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515. A GENERALIZATION OF E. LANDAU’S THEOREM*

Radosav Z. Pordevic and Gradimir V. Milovanovié¢

1. E. Lanpau ([1]) has proved the following theorem.

Theorem A. Let x> f(x) be a real function which on an interval I, of length not
less than 2 satisfies the conditions |f(x)|<1 and |f"'(x)|<1. Then

f ()] =2
for all x=1I, where 2 is the best possible constant.

There are several generalizations of this result in many senses. We shall
state some of these generalizations related to this paper.

1° J. D. KeCKiC (see [2, pp. 381—382]) has given the following result.

Theorem B. Let x+—f(x) be a real function which on an interval I, of length not
less than a(a>0) satisfies the conditions |f(x)|<1 and |f"(x)|<1. Then

]f’(x)]§%+% (¥ xET).

Theorem B represents a generalization of Theorem A and reduces to in
for a=2.
2° V. G. AvakuMovI¢ and S. ALIANCIC have proved the theorem in [3].

Theorem C. The condition |¢" (x)|=1 (0=x<1) implies
|<p'(x)—<p(1)+<p(0)|g%—xﬂz O=x<1).

The polynomial xl—>%—x—|—x2 is the best possible.

3° 1. B. Lackovi¢ and M. S. STANKOVIC have proved the following
thecrem in [4].

Theorem D. Let the function f: R" >R be defined on the set
K,={(x;, ..., x)|0=x,2a, a>0, i=1, ..., n}

and let |f(x,, ..., x,)|=1 for all (x,, . ., x,)EK,. Furthermore, let us suppose
that all the first derivatives of f are continuous in K,. If all the derivatives of

2
the second order of the function f are continuous, and if ’ 5 9 ({ <1, j=1,....n)
’ | 0X;0X;
for all (x,, ..., x,)EK,, where
I%,,={(x1, s X |0<x<a, i=1, ..., n),
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then

+2

g_
a 2

oof
P

for all (x,, ..., x,)EK,.

The same paper [4] gives D. D. ApamoviC’s remark without proois which
represent a generalization of Theorem D, Stated as a theorem the remark is
as follows.

Theorem E. Let the function f:R" >R be defined on the set

L,={(x, - -s X)|@4=x,2b;, a;<b;, (1=i=<n)},
and let [f(x,, ..., x)| <1 for all (x,, ..., x)EL,. If all the first order
derivatives of f are continuous on L, and differentiable on the set

o

an{(xl’ MR ] xn)}ai<xi<bi’ lglgn]

and if ‘ oS

{ ()Xi Xj

1@ j=1, ..., n) for all (x,, ..., xn)Ein, then

I

<2+ (Zb Zla,.)z

for all (x,, ..., xn)ELn.
For (a;, ..., a)=(0, ..., 0), (b, ..., b))=(a, ..., a) Theorem E is
reduced to Theorem D.

4° 1In [5] A. OsTROWSKI has proved the following result.

Theorem F. Let x> f(x) be a differentiable function on (a, b) and let, on (a, b),
|f"(x)| < N. Then, for every x<(a, b),

a+b
lf(x)—b—i—af:“(x)dx|é §+(;f7)) (b-a)N.

t

Remark. For q)(t):(b—a)—‘N—lff(a,+ (b—a)s)ds Theorem C reduces to Theorem F.
0

2. This paper also gives a generalization of E. LANDAU’s theorem and it
relates to the operators in BANACH space.
Let X and Y be BaANACH spaces. If a, b X (a#b), let us define the
functional g: X—R"* as follows
g(xX)=||x—al|l2+[b—x|? (xEX).

Let DC{x|g(x)=<|/b—al|2, xE€X] be a convex set such that g, bED,
where D is the closure of D.

If F:X—Y is an operator which is twice FRECcHET-differentiable on D, the
following Theorem holds.
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Theorem 1. If

(1) [F@llsM  (YXED)
and
| Foo(h, BY[|=N|[R|? (VREX A VYo D),

then

IFo-al=2M+Ygw=2m+ T b-alz  (vxeD).

Proof. Let x=D and x+thcD(0<t<1). TAYLOR’s formula, namely

Fe+h)=F )+ Fao (0 +W (e By (W (6 1) = Fieem ()

where '
, ' 1, - 1 N

2 [ W (x, )| =?[}F(X+,h)(h, h) |[§;HhHZ’

for h=a—x and h=>5b—x, becomes in turn
F(a)=F(x)—i—F2x)(a—x)+W(x, a—Xx),
F(b)=F(x)+ Fgy(b—x)+ W (x, b—x).
From these equations it follows that ,
F(b)—F(a)=F£x)(b——x)—FEx)(a—x)+W(x, b—x)—W(x, a—x),
or, with regard to the linearity of operator sz),
(3) Foy(b—a)=F(b)—F(a)+ W (x, a—x)—W(x, b—x).
From (3) it immediately follows that
[Fo@=a)|[=[|F@®) [+ ]| F@i+[W(x, a=x) | +[[W(x b-x) |,
hence, using (1) and (2), we obtain
| Foy®6—a) | =2 M+ ([ x—a2+[|b—x|)) =2 M+ g (x).
Since xED, i.e., g(x)=|b—al]?, we have
HFEX)(b—a)H§2M+—]2Xg(x)§2M+§||b—a]|2,
which proves the theorem.

Remark. Theorem 1 holds if condition (1) is substituted by the weaker condition
| F())—F(a)||=2 M.
Corollary 1. If X=Y=R, ||x—y|=|x—y|(x,yER), F=f, D={x|xE(a, B),
0<asB—a}, M=1, N=1, then Theorem B follows from Theorem 1.
Corollary 2. Let a<<b, h>0 and let x> f(x) be a differentiable function on
[a, b+h] such that |f(x)|<1(VxEla, b+h]) and |A, f (x)|=1(¥YxE(a, b)),
where A, g (x)= é’w})l_g(x—) . Then
2 b—a
A £ — v , b]).
A S48 (YxEla, b))

T*
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x+h
To prove this, take X=Y=R, |[[x—y|=|x-y], F(x)=%f f()de

(a=x<b), in Theorem 1. Note that D={x|a<x<b}.

Corollary 3. Let

X=X, ..., X,), a=(a, ..., a,), b=(b, ..., b)) (g;<b; i=1, ..., n)
(S el (Zion <

2
|b;~a |> ]
be a convex set such that a, b&D.
If f:R*—R is twice differentiable function on D and satisfy the conditions

1fGoys ooy X)) =M (Y(x,, ..., X,)ED)

and let

It

DC{(xl, cees X)

and |
“4) O N W~V ..., x)ED; i, j=1, ..., n),
t)x,-dxj
then
S (b—a) N(f < B 2 n ~ 2
igl(bi a;) 0x; =2M+ 5 [(i§|xi ail) +(,~=zl|bi xil)}
n n 2
£2M+4( Zbi—za:)
i=1 i=1

for every (x,, ..., x,,)EE.
To prove this, in Theorem 1, take X=R", Y=R, F(x)=f(x,, ..., x,) and

[x—%] = S |x=%| (= x€X), [|y=pll=y—>] (»YEY).
i=1

Note that in this event from (4) follows

4 ()zf
Flo(h, B)|| = by
[ Foo (B, hy || I,-,z,-ax,.ox,. |

o f
=31 52L |- )| )

<N(Z| ) =N| k|
for every x&D and every A& X.

RemARk. For M=1, N=1, D=i,,={x laj<x;<b; (i=1, ..., n)} Corollary 3 reduces to The-
orem E.
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Theorem 2. If

(5) | Feo (b, B)|<N||R|2  (VAEXAVaED),
then
©) | Fir =0~ F®)+ F@| < T {l|x~ a2 +]|b-x|)

for every x<D.

Proof. Let x&D and x+thcD(0<t<1). As in the proof of Theorem 1,
the inequality (3) holds, i.e.,

Fuy(b—a)—F(b)+ F(@)=W (x, a—x)—W(x, b—x),
from which follows
@ |Fin(0—a)=F®)+ F@ || <[| W (x, a~x) ||+ || W (x, b—x) .
From (7), (2) and using the made assumption (5), immediately follows (6).
Corollary 4. Let
x=(X;, ..., %), a=(a, ..., a), b=(b, ..., b)(a<b; i=1, ..., n),
and let

DC{(xl, ceey Xy) (iélxi—ai|>2+(i§]b,.—xi])2<(i§1 [b,—a,-l)z]

be a convex set such that a, b D. _
If f:R*—>R is twice differentiable function on D and

of

S0, <N (Vxyy oo, x)ED; i j=1, ..., n),
then for all (x,, ..., x,,)ET)

i 0
® | Zera e b

i=1 i

Putting in Theorem 2 that X=R", Y=R, F(x)=f(x;, ..., X,) and

“x_szn=§|x,._5é,i| (x, x€X), lly=yl=ly-y| . y€Y)

i=1

it is obtained Corollary 4.

Remark. For N=1 and D=L°,,={x}a,-<x,~<b,~(i= 1, ..., n)} (8) reduces to

z 0
> (b:—ax)sé—f(bn v b+ fays s a)
i=1 i

1 1
S {X— P+ B2} = S (44 B)— (4 B X+ X7,
n n n
where A= > a;, B= > b;, X= 3 x;.
i i=1

i=1 i= i=1

This result represents a generalization of Theorem C.
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Corollary 5. If
X=Y=R, ||x—y|=|x-y|(x, yER), D={x{a<x<b; a, bER},

and F(x)= f f(@)dt, where f is a differentiable function defined on [a, b] and

If'(x)| =N, afor every xC D, then Theorem F follows from Theorem 2.

On reading this paper in manuscript Prof. P. R. BEESACK pointed out
the possibility of the generalization of Theorem 1 as follows:

Theorem 3. Let D be a _convex set such that a, b&D and let F: XY be twice
Fréchet-differentiable on D and satisfy the condition

|Fo( B sH( )  (VREXAVED),
where H is a function from R* to R*. Then for all xED

| Foy (b=a) || 5[ F®) — F(@) ||+ [H (| x—a[)+ H(| b—x])].

Proof. Since

(WG, 1) || =2 | Feoas ) | S H ([ 1),

1
2
from (3) it immediately follows that

1P 0—a)|| || F®B) - F@) [ +[|W(x, a=x) || +] W, b-2)|

1
<[ F®) - F@ |+ [H( x—al)+ H(|[b-x1D),
which proves the Theorem.
Corollary 6. If the convex set D and the function H:R*—=R™ satisfy

H(|x—a|)+H(||b—-x|D<H(|b—al)  (VxED),
then

|For@-a)| [ FO~F@] + H(|b-a])  (VxED)
3. In [6] (p. 606) the following result is given.

Theorem G. Let the function (s, t, uyr> K (s, t; u) be continuous and twice con-
tinuously-differentiable with respect to u, and

) | Ku(s, t; ) |SM|ulp=2+ N (s, t€[0, 1], |u|< + w; M, N>0, pCR).
If p=2, operator F, defined by

1
F(NH=[K(s, ;f(1)dr  (fFELY),
0
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maps the space LT into the space L’ (1 <q< + ) and is twice differentiable, when

1
Fiy(B= [ Ku(s, £; f(e) (1) dt,
0

1
Fiy (b, k)= [ Kua(s, £ f(O) R () K (2) dt
0

for every fCL".
Using this Theorem, we shall point out some corollaries of Theorems 1
and 2.

Let X=L?(p=2), Y=L"(1<g< + ). Let us in space L” notice the
functions 7> a(f)=0 and #i>b(1)>0 (1[0, 1]).

Let DC{f’ﬂf”szﬁ—Hb—f”ZLp<HbH2Lp, fEL?) be a convex set such
that a(z), b(¢)eD.
First, we shall prove the following lemma.

Lemma. If the conditions of Theorem G are fulfilled, holds the inequality

(10) 1F G (s )] (g =@ () || 2[7p»
where functional @:L” —R* and is defined by
¢>(f)=[22”’(MHfH§;2+N) p>2,
M+ N p=2.
Proof. We shall distinguish two cases.
Case 1:p>2. Based on Theorem G, applying HOLDER’s inequality, we have

1
|Fpy (s B =| [ K s, 85 F(0)) (22t
0

1
< [ | Kuls, 15 F@) || A(@D)[2dt
0

-2

) 2
s(fllKZu(s, 6 FO) P dr) * (fl‘h(’)lpdt)p
o 0

. =P DA,
1.e.,
1

1 -
( [ Finh )| “ds)* = [P6 £)%ds)? ||l
0 0

or
1

1 -
(11) | Firy (B, h)Hng(fP(s,f)qu)‘l k12,
0
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-2

1 p p2
where P(s,f)=(f|K:,',,(s, t;f(t))|p—2dt) r
0

According to (9) and the inequality (see, for example [2, pp. 338—339,
mequality 3.9.7))

|z, +z, " =0 (|2, [ +]2]) (21, 2,€C;rz0),
where ¢,=1(0<r=<1) and ¢,=2""'(r>1), we see that P(s, f) satisfies

p—2 p—2

1 e p—< 1 _r_
PG5, ) =( [ 1K, 15 7@0) P2 ae) = ( [ (M1£(0) 724 NP e)
0 0

2 4 p p—2 2 P 1 p p—2

( flzlE (M"Tz 1£(0) |p+N”—:2) dt)7= 27 (Mﬁf 7@y |rdi+N")
0

0

A

p—2 2

2 1 p—2
27 (M (flr@ear)” +N)= 2P (M P+ N)=2()  (p>2).
0

IA

On the basis of this, from (11) it follows that
(12) 1F B | e =@ (D-I[R]12,  (p>2).
Case 2:p=2. Then

1
[Fipy (b )| < [ | Kua(s, 15 £(0) [ (1) |24,
0

from which, using (9) we obtain
| Fy (b, h)|é(M+N)fs h(t)|2dt,

ic. °

(13) |Fy (B || (=M +N) [R]2, =@ (N A2, (p=2).

From (12) and (13) follows (10), which proves the lemma.
Notice that @ (f)<® (b) (VfED).

Corollary 7. If the conditions of Theorem G are fulfilled, then using Theorem 2
and the proved Lemma, the inequality

1 1 1
| [Kuls, &5 f@) b(2)dit— [ K (s, 13 b(0)) dt+ [ K (s, 15 0)drl]
0 0 0

=2 0@ (17112, +15-71%,)
holds for every fCcD.
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Corollary 8. If

1 1

sup | F(f) || o= sup (f’fK(s, t;f(t))dt“lds)”ng
feD feED "o o

and if the conditions of Theorem G are fulfilled, using Theorem 1 and the Lemma,
the inequality
1

N Koo, 15 f@)b (1) de ]|, =2 M+% @52,
[1]

holds for every xcD.
Let now:

1° X=C2?[x, B], Y=R;

2° ||f-gll= max |f(x)—g(x)|+ max |f'(x)—g (x)| (f, gEX);
x & [o, B] x & [« B}

3 Yy =y'll=]y -yl O,y EY);

4° Function (x, u, v)> G(x, u, v) is twice continuously-differentiable for
x&[a, B] and u, vER;

B
5° Functional F:C2[«, B]—>R is defined by F(f)= fG(x, ), f(x))dx;
6° a(x)=0, b(x)>0 (a, b&C?[a, B]); )

77 DC{f||IfIIP+]b-f]2<]|b||% fEC?*[x, B} is a convex set such
that a, b= D.
B
Let us introduce a notation (u, v)= j G, (x, f(x), f' (x)) dx.
If ’
(14) max { sup (f, f), sup (£, /"), sup (f',f)}<N,
feD fED

feD
then from

B
Fipy(h k)= [ {G,f h(x)k (x)+ Grer (R(X)k (%)) + Gprpr B (x) K’ (%) } dx

follows the inequality

|F(sy(h, )| =N ( max [h(x)|+ max |7 (x)])*=N]| |’ (VhEX).
xE o, Bl x €[, B]
Corollary 9. If the inequality (14) holds, from Theorem 2 it follows that
8 8
| [(Gr e £,106 () +Gpr(x, £, )8 (x) dx— [ G(x, b, b') dx

B
+ [ 6 0,00dx|= T (f12+] 5719

for every xD.
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Corollary 10. If
B
sup | fG(x,f(x),f’(x))dx[gM,

feb 4

then using Theorem 1 and the inequality (14) it follows that

B
| [ (G e £ /)b + G (s £ 1) B (x))degzMJrgusz

for every f&D.

*

The authors are grateful to Prof. P, R. Beesack for careful reading of
the paper and useful suggestions which helped better and more complete for-
mulations of the stated material.
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