Sp(L

2) if and only if

1 +
1

α
< p < ∞, where Sp(

. ) denotes a Schatten-von Neumann operators ideal.
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A note on Hermite Base Euler Type

Polynomials

Eda Yuluklu1

Abstract

In this paper, by using generating functions with their mutliplication series
analysis, we derive some identities and relations including the Milne-Thomson
polynomials and numbers, Hermite numbers and polynomials.

2010 Mathematics Subject Classifications : 11B65, 11B68, 11B83, 33C45
Keywords: Euler numbers and polynomials, Hermite polynomials, Generating

functions.

Introduction

In this paper we investigate and study on some well-known families of numbers
and polynomials including Euler numbers and polynomials, and Hermite numbers
and polynomials and also Euler type numbers and polynomials.

The Hermite type polynomials with variable x and y are defined by means of the
following generating functions [21]

FH (t;x, y) = ext+yjt =

∞∑
n=0

H(j)
n (x, y)

tn

n!
. (1)

Observe that the polynomials H
(j)
n (x, y) are also so called that the Hermite-Kampe

de Feriet on Gould-Hopper polynomials [2].
From equation (1), we easily see that

H(j)
n (x, y) =

∞∑
k=0

n!xn−jkyk

k! (n− jk)!

(cf. [2], [13], [19]). The Apostol-Euler polynomials are defined by means of the
following generating functions

FE (t, x) =
2etx

λet + 1
=

∞∑
n=0

En (x, λ)
tn

n!
. (2)

By equation (2), we have the Apostol-Euler numbers En see as follows:

En(λ) = En (0, λ)

(cf. [1]-[19]).
In [18], Simsek defined the following polynomials Wn (x;λ):

FW (t, x) =
etx

(λet + λ−1e−t + 2)
k
=

∞∑
n=0

W (k)
n (x;λ)

tn

n!
. (3)

.))s [2].s [2].
atat
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Setting x = 0 in (3), we get the number W
(k)
n (λ). In [18], Simsek defined higher

order Wn (λ) numbers by following generating function:

FW (t) =

(
1

λet + λ−1e−t + 2

)k

=
∑
n≥0

W (k)
n (λ)

tn

n!
. (4)

In [18], Simsek proved that

Wn (λ) =
λ

4

n∑
j=0

(
n

j

) j∑
l=0

(
j

l

)
El (λ)Ej−l (λ) .

The following recurrence relation was given by Simsek ([18]):

n∑
m=0

(
n

m

)
W

(k)
n−m (λ) y2 (m, k;λ) = 0

where

y2 (m, k;λ) =
1

(2k)!

k∑
j=0

(
k

j

)
2k−j

j∑
l=0

(
j

l

)
(2l − j)

n
λ2l−j

(cf. [15]).

Hermite base Wn (x;λ) polynomials

In this section, we study on Hermite base Wn (x;λ) polynomials which defined by

F
HW (t, x;λ; k, j) =

ext+ytj

(λet + λ−1e−t + 2)
k
=

∞∑
n=0

HW (j,k)
n (x, y;λ)

tn

n!
. (5)

By combing equation (5) with equations (1) and (4), we get

∞∑
n=0

H(j)
n (x, y)

tn

n!

∞∑
n=0

W (j,k)
n (λ)

tn

n!
=

∞∑
n=0

HW (j,k)
n (x, y;λ)

tn

n!
.

By using cauchy product rule in the above equation, we get

∞∑
n=0

(
n∑

l=0

(
n

l

)
H

(j)
l (x, y)W

(k)
n−l (λ)

)
tn

n!
=

∞∑
n=0

HW (j,k)
n (x, y;λ)

tn

n!
. (6)

We now equating coefficients tn

n! in the both sides of equaiton (6), we get computation

formula for the polynomials HW
(j,k)
n (x, y) by the following theorem:

Theorem 1. Let j, k ∈ N0. Then we have

HW (j,k)
n (x, y;λ) =

n∑
l=0

(
n

l

)
H

(j)
l (x, y)W

(k)
n−l (λ) .

.((λλ)) ttnn.nn!!
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Statistical Classification of Turuncova

Marbles with Physical-Mechanical

Properties, Finike, Antalya

Burcu Aydin1 , Fusun Yalcin2 , Ozge Ozer1 , M. Gurhan Yalcin1

Abstract

In the study area that is one of the most important tourism cities of Turkey
and is valuable in terms of economic natural resources, marble holds an im-
portant place. Limra marble quarries located in Turuncova (Finike, Antalya)
region. The aim of study is to find some physico-mechanical properties of Limra
marbles and to explain these data statistically. Analysis results found out that
the data obtained in laboratory conditions were in a definite value and the data
of the marbles were in physico-mechanical relations. According to the results of
statistical analysis, an R2 value is found as 1. This value, which indicates that
there is sufficient and appropriate number of data for statistics, also means that
data are very high. Anova analysis is regression analysis and error rate of this
data is found as 0. In the data used in the analyses, error rate was not found.

2010 Mathematics Subject Classifications : 62H20, 62H30, 62P30, 91C20
Keywords: SPSS, Statistics, Limra Marble, Turuncova, Finike, Antalya.

Introduction

Physical and chemical properties of marbles with natural building block are al-
ways subject of curiosity for researchers. Marbles are classified in line with intended
purpose and determination of physico-mechanical properties. Analyses like capil-
lary mass water absorption, specific mass, total porosity, compactness, uniaxial com-
pressive strength and mass extinction made in laboratory were made by using TSI
standards and were classified to intended purposes. Mechanic properties like triax-
ial stress compressive strength, deformation stress strength, and friction angle are
analyzed for determining marble quality and these data are explained with statisti-
cal process. In statistical analysis, reliability of selected experiments was searched
(Jiyang and others, 2016) There are also studies on marble powder, not just marbles.
Physico-mechanical properties in marble powder was determined and variance analy-
sis (ANOVA) were made to these values, also it was made correlations with different
examples (Kelestemur and others, 2014; Benzannache and others., 2017) Statistic re-
sults were correlated with experimental findings and these studies achieved successful
results. There are some researches in different areas related to marbles of Antalya
region (Yalcin and oth., 2015, 2016; Yalcin and Akturk 2017) These can be listed as
follows: Current status and future projection of Western Mediterranean marble sector
; Contributions of cities of the western Mediterranean (Antalya, Isparta and Burdur)
to export Turkeys natural stones and marble”; Antalya, Burdur and Isparta examples
on the importance of block marbles and processed on the prices When literature was
examined, an academic study of marble of Turuncova Finike was not found. The aim

.s. Marbs. Marb
-mecha-mecha
ss, totass, tota
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is to determine the physico-chemical properties of marble samples taken from differ-
ent levels and locations from a marble quarry in the study area, to evaluate these
data with statistical techniques and to classify marble belonging location by using
similarities and differences among examples.

Examples, Physico-Mechanical Properties and Sta-
tistical Analyses

In this study, samples were taken from Limra marble-quarry in Turuncova region
(Finike, Antalya) (Figure 1) In the civil engineering laboratory of Akdeniz Univer-
sity, according to TSI, experiments of ‘’total porosity, compactness, water absorption
amount, mass loss and compressive strength” were done.

Figure 1: Site Location Map Of Limra Marble-Quarry In Turuncova Region (Finike,
Antalya)

Physico-mechanical properties of eight (8) marble samples from different locations
of Limra marble quarries are given in the table (table 1). Classification of examples
from land: TS 1910 (1977). Natural building stones used as covering, Turkish Stan-
dards, TS 2513 (1977). Natural building stones used as covering, TS EN 13755
(2003). Natural stones, testing methods were made in the atmosphere pressure as to
determination of water absorption.

Table 1. Physico-mechanical properties of Turuncova region marbles (Finike,
Antalya)

Values of physico-mechanical properties were examined by using SPSS program.
The data of the samples were analyzed in five (5) different ways.

‘’Descriptive statistics’ was chosen as first analysis and ‘numerical value range,
minimum-maximum values, cumulative values, arithmetic average, standard deviation
and variance’ of each example was calculated. (Table 2)

Table 2. Descriptive Statistics

.pertiesperties
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The aim of second analysis made by SPSS program was to determine relation
of the correlation coefficient on variables (Buyukozturk, 2003). This ‘Correlation’
analysis takes place in Table 3.

Table 3. Correlation analysis

Third analysis is correlation coefficient analysis. The statistical analysis for the
determination of the R2 in the table of ‘Model Summary’ shows how much the data
reflects the truth (Table 4). The result of the analysis of the value of 1.00 shows that
the value of the analysis has positive relation while the result of the analysis of the
value of -1.00 shows that the value of the analysis has negative relation. The result of
the analysis of the value of 0 shows that there is no relation between relations (Tutus
M., Kılıc M. A., 2008). Values between 0,70-0,30 of correlation coefficient is in middle
level, values between 0,30-0,00 have low level relation. (Tutus M., Kılıc M. A., 2008).

Table 4. ‘Model Summary’ values of Testing of Limra Marbles

Fourth analysis is Anova analysis. (Table 5.) ‘Anova’ analysis is a regression
analysis. Values of regression analysis’ results mean that one of the analysis data is
independent and the other one is dependent (Tutus M., Kılıc M. A., 2008)

Table 5. ‘Anova’ values of Testing of Limra Marbles

Fifth analysis made by SPSS-26 program is ‘Classify’ analysis (Chart 1) This
statistical analysis made by Hierarchial cluster technique found similar characteristics
and clustering of 8 different samples.

Chart 1. ‘Classify’ Diagram Of Testing Of Limra Marbles
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Results and Discussion

According to TSI standards, 8 (eight) different examples from Limra marbles
Turuncova region (Finike, Antalya) were examined in line with intended purpose in
the university laboratory. Physico-mechanical properties were examined with helping
of SPSS program. Error rate was found as %0 and accuracy rate R2 value was found
as 1 in the ‘Model Summary’. High correlation coefficient was acquired from data.
In the dendrogram chart, samples are classified into three groups of close smiliraties
in their physico-mechanical properties. Group 1 samples (A4, B2, B3, B4) have
the lowest total porosity and highest composity properties. They show average water
absorption and compressive string values compared to group 2 and 3. Group 2 samples
(A1, B1) have the lowest composity, highest total porosity and compressive string
properties. Group 3 samples (A2, A3) have the lowest compressive string property.
It is understood that statistical methods are successful and can be used in this field.
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Euler-Catalan’s Number Triangle

and its Application

Yuriy Shablya1, Dmitry Kruchinin1

Abstract

In this paper we study labeled binary trees of size n withm ascents on the left
branch. For this combinatorial object we present the relation of the generated
number triangle to Catalan’s and Euler’s triangles. On the basis of properties
of Catalan’s and Euler’s triangles, we obtain an explicit formula that counts the
total number of such trees and an exponential generating function.

2010 Mathematics Subject Classifications: 11Y55, 05A15, 05C05
Keywords: Number triangle, Labeled binary tree, Catalan’s triangle, Euler’s

triangle, Generating function

Introduction

Combinatorial objects like permutations, combinations, partitions, graphs, trees,
paths, etc. play an important role in mathematics and computer science and also
have many applications in practice. Knuth [1] gives an overview of the formation and
development of the direction related to designing combinatorial algorithms.

Sometimes combinatorial objects can be described by using number triangles, for
example, for their enumerating. A number triangle is a doubly indexed sequence in
which the length of each row corresponds to the index of the row. There are many
well-known number triangles such as Pascal’s triangle, Catalan’s triangle, Euler’s
triangles, Stirling’s triangles, etc., whose elements have a whole set of combinatorial
interpretations [2]. To define a number triangle, it is necessary to specify the rules
for generating elements of this triangle. For example, it can be some expression in
the form of an explicit formula, a recurrence relation or a generating function.

In this paper we study labeled binary trees with ascents on the left branch. For
this combinatorial object we obtain an explicit formula that counts the total number
of such trees and an exponential generating function. Also we present the relation of
the obtained number triangle to Catalan’s and Euler’s triangles.

Main Results

Let us consider the following combinatorial object: a labeled binary tree of size n
with m ascents on the left branch. Figure 1 shows all possible variants of such trees
for n = 3 and m = 1.

Theorem 1. The number of labeled binary trees of size n with m ascents on the left
branch is

ECn,m =

⎧⎨⎩1, for n = m = 0;
n∑

k=m+1

Cn,kEk,mPn,n−k, otherwise,

.se elemese eleme
r triangr triang

FF

MICOPAM2018_b5.indd   212MICOPAM2018_b5.indd   212 16.1.2019.   11.26.3416.1.2019.   11.26.34



Dedicated to Professor G. Milovanović Antalya-TURKEY213

PROCEEDINGS BOOK OF MICOPAM 2018

Figure 1: All labeled binary trees of size 3 with 1 ascent on the left branch.

where Cn,m is the transposed Catalan’s triangle, En,m is Euler’s triangle, Pn,m is the
number of k-permutations of n.

Proof. The number of binary trees of size n with m nodes on the left branch is
defined by the elements of the transposed Catalan’s triangle (the sequence A033184
in OEIS [3]) that are denoted as Cn,m. According to [4], an explicit formula for
1 ≤ m ≤ n is

Cn,m =
m

n

(
2n−m− 1

n− 1

)
.

Then we consider labeled version of these binary trees (for each node there is an
associated unique value from 1 to n). We need to count the number of ways to label
the given binary tree of size n with k nodes on the left branch such that it has exactly
m ascents on the left branch. For this, it is necessary that the labels of k nodes on
the left branch form a permutation of k elements with m ascents and the remaining
labels of n− k nodes form all possible permutations.

The number of permutations of n elements with m ascents is defined by the el-
ements of Euler’s triangle (the sequence A173018 in OEIS [3]) that are denoted as
En,m. According to [2], an explicit formula for 0 ≤ m ≤ n is

En,m =

m∑
k=0

(−1)k(m− k + 1)n
(
n+ 1

k

)
. (1)

The number of permutations of m elements given from a set of n elements (the
sequence A008279 in OEIS [3]) is denoted as Pn,m. According to [2], an explicit
formula for 0 ≤ m ≤ n is

Pn,m =
n!

(n−m)!
. (2)

Hence, combining (1) and (2), we get the number of ways to label the given binary
tree of size n with k nodes on the left branch such that it has exactly m ascents on
the left branch

Ek,mPn,n−k. (3)

If we consider all variants of binary trees of size n with k nodes on the left branch
for k from m+1 to n and get the number of ways to label them using (3), we obtain
the total number of labeled binary trees of size n with m ascents on the left branch

n∑
k=m+1

Cn,kEk,mPn,n−k.

�

.kk((mm−− kk
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Table 1: Several first values of Euler-Catalan’s triangle.

n \ m 0 1 2 3 4 5 6 7
0 1
1 1 0
2 3 1 0
3 19 10 1 0
4 193 119 23 1 0
5 2721 1806 466 46 1 0
6 49171 34017 10262 1502 87 1 0
7 1084483 770274 255795 47020 4425 162 1 0

The sequence of ECn,m forms a number triangle. Due to the connection with
Catalan’s and Euler’s triangles, let us call it Euler-Catalan’s triangle.

Theorem 2. The number of labeled binary trees of size n with m ascents on the left
branch is defined by the following exponential generating function:

EC(x, y) =
∑
n≥0

∑
m≥0

ECn,m

n!
xnym =

y − 1

y − eC(x)(y−1)
, (4)

where C(x) = 1−√
1−4x
2 is the generating function of the Catalan numbers.

Proof. Let us consider EC(x, y) as the composition of generating functionsEC(x, y) =
E(C(x), y), where

E(x, y) =
∑
n≥0

∑
m≥0

En,m

n!
xnym =

y − 1

y − ex(y−1)

is the exponential generating function of Euler’s triangle [2].
According to [5], if we have the composition A(x) = R(F (x)) =

∑
n≥0

anx
n of

generating functions R(x) =
∑
n≥0

rnx
n and F (x) =

∑
n>0

fnx
n, then

an =

⎧⎨⎩r0, for n = 0;
n∑

k=1

FΔ(n, k)rk, otherwise,
(5)

where FΔ(n, k) is the composita of the generating function F (x).

The composita of C(x) = 1−√
1−4x
2 is [6]

CΔ(n, k) =
k

n

(
2n− k − 1

n− 1

)
= Cn,k.

.omposiomposi

andand FF ((xx
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Using (5) for the composition A(x) = EC(x, y) = E(C(x), y), we get

an =

⎧⎪⎨⎪⎩
1, for n = 0;
n∑

k=1

CΔ(n, k)

( ∑
m≥0

Ek,m

k! ym

)
, otherwise,

=

=

⎧⎨⎩1, for n = 0;∑
m≥0

ym 1
n!

n∑
k=m+1

Cn,kEk,mPn,n−k, otherwise,
=

=

⎧⎨⎩1, for n = 0;∑
m≥0

ym
ECn,m

n! , otherwise.

Hence, we obtain the desired result

EC(x, y) = E(C(x), y) =
y − 1

y − eC(x)(y−1)
=
∑
n≥0

∑
m≥0

ECn,m

n!
xnym.

�

Conclusion

Using properties of Catalan’s and Euler’s number triangles, we have obtained the
explicit formula that counts the total number of labeled binary trees of size n with
m ascents on the left branch. Also for this combinatorial object we have got the
exponential generating function.
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Integral representations of generating

functions for combinatorial numbers and

polynomials

Yilmaz Simsek1

Abstract

In this paper, we give integral represantations of generating functions for
special numbers and polynomials including Cauchy numbers and polynomials
and combinatorial numbers and polynomials. Furthermore, with the help of
these generating functions and their functional equations, we derive a new iden-
tity for these numbers and polynomials and series representation of logarithm
function.

2010 Mathematics Subject Classifications : 05A10, 05A15, 11B83, 26C05,
30D05, 40C10

Keywords: Stirling numbers, Cauchy numbers, Bernoulli numbers of the sec-
ond kind, Combinatorial numbers and polynomials, Generating function, Functional
equation, Integral representation, Series representation.

Introduction

It is well known that special numbers and polynomials containing combinatorial
numbers and polynomials, Cauchy numbers and polynomials, and also Stirling num-
bers are used very effectively in almost all fields of science, mainly mathematics.
Therefore, special numbers and polynomials are studied in this paper. By integrating
the generating functions for special numbers and polynomials including combinato-
rial numbers and polynomials, and Cauchy numbers and polynomials, both a series
expansion of the logarithmic function and an identity containing these numbers and
polynomials are obtained.

In order to give proof of the results mentioned in the above, generating functions
for combinatorial numbers and polynomials, Cauchy numbers and polynomials, and
also some formulas and relations are given below.

We [6] defined the following generating function for the polynomials Yn,2 (x;λ):

H (t, x;λ) =
2 (1 + λt)

x

λ2t+ 2 (λ− 1)
=

∞∑
n=0

Yn,2 (x;λ)
tn

n!
. (1)

From the above equation, we have

Yn,2 (x;λ) =

n∑
j=0

(−1)j
(

n
j

)
j!

λn+j

2j (λ− 1)
j+1

(x)n−j (2)

where (x)n denotes the falling factorial defined by (x)0 = 1 and

(x)n = x (x− 1) . . . (x− n+ 1)

.mials armials ar
mbers ambers a
uchy nuuchy nu
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(cf. [6]).
Substituting x = 0 into (1), we have the combinatorial numbers Yn,2 (λ):

Yn,2 (λ) = Yn,2 (0;λ) (3)

= (−1)nn!
λ2n

2n (λ− 1)
n+1

(cf. [6]).
Recently, these numbers and polynomials and other related special numbers and

polynomials have been studied by many authors, see for detail (cf. [2], [5]-[8]).
Stirling numbers of the first kind, S1 (n, k) are given by

S (t, k) =
(log (1 + t))

k

k!
=

∞∑
n=0

S1 (n, k)
tn

n!
,

and also

(x)n =
n∑

j=0

xjS1 (n, j) , (4)

(cf. [1], [4]).
Cauchy numbers, or Bernoulli numbers of the second kind, Cn = bn(0) are defined

by the following generating function:

Fc(t) =
t

ln(1 + t)
=

∞∑
n=0

Cn
tn

n!
(5)

or

Cn =

1∫
0

(x)n dx =

n∑
j=0

S1 (n, j)

j + 1
, (6)

(cf. [1, p. 294], [3, p. 1908], [4, p. 114]). There are various different relations between
Stirling numbers of the first kind and Cauchy numbers.

Cauchy polynomials are defined by

Cn(x) =

x∫
0

(u)ndu

(cf. [1], [3], [4]).

Integral representations for generating functions and
formulas

In this section, we give integral representations of Eq-(1). We give a series expan-
sion of the logarithmic function and an identity including combinatorial numbers and
polynomials and Cauchy numbers and polynomials.

Integrate equation (1) with respect to u from 0 to t, we get

t∫
0

H (u, 0;λ) du =

∞∑
n=0

Yn,2 (λ)

n!

t∫
0

undu.

.yyxx
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Thus
2

λ2
ln

(
λ2

2 (λ− 1)
t+ 1

)
=

∞∑
n=0

Yn,2 (λ)

(n+ 1)!
tn+1.

Combining the above equation with (3), after some elementary computation, we ob-

tain series expansion of the logarithmic function ln
(

λ2

2(λ−1) t+ 1
)
as follows:

Theorem 1.

ln

(
λ2

2 (λ− 1)
t+ 1

)
=

∞∑
n=0

(−1)n
1

n+ 1

(
λ2

2 (λ− 1)

)n+1

tn+1. (7)

We note that, in theory of calculus, there are many different proofs of well known
formula for series expansion of the logarithmic function in Eq-(7).

Integrate equation (1) with respect to u from 0 to x, we get

x∫
0

H (t, u;λ) du =

∞∑
n=0

tn

n!

x∫
0

Yn,2 (u;λ) du.

Thus

H (t, x;λ)−H (t, 0;λ)

ln (λt+ 1)
=

∞∑
n=0

tn

n!

x∫
0

Yn,2 (u;λ) du.

From the above equation, we get the following functional equation:

Fc(λt) (H (t, x;λ)−H (t, 0;λ)) = λ

∞∑
n=0

tn+1

n!

x∫
0

Yn,2 (u;λ) du.

Combining the above equation with (2) and (5), we obtain

∞∑
n=0

Yn,2 (x;λ)
tn

n!

∞∑
n=0

λnCn
tn

n!
−

∞∑
n=0

Yn,2 (λ)
tn

n!

∞∑
n=0

λnCn
tn

n!

= λ

∞∑
n=0

n
n−1∑
j=0

(−1)j
(

n− 1
j

)
j!

λn+j−1

2j (λ− 1)
j+1

Cn−j−1(x)
tn

n!
,

By using the Cauchy product rule in the left hand side of the above equation, we have

∞∑
n=0

n∑
j=0

(
n
j

)
λjCj (Yn−j,2 (x;λ)− Yn−j,2 (λ))

tn

n!

= λ
∞∑

n=0

n

n−1∑
j=0

(−1)j
(

n− 1
j

)
j!

λn+j−1

2j (λ− 1)
j+1

Cn−j−1(x)
tn

n!
,

Comparing the coefficient tn

n! on both sides of the above equation, we arrive at the
following theorem:

Theorem 2.

n∑
j=0

(
n
j

)
λjCj (Yn−j,2 (x;λ)− Yn−j,2 (λ))

= nλ
n−1∑
j=0

(−1)j
(

n− 1
j

)
j!

λn+j−1

2j (λ− 1)
j+1

Cn−j−1(x).

.11 )) jj!!
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Special numbers arised from trigonometric

and hyperbolic functions

Neslihan Kilar1 , Yilmaz Simsek2

Abstract

The aim of this paper is to give not only recent development on well-known
numbers and polynomials including the Bernoulli numbers, the Euler numbers,
the tangent numbers, the cotangent numbers and the others, but also identities
and relations associated with these numbers. Furthermore, by using trigono-
metric function identity, combinatorial identity is deriven.

2010 Mathematics Subject Classifications : 05A15, 11B68, 11B83, 26C05.
Keywords: Bernoulli numbers and polynomials, Euler numbers and polynomials,

Tangent numbers, Cotangent numbers.

Introduction

By using generating functions including tangent and cotangent functions, we give
some new relations and formulas including not only tangent numbers and cotangent
numbers and polynomials, but also other well-known families such as the Bernoulli
numbers and polynomials, the Euler numbers and polynomials and others.

The Bernoulli polynomials and the Euler polynomials are defined by means of the
following generating functions, respectively:

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (1)

where |t| < 2π and

2

et + 1
ext =

∞∑
n=0

En (x)
tn

n!
(2)

where |t| < π (cf. [1]-[13]; and the references therein).
It is clear that Bn(0) = Bn and En(0) = En which denote the Bernoulli numbers

and the Euler numbers, respectively (cf. [1]-[13]; and the references therein).
The tangent numbers Tn are defined by

tan (t) = t+
t3

3
+

2t5

15
+

17t7

315
+ ... =

∞∑
n=1

T2n−1
t2n−1

(2n− 1)!
(3)

where |t| < π
2 (cf. [1], [3], [4], [14]; and the references therein) and also

tan (t) =

∞∑
n=0

(−1)
n+1 22n+1E2n+1

(2n+ 1)!
t2n+1

where |t| < π (cf. [1], [9], [10]).

.==∑∑nn=0=0
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The cotangent numbers Cn are defined by

t

2
cot

(
t

2

)
=

∞∑
n=0

C2nt
2n =

∞∑
n=0

(−1)
n
B2n

t2n

(2n)!
(4)

(cf. [6]; and the references therein).

Identities and formulas for the special numbers

In this section we give some identities and formulas for the special numbers in-
cluding tangent and cotangent numbers.

Theorem 1. Let n be a positive integer. Then we have

T2n−1 = (2n− 1)!
(
1− 22n

)
22nC2n.

Proof. Combining following well-known trigonometric identity

t tan (t) = t cot (t)− 2t cot (2t)

(cf. [6]) with (3) and (4), we get

∞∑
n=0

(2n)T2n−1
t2n

(2n)!
=

∞∑
n=0

C2n

(
1− 22n

)
22nt2n.

Comparing the coefficients of t2n on both sides of the above equation, we arrive at
the desired result. �

Theorem 2. The following identity holds true:

n∑
k=0

(
2n
2k

)
+

n−1∑
k=0

(−1)
k

(
2n

2k + 1

)
22n−2k−2T2k+1 = 22n.

Proof. Combining following well-known trigonometric identity

2 cos2 (t)− 2 cos (2t) = tan (t) sin (2t) (5)

(cf. [6]) with Eq-(3), we obtain

∞∑
n=1

(
n∑

k=0

(
2n
2k

)
− 22n

)
t2n

(2n)!

=

∞∑
n=1

n−1∑
k=0

(−1)
1+k

(
2n

2k + 1

)
22n−2k−2T2k+1

t2n

(2n)!
.

Comparing the coefficients of t2n

(2n)! on both sides of the above equation, we arrive at

the desired result. �

Theorem 3. The following identity holds true:

n∑
k=0

(
2n+ 2
2k + 1

)
=

n∑
k=0

(−1)
k

(
2n+ 2
2k + 1

)
22n−2kT2k+1.

.n trigonn trigon
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Proof. Combining following well-known trigonometric identity

2 sin2 (t) = tan (t) sin (2t) (6)

(cf. [6]) with Eq-(3), we obtain

∞∑
n=0

n∑
k=0

(
2n+ 2
2k + 1

)
t2n+2

(2n+ 2)!

=
∞∑

n=0

n∑
k=0

(−1)
k

(
2n+ 2
2k + 1

)
22n−2kT2k+1

t2n+2

(2n+ 2)!
.

Comparing the coefficients of t2n+2

(2n+2)! on both sides of the above equation, we arrive

at the desired result. �

Observation

We now give a well-known combinatorial sums with the help of trigonometric
identity. Using (5) and (6), we have

2 cos2 (t)− 2 cos (2t) = 2 sin2 (t) . (7)

By using Taylor series of the sin (t) and cos (t), we get

∞∑
n=1

(−1)
n

(
n∑

k=0

(
2n
2k

)
− 22n

)
t2n

(2n)!
=

∞∑
n=1

n−1∑
k=0

(−1)
n−1

(
2n

2k + 1

)
t2n

(2n)!
.

After some elementary calculations, comparing the coefficients of t2n

(2n)! on both sides

of the above equation, the following combinatorial sum is obtained:

n−1∑
k=0

(
2n

2k + 1

)
+

n∑
k=0

(
2n
2k

)
= 22n.

Combining the well-known Pascal’s rule, which is a very important combinatorial
identity: (

n
k

)
+

(
n

k − 1

)
=

(
n+ 1
k

)
,

in the above equation, we get

n−1∑
k=0

(
2n+ 1
2k + 1

)
= 22n − 1.
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Box Plots Analiysis of Elements in the

Lara Beach Sand

Fusun Yalcin1

Abstract

The study was carried out on Lara sand sediments located on the coast of
Antalya to determine the chemical distribution of elements and assess possible
heavy metal contamination level and its accumulation index and origin in the
beach sand. 21 elements were evaluated using statistical technique to determine
the distribution of the metals. Multivariate statistical was applied to understand
the the homogeneity of the samples and determine samples in which elements
show anomalous concentrations with respect to the other samples. Samples were
distinguished in 5 groups of close similarities based on the chemical distribution.

2010 Mathematics Subject Classifications : 62H25, 62P30, 86A32
Keywords: Multivariable Statistic, SPSS, Lara, Beach Sand, Antalya

Introduction

The evaluation of heavy metal concentrations in beach sand and soil sediments
has pulled the interest of many geo and environmental scientist over time who seek to
establish the origin, determine the potential risk they may pose to the ecosystem and
develop solutions on how to ameliorate this risk. This is simple due to the harmful
nature of these elements. The existence is natural but their concentration is is either
influenced by both natural and anthropogenic activities. Sediments and soil act as
sink, scavenger and traps to these metals which are non-biodegradable (cf. [1], [4],
[5]).

Along the coastline of Lara, the rapid population increase in the city has also lead
to an expanding urbanization and a fast development in the touristic industry in the
region. Within the last decade, hotel of at least the five star category constructed
in this region have exceeded (cf. [2]). These generally have increase anthropogenic
pressure on the natural Lara coastline (cf. [6]).

In this study, the sand samples were collected and their heavy metals content were
determined. The distribution of these elements was evaluated using the multivariate
statistical approach, whereby samples with anomalous concentrations elements to
their normal distribution were evaluated.

Material and Method

To carry out the beach sand sediment geochemical and contamination survey of
the Lara beach, 47 beach sand samples were collected from the beach. The samples
were prepared using standard sample preparation procedure (cf. [6]) and analyzed
with XRF technique at the ACME Laboratory Limited. Geochemical data obtained
from the XRF technique per sample consists of variables (elements) expressed in
concentrations.
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The Data was evaluated using both the quantitative and qualitative approaches.
The quantitative evaluation included simple statistical case summary and interquartile
distribution of variable in the analyzed cases. The Principal Component Analysis
(PCA) and Factor Analysis (FA) were applied to study the process controlling the
concentrations of the variables alongside cluster analysis and correlational relationship
of the coexisting variables.

Results and Discussion

21 elements were identified in the samples using XRF technique. The most abun-
dant element is Ca. However, in sample L11 Si most abundant and it is slightly
higher in L (6 & 12) as presented on Table 2. In order of abundance, Ca is followed
by Si and Fe respective with Al and Mg having an almost similar concentration in
the samples, as illustrated in Figure 2. At a two decimal point evaluation the average
concentrations of Cu, Rb, Y and Pb is zero. Ca, Fe, Al, Mg, Ti, Mn, Sr, Ni, Zn,
Rb, K and Ba have a higher median to mean value and a corresponding skewness less
than zero, except Ca having skewness slightly greater than zero. On the other hand,
Si, Na, Cr, Zr, Cu, Y, Pb, S and P have a lower median to mean values with skewness
greater than zero at a three decimal point evaluation.

Skewness < 0 is referred to as left skewed distribution. This indicates an element’s
concentration in most of the samples are concentrated on the right of its mean value
in the samples, with extreme values to the left; while Skewness > 0 Is referred to as
right skewed distribution. It implies an element’s concentration in most the samples
is distributed on the left of its mean concentration with extremely values to the right
(cf. [3]). However, the distribution of Ca reverse skewed value (> 0 instead of < 0)
is accounted for by the extremely anomalous high content of Ca in sample. Checkout
and compare World Avg.

Figure 1: Simple statistical evaluation of chemical data by the SPSS 23
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Figure 2: Concentration Distribution of elements in the samples

Interquartile Distribution

Interquartile distribution of the variables within samples, reveals samples L45
(A – C) indicates very high anomalous concentrations for Ca and low anomalous
concentration for all other elements. On the opposite, Si shows high anomalous
concentrations in samples L (6, 11 & 12), while Ca has low anomalous concentration.
In samples L (17, 30, 31 & 40), Fe, Ti and Cr have high anomalous concentrations.
Anomalous concentration for Pb is observed for samples L (8, 24, 36 and 43). Sr, Ba
and Zr in all samples are well distributed across the interquartile range (Figure 2).

Figure 3: Box Plot Analiysis of samples within their interquartile range.

.), while), while
and Crand Cr
erved foerved fo

MICOPAM2018_b5.indd   227MICOPAM2018_b5.indd   227 16.1.2019.   11.26.3716.1.2019.   11.26.37



PROCEEDINGS BOOK OF MICOPAM 2018

Dedicated to Professor G. Milovanović Antalya-TURKEY228

Conclusion

The study was carried on the Lara beach located on west coast of Antalya to assess
the geochemical content of the samples and determine the level of contamination by
heavy metals. 21 elements were identified in the 47 samples analyzed. The elements
are unequally distributed with Ca, Si, Cr, Pb, Cu and Fe showing anomalous values
in some samples. Calcium is the most abundant element in all the samples except in
samples L (11, 6 and 12) where SI is most abundant. Heavy metals present in the
samples Cr, Mn, Ni, Cu, Zn and Pb. Most of the heavy metals such as Cu and Pb
exist in insignificant quantities in most samples. Heavy metal content of the beach is
of no risk to the beaches.
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Effects of Wavelet Families and Filter

Coefficients on EEG Frequency Spectrum

İnci Bilge1, Ayhan Şavklıyıldız1, Hilmi Uysal2, Ebru Apaydın

Doğan2, Buket Şimşek1, Övünç Polat1, Ömer H. Çolak1

Abstract

This paper presents the effects of different wavelet families for numerous
filter coefficients on electroencephalography (EEG) signals. Subjects consist of
five healthy volunteers were participated in this study, where EEG signals of the
subjects recorded with 64 different channels. Subjects were asked to stand-still
and relaxed with eyes closed position. The collected data from the subjects,
was decomposed with 9th level of wavelet packet transform for different wavelet
families such as daubechies, coiflets, symlets and Fejer-Korovkin wavelets. The
root mean square energies of the signals were calculated for each subject and
wavelets to select suitable wavelet coefficient to examine the EEG signals. The
near-harmonics effects of alpha waves at higher bands were decreased, when the
higher wavelet coefficient of daubechies, symlets and Fejer-Korovkin wavelets
were applied.

2010 Mathematics Subject Classifications : 92C55, 65T60.
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Introduction

Electroencephalography (EEG) is an electrophysiological monitoring method that
record electrical activity of the human brain. EEG signals mostly analyzed through
the frequency spectrum which has characterized peaks at various frequency. Generally,
spectrum subdivided into frequency band intervals such as delta (0-4Hz), theta (4-
8Hz), alpha (8-13Hz), beta (13-30Hz) and gamma (30-50Hz) bands. Among these
bands, alpha band is the most salient band during the eyes closed recordings. Because,
there is a characterized activity around occipital lobe. This feature was first detected
in healthy adult EEG at 1933 [1]. However, the same feature can be observed in higher
frequency bands like beta and even gamma which can be seen in Figure 1. In resting
eyes closed EEG recordings, there are various peaks that appear like harmonics. An
early study investigated and predicted the near-harmonic relationships that might
be caused from alpha waves [2]. In order to diminish or at least decrease these
near-harmonic effects different wavelets and filter coefficient were used to the extract
frequency spectrum.

Method

EEG data were recorded at Akdeniz University, Faculty of Medicine, Neurology
Department, EEG Laboratory, Antalya, Turkey. EEG signals were recorded by Nihon
Kohden device with a EEG cap that has 64 channel including Ag/AgCl electrodes.

.n electron electro
brain.brain..cterizedcterized
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Unipolar signals were recorded with 200 Hz sampling frequency. Five healthy subject
that have no history of neurological or psychiatric disorders, participated in this study.
Also, an informed consent was obtained from the participants included in the study.
All procedures performed in accordance with the ethical standards of the institutional
and/or national research committee. Subjects were asked to sit in comfortable chair
with eyes closed and stand still as little as possible.

The collected data of the subjects were decomposed into frequency bands for
different wavelets via generalized formula below [3],

Wm,j,n(t) = 2−m/2Wj(2
−2t− n), (1)

where j ∈ N represents the node index in each m level. The root mean square value
of the decomposition components can be calculated as

wrms,m,j =

√
1

N

∑
|wm,j(r)|2 (2)

Moreover, the total wavelet energy for each node can be defined as

E =
2M−1∑
j=0

|wrms,m, j|2. (3)

Daubechies(db), Symlets(sym), Coiflets(coif) and Fejer-Korovkin(fk) wavelets were
used with five different filter coefficient in ascending order, in order to examine the
effect of coefficients.

Main Results

The main effect of the ascended filter coefficients is the decrements at the peak of
beta bands which can be seen easily from Figure 2.

Conclusion

The near-harmonics of the alpha waves were reduced and the wavelet packet en-
ergies were increased at the higher filter coefficients. Nevertheless, db, sym and fk
wavelet gives the best result among mother wavelet types. Consequently, artifacts
caused by near-harmonics which might led to false conclusions with the activity in
theta band, can be avoided. Therefore, above-mentioned type of wavelets should be
used in EEG spectrum analysis with higher filter coefficients.

Figure 1: Mean wavelet packet energy data with ’db4’
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Figure 2: Wavelet packet energy of the first subject with different filter coefficient.
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Observations On Statistical Tests Used In

Neuroscience

Buket Simsek1, Omer Halil Colak2

Abstract

It is difficult to understand and interpret the results of neuroscience studies
without the help of statistical methods. Therefore, some statistical methods
used in neuroscience are examined in this paper. Some basic properties of
these methotds are given. Consequently, brain activity measurement devices
are briefly given. Finally, we survey some remarks and observations on Neuro-
statistics with their applications.

2010 Mathematics Subject Classifications : 62F03, 62G10.
Keywords: Statistical tests, Neuroscience, Brain activity.

Introduction

The statistical solutions in neuroscience are used in biology, in medicine, in en-
gineering and in many other related areas. Therefore, recently, several investigators
have been known to work on neurostatistics (cf. [1]-[8]; and the references cited
therein). In order to clearly understand neuroscience, there are various statistical
tests have been used.

In this paper, we will briefly examine some of the statistical methods used in the
data.

By using statistical models including general linear model (GLM), Student’s t
tests and analyses of variance (ANOVAs), Smith [8] gave experimental design in
neuroscience. obtained from devices that measure brain activity.

Some devices used for brain activity measurement

Brain function with its relations to cognition and behavior are known by the use
of various complementary methods (cf. [5]; and the references cited therein). Here,
we mention some well-known devices used for brain activity measurement.

Functional Magnetic Resonance Imaging: fMRI is a device that allows
measurement and observation of brain activity during an ongoing procedure (cf. [2];
and the references cited therein).

Electroencephalogram: EEG is a test which records the electrical signals of
the brain. EEG signal depends on both the amplitude and spatial synchronization of
brain neural activity (cf. [7]; and the references cited therein).

Transcranial Magnetic Stimulation: TMS is indirect and non-invasive method
used to induce excitability changes in the motor cortex via a wire coil generating a
magnetic field that passes through the scalp. Recently, TMS is become a efective
and important method to investigate brain functioning in humans (cf. [6]; and the
references cited therein).

.g gg g
VAs), SVAs), S.at measat meas
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Electromyography EMG signal represents the linear transformation of motor
neuron discharge times by the compound action potentials of the innervated muscle
fibers and is often represented as a source of knowledge about to neural activation of
muscle (cf. [4]; and the references cited therein).

Some statistical tests used in neuroscience

In this section, we give brief introduction about statistical tests used in neuro-
science.

Hypothesis testing
Hypothesis testing are used the test the difference between two groups. There two

groups hypothesis testing which are parametric hypothesis testing and non-parametric
hypothesis testing. We breiefly give some information about these hypothesis testing
as follows.

Parametric hypothesis tests

Parametric hypothesis tests (distributions of data should be normal distribu-
tion)

Student t Test
Paiered t Test
ANOVA (Analysis Of Variance)
(cf. [1], [3]; and the references cited therein).

Non-parametric hypothesis tests

Non-parametric hypothesis tests (distributions of data should be non-normal
distribution)

Mann Whitney U Test
Wilcoxon Signed-Rank Test
Kruskal-Wallis Test
(cf. [1], [3]; and the references cited therein).

Relational Statistical Methods

These tests are examined the study of relationship between two or more variables.
Correlation
Regression Analysis
(cf. [1], [3]; and the references cited therein).

Conclusion

In this paper, some statistical tests used in the field of neuronscience are men-
tioned. Due to the very small number of researches in neuroscience assocated with
brain activity measurement with the help of statistical tests, other approaches or
techniques may be included in the methods mentioned above.By using approaches
based on distribution functions, new statistical tests that can be used in neuroscience
may be developed. As a result, with the help of these new statistical tests, better
results may be obtained in the analysis and interpretation of the data to be obtained

.thereintherein
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in neuroscience. This study may have the potential to form a preliminary information
for those working in these areas.
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On Relations between Subgroups of a

Group and Submodules of a Module over

Group Rings

Ortaç Öneş1 , Mustafa Alkan2 , Mehmet Uc3

Abstract

This study deals with relationships between submodules of a module over a
group ring and subgroups of a group. We find some connections among RG-
submodules of M with regard to normal subgroups and elements of G.
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Introduction

Let R be a commutative ring with unity and G a finite group. Let us recall the
group ring, denoted by RG.

RG is defined as the set of all formal linear combinations of the form

r =
∑
g∈G

rgg

where rg ∈ R and rg = 0 for almost everywhere.
For two elements, r =

∑
g∈G

rgg and s =
∑
g∈G

sgg ∈ RG, we have that r = s if and

only if rg = sg for all g ∈ G.
The sum of two elements in RG is componentwise as

r + s =
∑
g∈G

rgg +
∑
g∈G

sgg =
∑
g∈G

(rg + sg)g

Also, for two elements r =
∑
g∈G

rgg and s =
∑

g∈G sgg in RG, their products are

defined as follows:
rs =

∑
g,h∈G

(rgsh) (gh).

The homomorphism β : RG → R given by β

(∑
g∈G

rgg

)
=
∑
g∈G

rg is called the

augmentation mapping of RG and its kernel, denoted by %R(G), is called the aug-
mentation ideal of RG. One can observe that

%R(G) =

⎧⎨⎩∑
g∈G

rg(g − 1) : g ∈ G, g 	= 1, rg ∈ R

⎫⎬⎭ .

.ss ∑∑
gg∈∈GG

componcompon
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Besides,

%R(G,H) =

{∑
h∈H

rh(h− 1) : rh ∈ RG

}
is the left ideal of RG. One can observe that the ideal %R(G,G) coincides with the
ideal %R(G).

For a left ideal I of RG, &(I) is a subgroup of G as follows:

&(I) = {g ∈ G : g − 1 ∈ I} = G ∩ (1 + I)

For a subgroup H of G, it is clear that &(%R(G,H)) = H.
Let τ be a group homomorphism from G to End(M). For all g ∈ G and m ∈ M ,

the multiplication mg is defined as

mg = τ(g)(m)

M is an RG-module with this multiplication. The group homomorphism τ in the
multiplication is called a representation of G for M over R.

If τ(g) = 1End(M) for all g ∈ G, the structure of RG-module is the same with the
structure of R–module.

In [1], it was studied on modules over group rings and Alkan proved the following
property:

Let M be an RG-module and let H be a normal submodule of a group G. Then

%M (H) =

{∑
h∈H

αh (h− 1) | αh ∈ M

}

is an RG-submodule of M and

%M (H) = M.%R(G,H)

In [12], the connections between normal subgroups of a group G and ideals of a
group ring RG were studied and a new result on a normal subgroup ofG corresponding
to an ideal of RG was obtained. With this study, we generalize the results obtained
in [12] to module and obtain more results between RG-submodules of a module M
over a group ring RG and subgroups of a group G.

This study deals with the connections between normal subgroups of G and RG-
submodules of M . We find some relationships among RG-submodules of M with
regard to normal subgroups and elements of G. We focus on normal subgroups of G
and prove that

%R(G,&(N)) =

n∑
i=1

(%R(G,< xi >))

if
&(N) =< x1, x2, ..., xn >

where xi ∈ G and N is an RG-submodule of M .

Main results

Lemma 1. Let H1 and H2 be normal subgroups of a group G. Then %M (G,<
H1 ∪H2 >) = %M (G,H1) +%M (G,H2), where < H1 ∪H2 > is the set generated by
H1 and H2.

.esult onesult on
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Lemma 2. Let H1 and H2 be normal subgroups of a group G. Then %M (G,H1 ∩
H2) ⊆ %M (G,H1) ∩ %M (G,H2).

By the standard argument, one can easily prove Lemma 1 and Lemma 2.

Theorem 3. Let %N (H) =

{ ∑
h∈H

nh(h− 1) : ah ∈ N

}
⊆ %M (G) be an RG-submodule

of M , where N is a RG-submodule of M . Then we have %Σk
i=1Ni

(H) =
k∑

i=1

%Ni
(H).

Lemma 4. Let N be an RG-submodule of an RG-module M . Then
n⋃

i=1

&(Ni) ⊆

&
(

n∑
i=1

Ni

)
, where n is a positive integer.

Proof. Using distributive law, we have the following:

n⋃
i=1

&(Ni) =

n⋃
i=1

(G ∩ (1 +Ni)) = (G ∩ (1 +N1)) ∪ ... ∪ (G ∩ (1 +Nn))

= (G ∩ ((1 +N1) ∪ ... ∪ (1 +Nn))

⊆ (G ∩ (1 +N1 + ...+Nn)) = &
(

n∑
i=1

Ni

)

�

Theorem 5. Let xi ∈ G and N be an RG-submodule of an RG-module M . If
&(N) =< x1, x2, ..., xk >, then we have

%M (G,&(N)) =

k∑
i=1

(%M (G,< xi >))
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On One-sided Prime Submodules

Ortaç Öneş1

Abstract

The purpose of this study is to introduce some properties of one-sided prime
submodule of modules. We examine the relationships among left O-prime ideal,
one-sided prime submodule and the set ρm(P ), where P is a submodule of a left
R-module M and m ∈M .

2010 Mathematics Subject Classifications : 16N40, 16N60, 16N80
Keywords: Strongly Nilpotent Element, Prime Submodule, One-Sided Prime

submodule

Introduction

The concept of prime ideal forms an important part to characterize ring and has
been studied for long time by many authors ([1],[6],[10]). In a commutative ring
with unity, the set of nilpotent elements forms an ideal equaling to the intersection
of all prime ideals. This notion has been generalized in [6] to modules. Let N be a
proper submodule of an R-module M . The radical of N in M is defined to be the
intersection of all prime submodules ofM containingN and it is denoted by radM (N).
The envelope submodule REM (N) of N in M is a submodule of M generated by the
set

EM (N) = {rm : r ∈ R and m ∈ M such that rnm ∈ N for some n ∈ N}.

If radM (N) is equal to REM (N), then it is said that N satisfies the radical formula in
M . Althought some useful characterizations for modules by using this concept were
proved, unfortunately, there are not enough useful results about the radical formula
and radical submodule in noncommutative case.

Let N be a submodule of an R-module M .
i) A set η(a) = {a, a1, ....} is said to be an sequence of an element a of R if for all

i ∈ N, ai+1 ∈ aiRai and a0 = a.
ii) Let a ∈ R, m ∈ M . Then an element am of M is said to be a strongly

nilpotent on N if for all subsets K = {ai ∈ R : a0 = a and ai+1 ∈ aiRai, i ∈ N} of
R, 0 ∈ N ∩ Km. We use the notation WM (N) to denote the submodule generated
by the strongly nilpotent elements on N . Now it is clear that WM (N) = REM (N)
when R is a commutative ring.

In [12], to examine the radical formula in noncommutative case, a generalization
of prime ideal was defined.

Let P be a left ideal of R. Following [12], P is said to be a one-sided prime ideal
(left O-prime ideal) if for any left ideals I, J such that PJ ⊆ P and IJ ⊆ P , either
I ⊆ P or J ⊆ P holds. It is clear that every maximal left ideal is one-sided prime
ideal. In this sense, the class of one-sided prime ideals is different from other known
classes. As a main result of [12], it can be stated that any left O-radical ideal in
a noncommutative ring R satisfying the ascending chain condition on left O-radical

.t is saidt is said
ations foations fo
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ideals is the intersection of a finite number of left O-prime ideals. In particular any
left ideal in R is the intersection of a finite number of left O-prime ideals.

In this study, we generalize the definition of leftO-prime ideal in a noncommutative
ring to the module and it is called one-sided prime submodule. Every left prime
submodule of a left R-module M is one-sided prime but the converse of it is not true.
It is clear that the set of one-sided prime submodule is different from the set of prime
submodule.

Besides, the set {r ∈ R : rm ∈ P}, where P is a submodule of a left R-module M
and m ∈ M is denoted by ρm(P ). To give a direct connection between left O-prime
ideal and one-sided prime submodule, we focus on the set ρm(P ) for m ∈ M . Clearly,
it is a left ideal of R and ρm(P ) = R if and only if m ∈ P .

Let N be a submodule of an R-module M . In analogy to the definition of radical
submodule in a module of a submodule, we define the O-radical of N , which is the
intersection one-sided prime submodules of M containing N , denoted by O-radM (N).
In particular, N is said to be an O-radical submodule of M if O-radM (N) = N =
WM (N).

In this study, we give some properties of one-sided prime submodule of modules,
which is the module version of left O-prime ideal of a noncommutative ring. We also
define the set ρm(P ), where P is a submodule of a left R-module M and m ∈ M and
examine the relationships among left O-prime ideal, one-sided prime submodule and
this set.

Main results

Throughout the paper, all rings will be associative rings with identity and all
modules will be unital left modules.

We give some properties of one-sided prime submodules in a left R-module M as
follows:

Lemma 1. Let P a prime ideal of a prime ring R and let M = R ⊕ R be an R-
module. Then N = 0⊕P is a one-sided prime submodule of M but N is not a prime
submodule of M .

Lemma 1 also states that the concept of one-sided prime submodule is different
from the concept of prime submodule.

The following lemma gives some properties of the set ρm(P ), where P is a sub-
module of a left R-module M and m ∈ M .

Lemma 2. Let M and M∗ be R-modules, ϕ : M → M∗ an R-epimorphism and P is
a submodule of M . Then we have the following statements:

i) ρm(P ) ⊆ ρf(m)(f(P )) for some m ∈ M .
ii) ρf(m)(f(P )) ⊆ ρm(P ) when Kerf ⊆ P .

Proposition 3. Let M and M∗ be R-modules, ϕ : M → M∗ an R-epimorphism and
Kerϕ ⊆ P . Then P is a one-sided prime submodule of M if and only if ϕ(P ) is a
one-sided prime submodule of M∗.

With Proposition 3, the following corollary can be stated.

Corollary 4. Let M be an R-module. Then P is a one-sided prime submodule of
M if and only if P/N is a one-sided prime submodule of an R-module M/N for all
N ⊆ P ⊆ M .

The following theorem gives us a connection between O-radical submodules and
submodules of M .

ept of oept of o
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Theorem 5. Let M be a finitely generated R-module and let N , L be submodules of
M . Then O-radM (N) +O-radM (L) = M if and only if N + L = M .

Proof. Suppose that O-radM (N) + O-radM (L) = M and N + L 	= M . Thus, there
exists a maximal submodule T of M such that N + L ⊆ T . Since T is a one-sided
prime submodule of M , we have O-radM (N) ⊆ T and O-radM (L) ⊆ T . Then

O-radM (N) +O-radM (L) ⊆ T.

This is a contradiction. Then N + L = M .
Since N ⊆ O-radM (N), L ⊆ O-radM (L) and N + L = M , it follows that

O-radM (N) +O-radM (L) = M.

�
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