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643. ON A GENERALIZATION OF CERTAIN RESULTS
OF A. OSTROWSKI AND A. LUPAS

Gradimir V. Milovanovi¢ and Igor Z. Milovanovié

0. In [1] G. GrUss has proved the following result (see also [2], [3]):
Let f and g be integrable functions on [a, b]. Then

.1 | D(f, 8)| 5 (Ose) (Ose),
[a, 8] [a, 8]

where

b b
D(f, 8)= bia f g (¥ dx.

The constant % is the best possible one.

A. OsTtrROWSKI ([3]) has proved a certain class of inequalities connected with
(0.1) imposing stronger conditions for f and g.

For instance, if g is bounded and measurable on [a, b] and f'&L2(a, b), then

V f F (%) dx

0y 2o/ (1 fbf'(x)zdx)(b%a fb g () dx).

0.2) | D(f, &)=

holds.
Besides, if g'<L2 (q, b), then

A. LUPA§ ([4]) found the best possible constant in the last inequality: = a) b=a?

Also, A. Lupras in [4] obtained the following inequality

: b
b—a 1 ,
0.9 | D(f, g)’§;(0[as,i]g) l/’bjaff ()2 dx,

which is stronger than the inequality (0.2).
62
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We shall give some generalizations of inequalities (0.3) and (0.1) in our
paper. Namely, instead of bounds for D(f,g) we shall find bounds for

T(f,g)=A(fz;p)—A(f; p) A(g; p), where

b
[ p(®)f(x)dx
A p)="g——
[p(x)dx

A(f;p) is a special case of OSTROWSKI's general means M (f) introduced
in [3].

1. Let W,2 [a, b] be the space of all functions # which are locally absolutely
b

continuous on (a, b), with f ru'?dx<< 4 0.

a

On account of the Theorem 3.1 of BEESACK ([5]) we can prove the following
auxilary result:

Lemma 1. Let - co<a<b< + o0, and let p be positive and continuous on (a, b) with
b

fp dt=P<+ 0. Set r(x)=1/p(x). Then, if u is an integral on [a, b) with u(a)=0

b
and fru’zdx<+ oo we have

b b '
(1.1) fp(x)u(x)zdngt—}‘:i [r(x)u’ (x)?dx

with equality if and only if u is given by

X

(1.2) u(x)=B sin(zlpfp dt)

a

where B is arbitrary constant.

Proof. The hypotheses on u implies that u (x)= f u (t)dt for a=x<b. If
a
a is finite this is equivalent to saying that u (a) =0 and w is locally absolutely conti-

x
nuous on [a,b). To prove (1.1), set u=yz, where y(x)=sin(l/iofpdt>

2

for x&[a, b], with )\°=4P2'

It is easy to verify that (ry') = — A, py on (a, b).
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Now if a<<a<<f<b, we have

9 B
fru’2 dx:fr(yzz'2 +2z2'yy" 4yt 2 dx
[+ -3
8 [
=f’}’22’2 derfry'2 22dx +ryy’ z*
o

<3

8
8
2@y Frydx

¢ 8

=fryzz'2dx+r(l’) u? |B—H\Ofpuzdx
y «
6 B
zr(y'/yu? . +7\0fpu2dx.
Hence
8 B , x
(1.3) fpuzdxg)\o—lfru’z dx+2,7! {l/fou(x)2 ctg(l/l‘ofpdt)} l:
Since
Oéu(a)2=<fu’dt)2§<fV;V?[u’[dtyg(fpdt)( 2 dt),
i.e.’ a a a a
a fp dt
Og——u—(@;——g(fru’zdt)——"a—ao as a—a-+,
sin(l/k_{, fpdt) ¢ sin(l/i\‘0 fp dt)
we have ’ ’

u(oc)zctg(l/)\_ofpdt)»o aso—>a+-

Then, from (1.3) it follows

8 B 8 g
fpuzdxglo‘lfru’zdx—ko"”zu(ﬁ)zctg(l/fofpdt)§7\o—1fru'zdx,
a a a a

where a<g <b. Now let § — b— to obtain the inequality (1.1).
The above proof shows that equality can hold in (1.1) only if z' =0, or u=By

for some constant B. Moreover, for any such u, we do have u(x)= f u' dt,

. a
and < W,2[a, b] as one easily verifies, so that » is an admissible function. By
direct substitution one sees that equality does hold in (1.1) for such u.

The following result can be similarly proved (see Theorem 3.2 from [5}).
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Lemma 2. Let — w=a<<b=+ o, and let p be positive and continuous on (a, b)
b

with fpdt=P< +oo. Set r(x)=1/p(x). If u is an integral on (a, b] with u (b)=0,
%

and f ru'?dx< + oo, the inequality (1.1) still holds, with equality if and only if u

is gi‘;'en by

b
u(x)= B, sin (z—n;fpdt),

where B, is arbitrary constant.
b

Theorem 1. Let p be positive and continuous on (a, b) with f pdt=P< + 0.
Set r(x)~ 1/p (x), and let ‘a<<€<b. Then for all FEW? [a, b] the inequality

(1.4) fp(F(x) F(E))2dxs max (fpdt) : (fpdt) }frF’(x)zdx

holds.
Equality in (1.4) holds if and only if
£

fpm

Bysin(25—)h@ (asxsb,
fpdt

F(x)=B,+ e .
fpdt
Bl'sin(_’ziib )h(—q) (E<xsb),
fpdt
13
13 b

where B,, B', B, are arbitrary constants, q—= f pdt - f pdt and h is Heaviside's
a g

Junction.

Proof. Let a<€<b. Applying Lemma 2 and Lemma 1 on the right hand side
of equality

b 13 b
[P (F@x) - F®)*dx= [ p) (F@) - FE)?dx + [ p(x) (F(x)— F())* dx,
a a g

we obtain (1.4). Notice that x+>u = F (x) — F () has the required behaviour at x=&.

Corollary 1. Let functions p and r satisfy the conditions as in Theorem 1 and let §

be such that
3 5

(1.5) [pdt= [ pde.
3
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Then

b b
(1.6) [P (Fe)-F@) dx§(—:¥)2 [reF epax

a

with equality if and only if

Blsin(%fpdt) (asx<¥),
F(x)=B,+ *

B'sin(% [par)  Esxsb),
E

where B, B,', B, are arbitrary constants.

Proof. Since

g b b b 13
Q=max{fpdt, fpdt}:—;—{fpdt+,fpdt—fpdt'},
a 13 a 13 a

with regard to (1.5), we have Q=%P.
Then, Corollary 1 follows from Theorem 1.

ReMARK 1. Notice that (1.6) holds only for the single € such that (1.5) holds, and not for all £.

b
2. Define ||k, =( [r(x) h(x)?dx)"2,

b
Theorem 2. Let pcC (a,b), p()>0, [pdt=p<+ o0 and r(x)=1/p(x). If
1, 8EW,2[a, b, the inequality ‘

@1 IT¢ =< f 1l

holds. If

(2.2) f(x)=A+Bsin0(x), g((x)=C+ Dsin0(x),
b x

where 0 (x)= {; ( f pdt— f p dt) , the equality appears in (2.1).

b
Proof. Let us prove at first the existence of the integrals f pf(x)?dx

b
and f pf (x)dx.
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Let £&(a, b). According to the Theorem 1 we have

b
[r(f)—r(®)dx< + .

Hence also

b b b
Jelr@-r@laxs(fpax)” ([ p(F@-r®) dx)" < + w,

b b b
so f p(f(X)=f())dx exists, and since f pdx exists, so does f pf(x)dx.

But then, since

b b b b
Jo(@-r®)dx=[pfeyrde—27E) [ pr)dx+/E? [ pdx.
b
it also follows that f pf(x)*dx exists.

Since

T, N=A; P-A(S; PP
b b
=5 [prera-adp [preoax

b
L [PUGR 1A =TI O+ @ A P} dx

b
=L [pU@ -4 D@ -1®N,
and ¢
b
T(4N=% [PU@-4 PP drzo,

applying CAUCHY’s inequality, we obtain

b b
THNPs; [ PG40 DY [p(e)-f @) dx

b
=5 TUN [P -1 @),
ie., ’

b
05T Ns 5 [P -fOFdx

5
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Chose £ so that the condition (1.5) is satisfied. Then, with regard to (1.6), the last
inequality becomes

P .
| T N=ZNf I
Similarly,
T(g, g)S | g Hr2°
Finally, using inequaiity IT(f, ) |’<T(f,f) T (g, g) proved in [2] for general

means, including A4 (f; p) as a special case, we obtain (2.1).

Inequality (2.1) can not be improved. Namely, when f and g, given with (2.2)
are directly substituted in inequality (2.1), the equality is obtained.

ReMARK 2. For p (x)=1, the inequality (2.1) reduces to inequality obtained by A. Lupas ([4]).
On account 'of the inequality | T'(g, g)lg% (Osc g)? proved in [2] for general
{a, b]

means, we can prove the following result:
b

Theorem 3. Let p&C(a, b), p(x)>0, fpdt =P< 4+ and r(x)=1/p(x).
If fEW,?[a, b) and g is a measurable, bounded function, then

P
23) 7¢, 912211 ), Osc .
kg [av b]
ReMARK 3. For p (x)=1, the inequality (2.3) reduces to LUPAS§ inequality ([4])
| D(f, g)lsL—llf II:(Oscg)

ReMark 4. Using Jacosr’s weight function x > p (x) = (1—x)* (1+x)8, where o, f>—1, a= —1,
b=1, the inequality (2.1) is reduced to

1 1

lfp(x)f(x)g(X)dx—— fp(x)f(x)dx fp(x)g(x)dx

-1
( f'(x)2 fg' ) dx)llz ’
P P

T@+DT@+1)
T'(x+8+2)

3. The following theorem generalizes an A. LUPAS’ inequality ([9]) in connection
with an A. OsTROWSKI’s result (see [10], [11], [12]).
b

where C=2%+F+1

Theorem 4. Let pcC(a, b), px)>0, fpdt=P<+oo, r(x)=1/p(x) and
feEW,2]a, b]. Then

@3.1) f®-A; p) S—maX{det fpdt} 0l

for every xc(a, b).
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Proof. Applying CAUCHY’s inequality on the right hand side of equality

f@-Af D R=

b
f p(FO - ) e/,

we obtain

b
F@-4pPs [pUO-f@) s,

which combined with (1.4) gives (3.1).

- *
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