515. A GENERALIZATION OF E. LANDAU'S THEOREM*

Radosav Ž. Dorđević and Gradimir V. Milovanović

1. E. LANDAU ([1]) has proved the following theorem.

Theorem A. Let $x \mapsto f(x)$ be a real function which on an interval I, of length not less than 2 satisfies the conditions $|f(x)| \le 1$ and $|f''(x)| \le 1$. Then

$$|f'(x)| \leq 2$$

for all $x \in I$, where 2 is the best possible constant.

There are several generalizations of this result in many senses. We shall state some of these generalizations related to this paper.

1° J. D. Kečkić (see [2, pp. 381-382]) has given the following result.

Theorem B. Let $x \mapsto f(x)$ be a real function which on an interval I, of length not less than a(a>0) satisfies the conditions $|f(x)| \le 1$ and $|f''(x)| \le 1$. Then

$$|f'(x)| \le \frac{2}{a} + \frac{a}{2} \qquad (\forall x \in I).$$

Theorem B represents a generalization of Theorem A and reduces to in for a = 2.

2° V. G. AVAKUMOVIĆ and S. ALJANČIĆ have proved the theorem in [3].

Theorem C. The condition $|\varphi''(x)| \le 1 \ (0 \le x \le 1)$ implies

$$|\varphi'(x) - \varphi(1) + \varphi(0)| \le \frac{1}{2} - x + x^2$$
 $(0 \le x \le 1).$

The polynomial $x \mapsto \frac{1}{2} - x + x^2$ is the best possible.

3° I. B. LACKOVIĆ and M. S. STANKOVIĆ have proved the following theorem in [4].

Theorem D. Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be defined on the set

$$K_n = [(x_1, \ldots, x_n) | 0 \le x_i \le a, a > 0, i = 1, \ldots, n]$$

and let $|f(x_1, \ldots, x_n)| \le 1$ for all $(x_1, \ldots, x_n) \in K_n$. Furthermore, let us suppose that all the first derivatives of f are continuous in K_n . If all the derivatives of the second order of the function f are continuous, and if $\left|\frac{\partial^2 f}{\partial x_i \partial x_j}\right| \le 1$ $(i, j = 1, \ldots, n)$

for all $(x_1, \ldots, x_n) \in \mathring{K}_n$, where

$$\mathring{K}_n = \{(x_1, \ldots, x_n) \mid 0 < x_i < a, i = 1, \ldots, n\},$$

^{*} Presented May 24, 1975 by D. S. MITRINOVIĆ.

⁷ Publikacije Elektrotehničkog fakulteta

then

$$\left| \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \right| \le \frac{2}{a} + n^2 \frac{a}{2}$$

for all $(x_1, \ldots, x_n) \in K_n$.

The same paper [4] gives D. D. Adamović's remark without proofs which represent a generalization of Theorem D. Stated as a theorem the remark is as follows.

Theorem E. Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be defined on the set

$$L_n = \{(x_1, \ldots, x_n) \mid a_i \le x_i \le b_i, a_i < b_i \ (1 \le i \le n)\},$$

and let $|f(x_1, \ldots, x_n)| \le 1$ for all $(x_1, \ldots, x_n) \in L_n$. If all the first order derivatives of f are continuous on L_n and differentiable on the set

$$\hat{L}_n = \{(x_1, \ldots, x_n) \mid a_i < x_i < b_i, 1 \le i \le n\}$$

and if $\left| \frac{\partial^2 f}{\partial x_i \partial x_j} \right| \le 1 (i, j = 1, \ldots, n)$ for all $(x_1, \ldots, x_n) \in \mathring{L}_n$, then

$$\left| \sum_{i=1}^{n} (b_i - a_i) \frac{\partial f}{\partial x_i} \right| \le 2 + \frac{1}{2} \left(\sum_{i=1}^{n} b_i - \sum_{i=1}^{n} a_i \right)^2$$

for all $(x_1, \ldots, x_n) \in L_n$.

For $(a_1, \ldots, a_n) = (0, \ldots, 0)$, $(b_1, \ldots, b_n) = (a, \ldots, a)$ Theorem E is reduced to Theorem D.

4° In [5] A. OSTROWSKI has proved the following result.

Theorem F. Let $x \mapsto f(x)$ be a differentiable function on (a, b) and let, on (a, b), $|f'(x)| \le N$. Then, for every $x \in (a, b)$,

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \left(\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{(b-a)^{2}} \right) (b-a) N.$$

REMARK. For $\varphi(t) = (b-a)^{-1} N^{-1} \int_0^t f(a+(b-a)s) ds$ Theorem C reduces to Theorem F.

2. This paper also gives a generalization of E. Landau's theorem and it relates to the operators in Banach space.

Let X and Y be BANACH spaces. If $a, b \in X \ (a \neq b)$, let us define the functional $g: X \to \mathbb{R}^+$ as follows

$$g(x) = ||x-a||^2 + ||b-x||^2$$
 $(x \in X)$.

Let $D \subset \{x \mid g(x) \leq ||b-a||^2, x \in X\}$ be a convex set such that $a, b \in \overline{D}$, where \overline{D} is the closure of D.

If $F: X \to Y$ is an operator which is twice Fréchet-differentiable on \overline{D} , the following Theorem holds.

Theorem 1. If

$$||F(x)|| \leq M \qquad (\forall x \in \overline{D})$$

and

$$||F_{(\alpha)}^{"}(h, h)|| \leq N||h||^2 \qquad (\forall h \in X \land \forall \alpha \in D),$$

then

$$\|F'_{(x)}(b-a)\| \le 2M + \frac{N}{2}g(x) \le 2M + \frac{N}{2}\|b-a\|^2 \qquad (\forall x \in \overline{D}).$$

Proof. Let $x \in \overline{D}$ and $x + th \in D(0 < t < 1)$. Taylor's formula, namely

$$F(x+h) = F(x) + F'_{(x)}(h) + W(x, h) \quad \left(W(x, h) = \frac{1}{2}F''_{(x+th)}(h, h)\right),$$

where

(2)
$$||W(x, h)|| = \frac{1}{2} ||F''_{(x+th)}(h, h)|| \le \frac{N}{2} ||h||^2,$$

for h = a - x and h = b - x, becomes in turn

$$F(a) = F(x) + F'_{(x)}(a-x) + W(x, a-x),$$

$$F(b) = F(x) + F'_{(x)}(b-x) + W(x, b-x).$$

From these equations it follows that

$$F(b)-F(a)=F'_{(x)}(b-x)-F'_{(x)}(a-x)+W(x,b-x)-W(x,a-x),$$

or, with regard to the linearity of operator $F'_{(x)}$,

(3)
$$F'_{(x)}(b-a) = F(b) - F(a) + W(x, a-x) - W(x, b-x).$$

From (3) it immediately follows that

$$||F'_{(x)}(b-a)|| \le ||F(b)|| + ||F(a)|| + ||W(x, a-x)|| + ||W(x, b-x)||,$$

hence, using (1) and (2), we obtain

$$||F'_{(x)}(b-a)|| \le 2M + \frac{N}{2}\{||x-a||^2 + ||b-x||^2\} = 2M + \frac{N}{2}g(x).$$

Since $x \in \overline{D}$, i. e., $g(x) \le ||b-a||^2$, we have

$$||F'_{(x)}(b-a)|| \le 2M + \frac{N}{2}g(x) \le 2M + \frac{N}{2}||b-a||^2,$$

which proves the theorem.

Remark. Theorem 1 holds if condition (1) is substituted by the weaker condition $||F(b)-F(a)|| \le 2M$.

Corollary 1. If $X = Y = \mathbb{R}$, $||x - y|| = |x - y|(x, y \in \mathbb{R})$, F = f, $D = \{x \mid x \in (\alpha, \beta), 0 < \alpha \le \beta - \alpha\}$, M = 1, N = 1, then Theorem B follows from Theorem 1.

Corollary 2. Let a < b, h > 0 and let $x \mapsto f(x)$ be a differentiable function on [a, b+h] such that $|f(x)| \le 1$ $(\forall x \in [a, b+h])$ and $|\Delta_h f'(x)| \le 1$ $(\forall x \in (a, b))$, where $\Delta_h g(x) = \frac{g(x+h) - g(x)}{h}$. Then

$$|\Delta_h f(x)| \leq \frac{2}{b-a} + \frac{b-a}{2} \quad (\forall x \in [a, b]).$$

To prove this, take $X = Y = \mathbf{R}$, ||x - y|| = |x - y|, $F(x) = \frac{1}{h} \int_{x}^{x+h} f(t) dt$ $(a \le x \le b)$, in Theorem 1. Note that $D = \{x \mid a < x < b\}$.

Corollary 3. Let

 $x = (x_1, \ldots, x_n), \quad a = (a_1, \ldots, a_n), \quad b = (b_1, \ldots, b_n) \quad (a_i < b_i; i = 1, \ldots, n)$ and let

$$D \subset \left\{ (x_1, \ldots, x_n) \left| \left(\sum_{i=1}^n |x_i - a_i| \right)^2 + \left(\sum_{i=1}^n |b_i - x_i| \right)^2 < \left(\sum_{i=1}^n |b_i - a_i| \right)^2 \right\} \right\}$$

be a convex set such that $a, b \in \overline{D}$.

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable function on \overline{D} and satisfy the conditions

$$|f(x_1, \ldots, x_n)| \leq M \quad (\forall (x_1, \ldots, x_n) \in \overline{D})$$

and

(4)
$$\left|\frac{\partial^2 f}{\partial x_i \partial x_i}\right| \leq N \qquad (\forall (x_1, \ldots, x_n) \in D; \quad i, j = 1, \ldots, n),$$

then

$$\left| \sum_{i=1}^{n} (b_{i} - a_{i}) \frac{\partial f}{\partial x_{i}} \right| \leq 2 M + \frac{N}{2} \left\{ \left(\sum_{i=1}^{n} |x_{i} - a_{i}| \right)^{2} + \left(\sum_{i=1}^{n} |b_{i} - x_{i}| \right)^{2} \right\}$$

$$\leq 2 M + \frac{N}{2} \left(\sum_{i=1}^{n} b_{i} - \sum_{i=1}^{n} a_{i} \right)^{2}$$

for every $(x_1, \ldots, x_n) \in \overline{D}$.

To prove this, in Theorem 1, take $X = \mathbb{R}^n$, $Y = \mathbb{R}$, $F(x) = f(x_1, \ldots, x_n)$ and

$$||x-\overline{x}|| = \sum_{i=1}^{n} |x_i-\overline{x_i}| \ (x, \overline{x} \in X), \ ||y-\overline{y}|| = |y-\overline{y}| \ (y, \overline{y} \in Y).$$

Note that in this event from (4) follows

$$\|F_{(x)}''(h, h)\| = \left|\sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} h_{i} h_{j}\right|$$

$$\leq \sum_{i,j} \left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} |\cdot| h_{i}|\cdot| h_{j}\right|$$

$$\leq N\left(\sum_{i} |h_{i}|\right)^{2} = N \|h\|^{2}$$

for every $x \in D$ and every $h \in X$.

REMARK. For M=1, N=1, $D=\hat{L}_n=\{x\mid a_i< x_i< b_i\ (i=1,\ldots,n)\}$ Corollary 3 reduces to Theorem E.

Theorem 2. If

Theorem 2. If
$$\|F'_{(\alpha)}(h,h)\| \leq N \|h\|^2 \qquad (\forall h \in X \land \forall \alpha \in D),$$

then

(6)
$$||F'_{(x)}(b-a)-F(b)+F(a)|| \leq \frac{N}{2} \{||x-a||^2 + ||b-x||^2\}$$

for every $x \in \overline{D}$.

Proof. Let $x \in \overline{D}$ and $x+th \in D(0 < t < 1)$. As in the proof of Theorem 1, the inequality (3) holds, i.e.,

$$F'_{(x)}(b-a)-F(b)+F(a)=W(x, a-x)-W(x, b-x),$$

from which follows

(7)
$$||F'_{(x)}(b-a)-F(b)+F(a)|| \leq ||W(x,a-x)|| + ||W(x,b-x)||.$$

From (7), (2) and using the made assumption (5), immediately follows (6).

Corollary 4. Let

$$x = (x_1, \ldots, x_n), \quad a = (a_1, \ldots, a_n), \quad b = (b_1, \ldots, b_n) \ (a_i < b_i; i = 1, \ldots, n),$$

and let

$$D \subset \left\{ (x_1, \ldots, x_n) \left| \left(\sum_{i=1}^n |x_i - a_i| \right)^2 + \left(\sum_{i=1}^n |b_i - x_i| \right)^2 < \left(\sum_{i=1}^n |b_i - a_i| \right)^2 \right\} \right\}$$

be a convex set such that $a, b \in D$.

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable function on \overline{D} and

$$\left|\frac{\partial^2 f}{\partial x_i \partial x_j}\right| \leq N \qquad (\forall (x_1, \ldots, x_n) \in D; \quad i, j = 1, \ldots, n),$$

then for all $(x_1, \ldots, x_n) \in \overline{D}$

(8)
$$\left| \sum_{i=1}^{n} (b_{i} - a_{i}) \frac{\partial f}{\partial x_{i}} - f(b_{1}, \dots, b_{n}) + f(a_{1}, \dots, a_{n}) \right| \leq \frac{N}{2} \left\{ \left(\sum_{i=1}^{n} |x_{i} - a_{i}| \right)^{2} + \left(\sum_{i=1}^{n} |b_{i} - x_{i}| \right)^{2} \right\}.$$

Putting in Theorem 2 that $X = \mathbb{R}^n$, $Y = \mathbb{R}$, $F(x) = f(x_1, \dots, x_n)$ and

$$||x - \overline{x}|| = \sum_{i=1}^{n} |x_i - \overline{x_i}| \quad (x, \overline{x} \in X), \quad ||y - \overline{y}|| = |y - \overline{y}| \quad (y, \overline{y} \in Y)$$

it is obtained Corollary 4.

REMARK. For N=1 and $D=\mathring{L}_n=\{x\mid a_i< x_i< b_i (i=1,\ldots,n)\}$ (8) reduces to

$$\left| \sum_{i=1}^{n} (b_{i}-a_{i}) \frac{\partial f}{\partial x_{i}} - f(b_{1}, \ldots, b_{n}) + f(a_{1}, \ldots, a_{n}) \right|$$

$$\leq \frac{1}{2} \left\{ (X-A)^{2} + (B-X)^{2} \right\} = \frac{1}{2} (A^{2} + B^{2}) - (A+B)X + X^{2},$$

where
$$A = \sum_{i=1}^{n} a_i$$
, $B = \sum_{i=1}^{n} b_i$, $X = \sum_{i=1}^{n} x_i$.

This result represents a generalization of Theorem C.

Corollary 5. If

$$X = Y = \mathbb{R}, \ \|x - y\| = |x - y|(x, y \in \mathbb{R}), \ D = \{x \mid a < x < b; \ a, b \in \mathbb{R}\},$$
 and $F(x) = \int_{a}^{x} f(t) dt$, where f is a differentiable function defined on $[a, b]$ and $|f'(x)| \le N$, for every $x \in D$, then Theorem F follows from Theorem 2.

On reading this paper in manuscript Prof. P. R. BEESACK pointed out the possibility of the generalization of Theorem 1 as follows:

Theorem 3. Let D be a convex set such that $a, b \in \overline{D}$ and let $F: X \to Y$ be twice Fréchet-differentiable on \overline{D} and satisfy the condition

$$||F''_{(\alpha)}(h, h)|| \leq H(||h||) \qquad (\forall h \in X \land \forall \alpha \in D),$$

where H is a function from \mathbf{R}^+ to \mathbf{R}^+ . Then for all $x \in \overline{D}$

$$||F'_{(x)}(b-a)|| \le ||F(b)-F(a)|| + \frac{1}{2} \{H(||x-a||) + H(||b-x||)\}.$$

Proof. Since

$$||W(x, h)|| = \frac{1}{2} ||F''_{(x+th)}(h, h)|| \le \frac{1}{2} H(||h||),$$

from (3) it immediately follows that

$$||F'_{(x)}(b-a)|| \le ||F(b)-F(a)|| + ||W(x, a-x)|| + ||W(x, b-x)||$$

$$\le ||F(b)-F(a)|| + \frac{1}{2} \{H(||x-a||) + H(||b-x||)\},$$

which proves the Theorem.

Corollary 6. If the convex set D and the function $H: \mathbb{R}^+ \to \mathbb{R}^+$ satisfy

$$H(||x-a||) + H(||b-x||) \le H(||b-a||)$$
 $(\forall x \in \overline{D}),$

then

$$||F'_{(x)}(b-a)|| \le ||F(b)-F(a)|| + \frac{1}{2}H(||b-a||)$$
 $(\forall x \in \overline{D}).$

3. In [6] (p. 606) the following result is given.

Theorem G. Let the function $(s, t, u) \mapsto K(s, t; u)$ be continuous and twice continuously-differentiable with respect to u, and

(9)
$$|K''_{uu}(s, t; u)| \le M |u|^{p-2} + N$$
 (s, $t \in [0, 1], |u| < +\infty; M, N > 0, p \in \mathbb{R}$).
If $p \ge 2$, operator F, defined by

$$F(f) = \int_{0}^{1} K(s, t; f(t)) dt \qquad (f \in L^{p}),$$

maps the space L^p into the space $L^q(1 \le q < +\infty)$ and is twice differentiable, when

$$F'_{(f)}(h) = \int_{0}^{1} K'_{u}(s, t; f(t)) h(t) dt,$$

$$F''_{(f)}(h, k) = \int_{0}^{1} K''_{uu}(s, t; f(t)) h(t) k(t) dt$$

for every $f \in L^p$.

Using this Theorem, we shall point out some corollaries of Theorems 1 and 2.

Let $X=L^p(p \ge 2)$, $Y=L^q(1 \le q < +\infty)$. Let us in space L^p notice the functions $t\mapsto a(t)\equiv 0$ and $t\mapsto b(t)>0$ $(t\in [0, 1])$.

Let $D \subset \{f | \|f\|_{L^p}^2 + \|b - f\|_{L^p}^2 < \|b\|_{L^p}^2$, $f \in L^p \}$ be a convex set such that $a(t), b(t) \in \overline{D}$.

First, we shall prove the following lemma.

Lemma. If the conditions of Theorem G are fulfilled, holds the inequality

(10)
$$||F_{(f)}''(h,h)||_{L^{q}} \leq \Phi(f) ||h||_{L^{p}}^{2},$$

where functional $\Phi: L^p \to \mathbb{R}^+$ and is defined by

$$\Phi(f) = \begin{cases} 2^{2/p} (M ||f||_{L^{p}}^{p-2} + N) & p > 2, \\ M + N & p = 2. \end{cases}$$

Proof. We shall distinguish two cases.

Case 1:p>2. Based on Theorem G, applying Hölder's inequality, we have

$$|F_{(f)}''(h,h)| = |\int_{0}^{1} K_{uu}''(s,t;f(t))h(t)^{2} dt|$$

$$\leq \int_{0}^{1} |K_{uu}''(s,t;f(t))| \cdot |h(t)|^{2} dt$$

$$\leq \left(\int_{0}^{1} |K_{uu}''(s,t;f(t))|^{\frac{p}{p-2}} dt\right)^{\frac{p-2}{p}} \left(\int_{0}^{1} |h(t)|^{p} dt\right)^{\frac{2}{p}}$$

$$= P(s,f) ||h||_{L^{p}}^{2},$$

i.e.,

$$\left(\int_{0}^{1} |F_{(f)}^{"}(h,h)|^{q} ds\right)^{\frac{1}{q}} \leq \left(\int_{0}^{1} P(s,f)^{q} ds\right)^{\frac{1}{q}} \cdot ||h||^{2}_{L^{p}},$$

or

(11)
$$||F''_{(f)}(h, h)||_{L^q} \leq \left(\int_0^1 P(s, f)^q \, \mathrm{d}s\right)^{\frac{1}{q}} \cdot ||h||_{L^p}^2,$$

where
$$P(s, f) = \left(\int_{0}^{1} |K''_{uu}(s, t; f(t))|^{\frac{p}{p-2}} dt\right)^{\frac{p-2}{p}}$$
.

According to (9) and the inequality (see, for example [2, pp. 338—339, inequality 3.9.7])

$$|z_1+z_2|^r \le c_r(|z_1|^r+|z_2|^r)$$
 $(z_1, z_2 \in \mathbb{C}; r \ge 0),$

where $c_r = 1 (0 \le r \le 1)$ and $c_r = 2^{r-1} (r > 1)$, we see that P(s, f) satisfies

$$P(s, f) = \left(\int_{0}^{1} |K''_{uu}(s, t; f(t))|^{\frac{p}{p-2}} dt\right)^{\frac{p-2}{p}} \le \left(\int_{0}^{1} (M|f(t)|^{p-2} + N)^{\frac{p}{p-2}} dt\right)^{\frac{p-2}{p}}$$

$$\le \left(\int_{0}^{1} 2^{\frac{2}{p-2}} (M^{\frac{p}{p-2}}|f(t)|^{p} + N^{\frac{p}{p-2}}) dt\right)^{\frac{p-2}{p}} = 2^{\frac{2}{p}} (M^{\frac{p}{p-2}} \int_{0}^{1} |f(t)|^{p} dt + N^{\frac{p}{p-2}})^{\frac{p-2}{p}}$$

$$\le 2^{\frac{2}{p}} \left(M \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{p-2}{p}} + N\right) = 2^{\frac{2}{p}} (M||f||_{L^{p}}^{p-2} + N) = \Phi(f) \qquad (p > 2).$$

On the basis of this, from (11) it follows that

(12)
$$||F_{(f)}''(h,h)||_{L^{q}} \leq \Phi(f) \cdot ||h||_{L^{p}}^{2} (p>2).$$

Case 2: p = 2. Then

$$|F''_{(f)}(h, h)| \leq \int_{0}^{1} |K''_{uu}(s, t; f(t))| \cdot |h(t)|^{2} dt,$$

from which, using (9) we obtain

$$|F_{(f)}^{"}(h, h)| \leq (M+N) \int_{0}^{1} |h(t)|^{2} dt,$$

i.e.

(13)
$$||F''_{(f)}(h,h)||_{L^{q}} \leq (M+N) ||h||^{2}_{L^{2}} = \Phi(f) ||h||^{2}_{L^{2}} \qquad (p=2).$$

From (12) and (13) follows (10), which proves the lemma.

Notice that $\Phi(f) \leq \Phi(b) \ (\forall f \in \overline{D})$.

Corollary 7. If the conditions of Theorem G are fulfilled, then using Theorem 2 and the proved Lemma, the inequality

$$\|\int_{0}^{1} K'_{u}(s, t; f(t)) b(t) dt - \int_{0}^{1} K(s, t; b(t)) dt + \int_{0}^{1} K(s, t; 0) dt \|_{L^{q}}$$

$$\leq \frac{1}{2} \Phi(b) (\|f\|_{L^{p}}^{2} + \|b - f\|_{L^{p}}^{2})$$

holds for every $f \in \overline{D}$.

Corollary 8. If

$$\sup_{f\in\overline{D}} \|F(f)\|_{L^q} = \sup_{f\in\overline{D}} \left(\int_0^1 \left| \int_0^1 K(s, t; f(t)) dt \right|^q ds \right)^{1/q} \leq M$$

and if the conditions of Theorem G are fulfilled, using Theorem 1 and the Lemma, the inequality

$$\|\int_{0}^{1} K'_{u}(s, t; f(t)) b(t) dt\|_{L^{q}} \leq 2 M + \frac{1}{2} \Phi(b) \|b\|_{L^{p}}^{2}$$

holds for every $x \in \overline{D}$.

Let now:

1°
$$X=C^2[\alpha, \beta], Y=\mathbf{R};$$

2°
$$||f-g|| = \max_{x \in [\alpha, \beta]} |f(x)-g(x)| + \max_{x \in [\alpha, \beta]} |f'(x)-g'(x)| (f, g \in X);$$

$$3^{\circ} \|y'-y''\| = |y'-y''| (y', y'' \in Y);$$

4° Function $(x, u, v) \mapsto G(x, u, v)$ is twice continuously-differentiable for $x \in [\alpha, \beta]$ and $u, v \in \mathbb{R}$;

5° Functional
$$F: C^2[\alpha, \beta] \to \mathbb{R}$$
 is defined by $F(f) = \int_{-\beta}^{\beta} G(x, f(x), f'(x)) dx$;

6°
$$a(x) = 0$$
, $b(x) > 0$ $(a, b \in C^2[\alpha, \beta])$;

7° $D \subset \{f | \|f\|^2 + \|b - f\|^2 < \|b\|^2, f \in C^2[\alpha, \beta] \}$ is a convex set such that $a, b \in \overline{D}$.

Let us introduce a notation $(u, v) = \int_{\alpha}^{\beta} G''_{uv}(x, f(x), f'(x)) dx$.

Tf

(14)
$$\max \left\{ \sup_{f \in D} (f, f), \sup_{f \in D} (f, f'), \sup_{f \in D} (f', f') \right\} \le N,$$

then from

$$F_{(f)}^{"}(h, k) = \int_{\alpha}^{\beta} \left\{ G_{ff}^{"} h(x) k(x) + G_{ff'}^{"} (h(x) k(x))' + G_{f'f'}^{"} h'(x) k'(x) \right\} dx$$

follows the inequality

$$|F_{(f)}(h, h)| \leq N \left(\max_{x \in [\alpha, \beta]} |h(x)| + \max_{x \in [\alpha, \beta]} |h'(x)| \right)^2 = N ||h||^2 \qquad (\forall h \in X).$$

Corollary 9. If the inequality (14) holds, from Theorem 2 it follows that

$$\left| \int_{\alpha}^{\beta} \left(G'_{f}(x, f, f') b(x) + G'_{f'}(x, f, f') b'(x) \right) dx - \int_{\alpha}^{\beta} G(x, b, b') dx + \int_{\alpha}^{\beta} G(x, 0, 0) dx \right| \leq \frac{N}{2} (\|f\|^{2} + \|b - f\|^{2})$$

for every $x \in \overline{D}$.

Corollary 10. If

$$\sup_{f\in\overline{D}} \Big| \int_{\alpha}^{\beta} G(x, f(x), f'(x)) dx \Big| \leq M,$$

then using Theorem 1 and the inequality (14) it follows that

$$\left| \int_{\alpha}^{\beta} \left(G'_{f}(x, f, f') b(x) + G'_{f'}(x, f, f') b'(x) \right) dx \right| \leq 2 M + \frac{N}{2} \|b\|^{2}$$

for every $f \in \overline{D}$.

The authors are grateful to Prof. P. R. BEESACK for careful reading of the paper and useful suggestions which helped better and more complete formulations of the stated material.

REFERENCES

- E. LANDAU: Einige Ungleichungen für zweimal differentierbare Funktionen. Proc. Lond. Math. Soc. (2) 13 (1940), 43—49.
- D. S. MITRINOVIĆ (In cooperation with P. M. VASIĆ): Analytic inequalities. Berlin--Heidelberg-New York 1970.
- V. G. AVAKUMOVIĆ S. ALJANČIĆ: Određivanje najboljih granica izvoda kada su poznate izvesne osobine funkcije i ostalih izvoda. Glas Srpske Akad. Nauka 3 (1950), 197—210.
- I. B. Lacković and M. S. Stanković: A note on a theorem of E. Landau. These Publications № 381 — № 409 (1972), 113—116.
- 5. A. OSTROWSKI: Über die Absolutabweichung einer differentierbaren Funktion von ihren Integralmittelwert. Comment. Math. Helv. 10 (1938), 226—227.
- 6. Л. В. Канторович и Г. П. Акилов: Функциональный анализ в нормированных пространствах. Москва 1959.