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POLYNOMIALS ORTHOGONAL ON THE SEMICIRCLE (*)

1. Introduction.

Given an inner product (.,.) on the space of polynomials, one calls {m, }
a system of (monic) orthogonal polynomials if

(1.1) m, (£) =tk 4 terms of lower degree, k=0,1,2, ..,
=0 if k#1[,

(1.2) (m,, ) kI1=0,1,2, .. .
0 if k=1,

The most common type of orthogonality is with respect to a positive
measure dA on therealline R, ie.,

(1.3) (p,q)=f pWg@)dN@) , d\@)=0 ,
IR

where the measure d\ may have bounded or unbounded support. Classical
examples are the polynomials of Legendre, Jacobi, Laguerre and Hermite.
Polynomials orthogonal on the unit circle, with

(1.4) (p,q)=f p () qE®)do(8), do(®)=0,

0

(*) The work of the first author was supported in part by the National Science Foundation
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have been introduced and studied by Szegod [6]. Orthogonal polynomials on
curves and domains are also used occasionally. Here we briefly discuss a new
type of orthogonality — orthogonality on the semicircle — with the inner
product given by

(1.5) (p,q)if p(e®) g ®)do(9) , do (>0 .

0

Note that the second factor is not conjugated, so that the inner product (1.5)
is not Hermitian. We consider only the simplest measure, do(9)=d9d
(constant weight function). In this case, the orthogonal polynomials not only
exist uniquely, but also exhibit a number of interesting properties: we present
some of these here without proof. Full details will be given elsewhere.

We remark that integration over the full circle in (1.5) would be inappro-
priate, since the inner product would be equal to 2mp (0) g (0), and ortho-
gonality in the sense of (1.2) could not be achieved. One could, however, con-
sider integration over an arbitrary circular arc.

2. Existence and uniqueness.

The inner product in (1.5) defines the moment functional

m, k=0,
2i/k , k odd
0, k#0 even

(21) L Zk:‘IJ, il :(1,Zk)= eik‘3 do =
k k
0

The polynomials of interest are orthogonal with respect to this functional.
They are known to exist uniquely if the moment sequence {u,} is quasi-de-
finite, ie., if A #0 for all n=>1, where

Mo M1 o HMpt
My M2 M,

(2.2) A =det | e L n=1,23, ..
“n——l Mn u2n—2

(see, e.g., [1, Ch. 1, Thms. 3.1 and 3.2)).
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Theorem 2.1. The moment sequence {w,} m (2.1) is quasi-definite;
indeed, A >0 forall n>1 .

The proof is by explicit computation of the determinants in (2.2). Theo-
rem 2.1 implies (7, ,w,)=4, /A, >0 ,all k=>1.

3. Three-term recurrence relation.

The fact that a three-term recurrence relation exists follows from the
property (zp.gq)=(p,zq) of the inner product (1.5) (see [3, Thm. 2]).
When do (8)=d9 , as we have assumed, the recursion coefficients are purely
imaginary and positive, respectively. We have, indeed,

Theorem 3.1. The (monic) polynomials {m, } orthogonal with respect
to the inner product (1.5), with do (9)=dY , satisfy

L (2)=(z —ia) w, (z) =B, T, (2) , k=0,1,2,

(3.1)
Tr_l(z)ZO , e (2)=1
where
(3.2) a0=z90,ozk=z‘}k~19k*1,Bk‘—‘&,f_l,k?l ,

and O, 1is given by

2
(3.3) 0y 2k +1[[‘((k +1)/2)}’

The proof follows from well-known expressions for i, and f, in
terms of the determinants (2.2) and similar determinants without the penulti-
mate column.

Comparison of coefficients in (3.1) yields

Corollary 3.1. m, (2)=2% —i8, 1+ . k>1.

k—1
2
- )

VT (2k)!

Corollary 3.2. lim,ll =D ”[ﬂ'k (e?) 1 d

"o
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This follows from llnkllz =B By ... B, , where B = , together with
(3.2) and (3.3). Stirling’s formula in (3.3), and the relations in (3.2), moreover
yield

1
Corollary 3.3. «, >0, §, ™ Z as k> oo

The recursion coefficients thus exhibit the asymptotic behavior familiar
from Szegd's class of orthogonal polynomials on the interval [—1,1] (see
[7, Eqs. (12.7.4) and (12.7.6)]) .

4. Connection with Legendre polynomials and differential equation.

Our polynomials {m, } are quasr-orthogonal in the sense of M. Riesz,
involving a complex coefficient. This is the content of the next theorem.

Theorem 4.1. Let {Isk } denote the monic Legendre polynomials. Then

(4.1) r (=P (2)=i9, P _ (), n>1

3

where 8, 1s given by (3.3).

Theorem 4.1 is easily established by expanding = in (monic) Legen-
dre polynomials and evaluating the expansion coefficients by Cauchy’s
theorem. N

From Legendre’s differential equation satisfied by P,

perty

_y » and the pro-

d A
(4.2) (z2 = 1) oy [w(2) P, @]1=2n-1w (2) T (2),

where w (2) =(z — 1)/~ }isy_y (z + 1)WD+(=D¥n-1 it is possible

to derive the linear second order differential equation

(A=2)[n*-2r—-1)? 92 —2nQ2n—-1)zi8_ In"
n—1 n—1 n

(4.3) —2[(n*=(2n—1)*92 Dz—n(Q2n—1) (2 +1)id__ lx

+n(n +1)n*—(n—1)(2n—1)? 19;1—2(271—1)nzziﬁn_lln’f 0.
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The equation (4.3) has four regular singular points at 1,— 1,2z, , %, where
zo islocated on the negative imaginary axisand depends on # .

5. Zerosof w (2).

By an elementary argument it can be shown that the zeros of w_ are
located symmetrically with respect to the imaginary axis. A more technical
argument, involving Rouché’s theorem applied to (4.1), and a result of A. Gi-

roux [4], establishes

Theorem 5.1. All zeros of w_  are contained in the upper unit balf disc
D.={z€C€: 1zI<1 and Imz>0}.

The proof actually shows more: The zeros are contained in the intersec-
tion of D, and the strip IRez I< £, , where £ is the largest zero of
the Legendre polynomial P_ . Numerical evidence further suggests that the
imaginary part of every zero of m, is <2/m if »>1, and <.315076._.,
the unique positive root of 3~ (8/5m) t2 +(3/5) t—(8/15m)=0 ,if n=>2

Since the zeros are regular points of the differential equation (4.3), they
are necessarily simple.

From the well-known fact that the zeros § of m_ are eigenvalues
of the (tridiagonal symmetric, but complex) Jacobi matrix associated with
the recurrence (3.1), it follows by a similarity transformation that n, =
=—if are the eigenvalues of the real skew-symmetric tridiagonal matrix

a, Y, 0
Vo o Oy
_191 (¢ %)
(5.1) . . . ,
‘ 19:1-—2
. B —0""‘2 an:l _
where «, and ¥, are given in (3.2), (3.3). The n, »and therefore the

zeros § , can thus be computed by standard eigenvalue routines (for exam-
ple, the EISPACK routine HQR; see [5, p. 240]).
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6. Applications.

One possible use of our polynomials (which in fact provided the motiva-
tion for studying them) is in connection with evaluating Cauchy principal
value integrals. If f is analytic in the closed upper unit half disc D, then

Cauchy’s theorem applied to / f(z)dz/z, where I' is the boundary of
“r v
D, with the origin deleted by a small upper semicircle, yields

1
(6.1) f [0 dr=1

the integral on the left being a Cauchy principal value integral. If, in addition,
f isreal on the real line, then

bl

nf(O)—f f () dd
0

1 m
(6.2) ][ f—i—t—) dt‘—‘lmf f®)dd , f(UR) IR .
-1 0

The integral on the right can now be evaluated by a (complex) Gauss-Christoffel
quadrature formula

(6.3) f f(e?)dd= %1 o () +Rn H
0 v=

where R_()=0 if f isa polynomial of degree 2n—1. This requires the
nodes § to be the zeros of m . The weights o, can be found by solving
the system of linear algebraic equations

]T

(6.4) V. o=me, , 0=[0y,04..,0,

where V, is the matrix of eigenvectors of the real matrix (5.1) (whose eigen-
values are n =—i{ ), normalized to have the first component equal to 1,
and e, is the first coordinate vector. A simple linear algebra argument shows
that to a real eigenvalue n, there corresponds a real weight o, and to a
pair of conjugate complex eigenvalues a pair of conjugate complex weights.
The EISPACK routine HQR2 [5, p. 248]can be used to compute the matrix
V . and the LINPACKroutines CGECO, CGESL [2, Ch.1] to solve the system

(6.4). - _ -1
More general Cauchy principal value integrals -f f@de/(t —x)
-1
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—1<x <1, canbe computed by first mapping x to the origin by a linear
fractional transformation and then applying (6.1).

(1

(2]
[31

[4]

(5]

(6]

(7]
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