TOPICS IN POLYNOMIALS:

EXTREMAL PROBLEMS, INEQUALITIES, ZEROS

Published by

World Scientific Publishing Co. Pte. Ltd.
P O Box 128, Farrer Road, Singapore 912805
USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

First published 1994 Reprinted 1999

TOPICS IN POLYNOMIALS: EXTREMAL PROBLEMS, INEQUALITIES, ZEROS

Copyright © 1994 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 981-02-0499-X

Printed in Singapore.

TOPICS IN POLYNOMIALS:

EXTREMAL PROBLEMS, INEQUALITIES, ZEROS

G. V. Milovanović

Department of Mathematics University of Niš, Yugoslavia

D. S. Mitrinović

Department of Mathematics University of Belgrade, Yugoslavia

Th. M. Rassias

Department of Mathematics University of La Verne, Greece

This page is intentionally left blank

Contents

Preface

1

CHAPTER 1

General Concept of Algebraic Polynomials

1.1.	POLYNOMIALS AND EQUATIONS	1	
1.1.1.	Preliminaries	1	
1.1.2.	Polynomial equations	5	
1.1.3.	The quadratic equation	9	
1.1.4.	The cubic equation	9	
1.1.5.	The quartic equation	11	
1.1.5.	The quintic equation	15	
1.2.	SOME CLASSES OF POLYNOMIALS	16	
1.2.1.	Self-inversive polynomials	16	
1.2.2.	Algebraic and trigonometric polynomials	19	
1.2.3.	Fejér-Riesz's representation of non-negative trigonometric		
	polynomials	22	
1.2.4.	Non-negative algebraic polynomials	25	
1.2.5.	Lorentz representation of polynomials	28	
1.2.6.	Basic properties of orthogonal polynomials	31	
1.2.7.	The classical orthogonal polynomials	37	
1.2.8.	Some Appell polynomial systems	47	
1.3.	POLYNOMIALS IN SEVERAL VARIABLES	52	
1.3.1.	Symmetric polynomials	52	
1.3.2.	Properties of symmetric polynomials in two and three		
	variables	58	
1.3.3.	Resultants and discriminants of polynomials	59	
1.3.4.	Discriminants of the classical orthogonal polynomials and		
	related problems	65	
1.3.5.	Homogeneous polynomials	70	
1.3.6.	Some inequalities for symmetric functions	72	
1.3.7.	Properties of zeros	74	
1.4.	REFERENCES	75	

2.1.	INEQUALITIES INVOLVING ALGEBRAIC		
	POLYNOMIALS	85	
2.1.1.	Inequalities for polynomials of low degree	85	
2.1.2.	Some important trinomials	94	
2.1.3.	Inequalities for polynomials with real zeros	98	
2.1.4.	Inequalities involving zeros of polynomials	113	
2.1.5.	Inequalities for non-negative polynomials	120	
2.1.6.	Inequalities for the coefficients of polynomials	123	
2.1.7.	Integral inequalities	132	
2.2.	INEQUALITIES WITH TRIGONOMETRIC		
	POLYNOMIALS	135	
2.2.1.	Inequalities for trigonometric sums	135	
2.2.2.	Inequalities in L^r norm	146	
2.2.3.	Inequalities for Dirichlet's kernel		
2.2.4.	Extremal problems for non-negative polynomials	154	
2.2.5.	Inequalities for moments and coefficients of non-negative		
	cosine polynomials	158	
2.3.	REFERENCES	162	

CHAPTER 3

173

Zeros of Polynomials

3.1.	1. DISTRIBUTION OF ZEROS OF ALGEBRAIC	
	POLYNOMIALS	173
3.1.1.	Some basic results	173
3.1.2.	Gauss-Lucas theorem and related inequalities	179
3.1.3.	Zeros of polar derivative	184
3.1.4.	Grace theorem and some applications	187
3.1.5.	Zeros of the Wronskian of a polynomial	205
3.1.6.	Distribution of zeros of real polynomials	207
3.2.	THE SENDOV-ILIEFF CONJECTURE AND	
	RELATED TOPICS	216
3.2.1.	Introduction	216
3.2.2.	The Sendov-Ilieff conjecture for polynomials of degree at	
	most five	218

3.2.3.	The Sendov-Ilieff conjecture for polynomials of any degree	230
3.3.	BOUNDS FOR THE ZEROS AND THEIR	
	NUMBER IN A GIVEN DOMAIN	243
3.3.1.	Bounds for the moduli of the zeros	243
3.3.2.	Zeros in a strip	262
3.3.3.	Eneström-Kakeya theorem and its generalizations	272
3.3.4.	Number of zeros in a given domain	277
3.4.	REFERENCES	282

CHAPTER 4

299

Inequalities Connected With Trigonometric Sums

4.1.	CLASSICAL RESULTS	299
4.1.1.	Preliminaries	299
4.1.2.	Fejér-Gronwall-Jackson's, Young's and related inequalities	301
4.1.3.	Inequalities of Rogosinski and Szegő and their extensions	323
4.2.	POSITIVITY AND MONOTONICITY OF	
	CERTAIN SUMS	332
4.2.1.	Turán's inequalities	332
4.2.2.	Positivity of some classes of trigonometric sums	338
4.2.3.	Positivity of some orthogonal polynomial sums	350
4.2.4.	Completely monotonic functions	355
4.2.5.	Absolutely monotonic functions	358
4.2.6.	Monotonicity of some trigonometric sums	365
4.2.7.	Positivity of some Jacobi polynomial sums	367
4.3.	REFERENCES	374

CHAPTER 5

383

Extremal Problems for Polynomials

5.1.	POLYNOMIALS WITH MINIMAL NORM AND		
	ESTIMATES FOR COEFFICIENTS	383	
5.1.1.	Preliminaries	383	
5.1.2.	Polynomials with minimal uniform norm	384	
5.1.3.	Polynomials with minimal L^r norm	408	
5.1.4.	Further generalizations on polynomials with minimal norm	422	

5.1.5.	Estimates for coefficients of polynomials in L^2 norm with	
	prescribed zeros	432
5.1.6.	Remez inequality	439
5.1.7.	On the maximum modulus of polynomials	442
5.1.8.	Extremal problems in mixed norms	452
5.1.9.	Extremal problems for polynomials with prescribed zeros	455
5.1.10.	Szegő's and related extremal problems	467
5.2.	INCOMPLETE POLYNOMIALS AND	
	WEIGHTED POLYNOMIAL INEQUALITIES	471
5.2.1.	Incomplete polynomials and extremal problems	471
5.2.2.	Extremal problems with exponential weights	483
5.2.3.	L^r inequalities for Freud weights	490
5.3.	INEQUALITIES OF NIKOL'SKIÏ TYPE	495
5.3.1.	Inequalities of Nikol'skiĭ type	495
5.3.2.	Further generalizations and extensions	499
5.3.3.	Sharp Nikol'skiĭ inequalities with exponential weights	505
5.4.	REFERENCES	507

CHAPTER 6

Extremal Problems of Markov-Bernstein Type

6.1.	INEQUALITIES OF MARKOV AND BERNSTEIN	
	ТҮРЕ	527
6.1.1.	Preliminaries	527
6.1.2.	Classical results of Markov and Bernstein	528
6.1.3.	Markov-Duffin-Schaeffer inequalities	541
6.1.4.	Inequalities of Markov type for curved majorants	546
6.1.5.	Markov and Sobolev type inequalities on compact sets	
		560
6.1.6.	Extremal problems in L^2 norm	569
6.1.7.	Generalizations in L ^r norm	583
6.1.8.	Extremal problems in different norms	591
6.1.9.	Inequalities of Markov-Bernstein type for Freud weights	607
6.1.10.	Markov-Bernstein type inequalities for differential operators	612
6.2.	EXTREMAL PROBLEMS FOR RESTRICTED	
	POLYNOMIAL CLASSES	624
6.2.1.	Extremal problems in uniform norm	624

6.2.2.	Further generalizations and extensions			
6.2.3.	Extremal problems in L^2 metric for non-negative			
	polynomials	644		
6.2.4.	Extremal problems for Lorentz classes of polynomials	653		
6.2.5.	Generalizations in L ^r norm	660		
6.2.6.	Extremal problems of Turán type 6			
6.3.	EXTREMAL PROBLEMS IN A CIRCLE	674		
6.3.1.	Extremal problems of Bernstein's type in uniform norm	674		
6.3.2.	Further generalizations and extensions			
6.3.3.	Extremal problems in L^r norm	698		
6.4.	REFERENCES	700		

CHAPTER 7

725

Some Applications of Polynomials

7.1.	LEAST SQUARES APPROXIMATION WITH	
	CONSTRAINTS	725
7.1.1.	Introduction	725
7.1.2.	Approximations with simple constraints	728
7.1.3.	Computing the inner products with high accuracy	733
7.1.4.	Approximations with more general constraints	737
7.2.	SIMULTANEOUS APPROXIMATION	741
7.2.1.	Preliminaries	741
7.2.2.	Problems of simultaneous approximation	741
7.2.3.	Vectorial approximation	743
7.3.	THE BERNSTEIN CONJECTURE	
	IN APPROXIMATION THEORY	749
7.3.1.	The Bernstein conjecture	749
7.3.2.	Computing the bounds for the Bernstein constant	753
7.3.3.	Computing the numbers $\{2nE_n(x)\}$ with high accuracy	755
7.4.	APPLICATIONS IN COMPUTER AIDED	
	GEOMETRIC DESIGN	757
7.4.1.	Bernstein polynomials and Bézier curves	757
7.4.2.	Properties of Bernstein basis	759
7.4.3.	Properties of Bézier curves	762
7.4.4.	Some extremal properties of Bernstein polynomials and	
	Bézier curves	769

00000000

7.4.5.	Concluding remarks	771
7.5.	REFERENCES	773
Sym	bol Index	783
Nam	ne Index	787
Subj	ject Index	803

Preface

The theory of best approximation with respect to the supremum norm was established as a bona fide branch of mathematical analysis mainly by the work of P.L. Chebyshev (1821–1894), who in the 1850s studied some of the properties of polynomials with least deviation from a given continuous function. Since that time, the work of the celebrated Petersburg school of Mathematics – also called the Chebyshev school – has had a lasting impact in theoretical and applied mathematics and produced students such as A.A. Markov (1856–1922).

The present book contains some of the most important results on the analysis of polynomials and their derivatives. Besides the fundamental results which are treated with their proofs, the book also provides an account of the most recent developments concerning extremal properties of polynomials and their derivatives, as well as properties of their zeros. An attempt has been made to present the material in an integrated and a self-contained fashion. The book is intended, not only for the specialist mathematician, but also for those researchers in the applied and computational sciences who use polynomials as a tool.

The subject of polynomial inequalities is of course vast. We chose to restrict ourselves here only to a few directions. We present some striking results (to us at least), but also novel aspects as well as old and new results not normally found in book form. On the other hand, subjects such as orthogonal polynomials are not included here as such (for that subject see the excellent books of G. Szegő, G. Freud, T. S. Chihara, and P. K. Suetin).

Some 1200 references have been cited here, including preprints. As a rule, we have studied the original sources and in some cases have retrieved some forgotten but useful results. The references appear at the end of each chapter. At the end of the book we include a symbol index, as well as a name and subject index.

The first chapter reviews some of the classical results on polyno-

PREFACE

mials of one and several variables. The second chapter provides an account of some selected inequalities involving algebraic polynomials as well as inequalities with trigonometric polynomials.

The third chapter studies zeros of polynomials, with emphasis on the distribution of zeros of the algebraic polynomials, the Sendov-Ilieff conjecture, as well as bounds for the zeros and their number in certain domains. We also consider the Eneström-Kakeya theorem and its various generalizations.

Chapter 4 treats inequalities connected with trigonometric sums. Besides of the classical results of L. Fejér, T. H. Gronwall, D. Jackson, W. H. Young, W. W. Rogosinski and G. Szegő, we give a special emphasis to the analysis of positivity and monotonicity of certain trigonometric sums and some related orthogonal polynomial sums. In particular, we point out an inequality of R. Askey and G. Gasper which was the final step in L. de Branges's remarkable proof (1984) of the Bieberbach conjecture (1916).

The fifth and sixth chapters are devoted to extremal problems for polynomials.

In Chapter 5 we investigate the extremal problems for polynomials and their coefficients, (which, as is known, are suggestive of results in a much more general context!) starting by the classical results of P. L. Chebyshev, A. A. Markov, E. J. Remez, S. N. Bernstein, A. N. Korkin and E. I. Zolotarev, which are basic to approximation theory. In particular, we study polynomials with minimal L^r norm, many generalizations of such polynomials, estimates for coefficients of polynomials in L^2 norm with prescribed zeros, extremal problems in mixed norms, as well as G. Szegő's and related extremal problems. Section 5.2 treats incomplete polynomials introduced in 1976 by G. G. Lorentz and weighted polynomial inequalities, including extremal problems with exponential weights and L^r inequalities for Freud weights. Section 5.3 is devoted to extremal problems and inequalities of Nikol'skiĭ type.

Inequalities of Markov and Bernstein-type are fundamental for the proof of many inverse theorems in polynomial approximation theory. Frequently further progress in inverse theorems has depended on first obtaining a corresponding generalization or analog of Markov's and Bernstein's inequalities. There are many results on Markov's

PREFACE

and Bernstein's theorems and their generalizations. In Chapter 6 we consider such problems involving additional other classical results of Markov and Bernstein. In Section 6.2 we study the corresponding extremal problems on restricted classes of polynomials, and finally, in Section 6.3, we conclude with the extremal problems in a circle on the complex plane.

The final chapter provides some selected applications of polynomials. There are applications to least squares approximation with constraints, to vectorial and simultaneous approximations and to computer aided geometric design (CAGD) so much in vogue today. We also study the Bernstein conjecture of 1913, which was settled negatively in 1985 by R. S. Varga and A. J. Carpenter.

Finally, we wish to thank Professors R. Askey, B. Bojanov, R. Ž. Djordjević, G. Gasper, A. Guessab, Lj. M. Kocić, I. Ž. Milovanović, P. Nevai, M. Tomić, R. S. Varga, who read parts of the manuscript of the book and provided some very useful comments. Thanks also go to Professor A. W. Goodman who kindly donated to us his collection of papers on the theory of polynomials and to Professor Lj. M. Kocić who wrote Section 7.4 dealing with computer aided geometric design. We also wish to thank Professor D. Carmocolias for his assistance in proofreading the manuscript in English.

Last but not least our very special thanks are due to our families for their ever-lasting support and encouragement.

It is a pleasure to acknowledge the superb assistance that the staff of World Scientific Publishing Co. has provided.

Niš/Belgrade/Athens March 1994 Gradimir V. Milovanović Dragoslav S. Mitrinović Themistocles M. Rassias