
Quadrature formulae for problems in mechanics
Gradimir V. Milovanović, Tomislav Igić, and Novica Tončev 
 
Citation: AIP Conf. Proc. 1479, 1058 (2012); doi: 10.1063/1.4756328 
View online: http://dx.doi.org/10.1063/1.4756328 
View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1479&Issue=1 
Published by the American Institute of Physics. 
 
Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/ 
Journal Information: http://proceedings.aip.org/about/about_the_proceedings 
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS 
Information for Authors: http://proceedings.aip.org/authors/information_for_authors 

Downloaded 01 Oct 2012 to 178.149.86.32. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

http://proceedings.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Gradimir V. Milovanovi&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Tomislav Igi&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Novica Tonev&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4756328?ver=pdfcov
http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1479&Issue=1&ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://proceedings.aip.org/about/about_the_proceedings?ver=pdfcov
http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS&ver=pdfcov
http://proceedings.aip.org/authors/information_for_authors?ver=pdfcov


Quadrature Formulae for Problems in Mechanics
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Abstract. The fast progress in recent years in symbolic computation and variable-precision arithmetic provide a possibility
for generating the recursion coefficients in the three-term recurrence relation for orthogonal polynomials with respect to
several nonclassical weight functions, as well as the construction of the corresponding quadrature rules of Gaussian type. Such
quadratures are very important in many applications in engineering (fracture mechanics, damage mechanics, etc.), as well as
in other computational and applied sciences. The boundary element method (BEM), finite element method (FEM), methods
for solving integral equations, etc. very often require the numerical evaluation of one dimensional or multiple integrals with
singular or near singular integrands with a high precision. In this paper we give some improvements of quadrature rules of
Gaussian type with logarithmic and/or algebraic singularities. A numerical examples is included.
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INTRODUCTION

In 1972 Hajdin and Krajčinović [7] presented an integration method for the solution of boundary value problems
(BVP) for ordinary differential equations. The method involves construction of only simple polynomial Green’s
functions and gives a very good accuracy. In general, numerical integration is a more accurate process than numerical
differentiation that is implicitly present in the finite difference methods (for an error analysis see [2]). Hajdin and
Krajčinović considered the completely inhomogeneous system (BVP) Lu = f (x), a≤ x≤ b, with boundary conditions
at x = a and x = b given by B1(u) = α and B2(u) = β (α ,β ∈ R), where L is a linear difference operator of nth order,
f (x) is an arbitrary piecewise function of x, and B1 and B2 are some linear combinations of the function u(x) and its
derivatives up to order n−1. Constructing Green’s function G(x,y) they reduced the given BVP differential problem
to the Fredholm integral equation of the second kind

u(x)+
∫ b

a
G(x,y)u(y)dy = g(x), a < x < b, (1)

where g(x) is a known function, and then they use two ways for solving (1):
– a quadrature rule and some selected colocation points to reduce (1) to a system of linear algebraic equations;
– an approximation of u(x) by a spline function of a given order.
Although most of the problems treated in [7] related to structural mechanics, the method itself is naturally much

more general. Today, integral equations appear in many fields including continuum and quantum mechanics, opti-
mization and optimal control systems, kinetic theory of gases, communication theory, geophysics, electricity and
magnetism, potential theory, biology and population genetics, mathematical economics, queueing theory, etc.

In general, the Fredholm integral equations of the second kind (FK2) are given by

u(x)+μ
∫

A
K(x,y)u(y)w(y)y. = g(x), x ∈ A⊂ R, (2)

where K(x,y) is the kernel, w is a given weight function, g is a known function, μ ∈ R is a parameter, and u is a
unknown function. Today, there are many numerical methods for solving integral equations (cf. [1], [9]). Sometimes,
they are developed for specific type of kernels. Numerical methods for this kind of integral equations (FK2) lead to
systems of linear algebraic equations and sometimes these systems are ill-conditioned. The solution of an integral
equation can be done in a polynomial form, spline function, as a piecewise polynomial, etc. For some recent very
efficient methods see [4], [11], [12].
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Several methods for reducing (2) to a system of linear equations need good quadrature rules for approximating
the weighted integral in (2). In addition, we mention also that the boundary element method (BEM), as well as
the finite element method (FEM), which are very popular in computational applications in engineering (fracture
mechanics, damage mechanics, electromagnetic diffraction, etc.), very often need accurate numerical evaluation of
one dimensional or multiple integrals with singular kernels and/or singular basis functions.

In this paper we propose a method for constructing the weighted Gaussian quadrature rules for integrals with
algebraic and/or logarithmic singularities. In general, quadratures of Gaussian type are very appropriate in methods for
solving integral equations of type (2), as well as in numerical implementation of the BEM (see [8, Chapters 4 & 5]).
They play a very important role, especially for higher order elements, for calculating integrals of the corresponding
influence coefficients (for off-diagonal elements and diagonal elements), etc. For sufficiently smooth functions on a
finite interval [a,b] a linear transformation to the standard interval [−1,1] can be used and then an application of Gauss-
Legendre quadrature formula provides numerical integration with a satisfactory accuracy. However, for integrals with
a logarithmic singularity and/or some kind of algebraic singularities, the convergence of the corresponding quadrature
process is very slow, so that certain weighted quadratures are recommended. In such cases, the weight functions of the
corresponding weighted Gaussian quadratures include these “difficult parts (with singularities)” of the integrand. In
the next section, we consider two cases of such quadratures on the standard interval [0,1].

GAUSSIAN QUADRATURES WITH LOGARITHMIC WEIGHTS FUNCTIONS

Let Pm be a set of all algebraic polynomials of degree at most m. We consider the weighted n-point quadrature formula
∫ 1

0
f (x)w(x)dx =

n

∑
k=1

Ak f (xk)+Rn( f ), (3)

with respect to the weight function w(x) = (1− x)α xβ log(1/x), with parameters α ,β > −1. Piessens and Branders
[14] considered cases when α = 0 and β = 0,±1/2,±1/3,−1/4,−1/5 (cf. Gautschi [5]). In the case α = β = 0, the
parameters of quadrature rules for n≤ 8 can be found in the book Katsikadelis [8, pp. 297–298].

In a general Gaussian quadrature formula the nodes xk and the weights Ak in (3) must be selected so that Rn( f ) = 0
for each f ∈ P2n−1. In that case, the nodes xk are zeros of the monic orthogonal polynomial πn(w;x) and the
corresponding weights Ak (Christoffel numbers) can be expressed by the so-called Christoffel function λn(w;x) (cf.
[10, Chapters 2 & 5]) in the form Ak = λn(w;xk)> 0, k = 1, . . . ,n.

As we know [10, Chapters 2], the (monic) polynomials πn(w;x) orthogonal with respect to the weight function w(x)
on [a,b] satisfy the three-term recurrence equation

πk+1(t) = (t−αk)πk(t)−βk(t)πk−1(t), k = 0,1,2, . . . , π0(t) = 0, π−1(t) = 0, (4)

where (αk) = (αk(w)) and (βk) = (βk(w)) are sequences of recursion coefficients. The coefficient β0 which is
multiplied by π−1(x) = 0 in (4) may be arbitrary, but it is convenient to define it by β0 = μ0 =

∫ b
a w(x)dx.

The characterization of the Gaussian quadratures via an eigenvalue problem for the Jacobi matrix

Jn(w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0
√

β1 O√
β1 α1

√
β2√

β2 α2
. . .

. . . . . .
√

βn−1

O
√

βn−1 αn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

has become the basis of current methods for generating these quadratures. The most popular of them is one due to
Golub and Welsch [6]. The nodes xk in the Gaussian rule (3), with respect to the weight function w(x) on [a,b],
are the eigenvalues of the n-th order Jacobi matrix (5), and the corresponding weights Ak are given by Ak = β0v2

k,1,

k = 1, . . . ,n, where β0 = μ0 =
∫ b

a w(x)dx and vk,1 is the first component of the normalized eigenvector vk corresponding
to the eigenvalue xk, Jn(w)vk = xkvk, vT

k vk = 1, k = 1, . . . ,n. Simplifying QR algorithm so that only the first components
of the eigenvectors are computed, Golub and Welsch [6] gave a very efficient algorithm, which is implemented in our
package OrthogonalPolynomials realized in Mathematica [3].
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Thus, we need the recursion coefficients αk and βk, k ≤ N − 1, for the monic polynomials πν(w; ·), in order to
construct the n-point Gauss-Christofell quadrature formula, with respect to the weighte w(x), for each n ≤ N. These
coefficients are known explicitly for the classical orthogonal polynomials (see [10, Chapters 2]). Usually, in other
cases, we need an additional numerical construction of recursion coefficients, using the Chebyshev method of moments
or the so-called discretized Stieltjes procedure (see [10, § 2.4.8]).

The fast progress in recent years in symbolic computation and variable-precision arithmetic provide a possibility for
generating the coefficients αk and βk in the three-term recurrence relation (4) directly using only Chebyshev method
of moments. Using such symbolic/variable-precision software for orthogonal polynomials [13] we can construct
Gaussian quadratures with the logarithmic weight w(x) = (1− x)α xβ log(1/x) on (0,1). Thus, all that is required
is a procedure for (symbolic) calculation of the moments in variable-precision arithmetic in order to overcome the
numerical instability, which is always present in the method of moments.

Using symbolic integration we find the moments μk = μk(α ,β ) in terms of the gamma function and harmonic
numbers,

μk(α,β ) =
∫ 1

0
xkw(x)dx =

∫ 1

0
(1− x)α xk+β log

1
x

dx =
Γ(α +1)Γ(β + k+1)

Γ(α +β + k+2)
[H(α +β + k+1)−H(β + k)] . (6)

For example, for α = β = 0 it reduces to μk(0,0) = 1/(k+ 1)2, k ≥ 0. The standard meaning of the k-th harmonic
number Hk is the sum of the reciprocals of the first k natural numbers, i.e.,

Hk = H(k) =
k

∑
ν=1

1
ν
=

∫ 1

0

1− tk

1− t
dt =

k

∑
ν=1

(−1)ν−1 1
ν

(
k

ν

)
.

Taking a fractional argument x between 0 and 1, the harmonic number H(x) is defined by the previous integral, where k
is simply replaced by x. Then it can be generated by H(x) = H(x−1)+x−1 or H(1−x)−H(x) = π cot(πx)− 1

x +
1

1−x .
More generally, for every x > 0 (integer or not), the harmonic number is determined by

H(x) = x
+∞

∑
k=1

1
k(x+ k)

= ψ(x+1)+ γ, ψ(x) =
Γ′(x)
Γ(x)

, γ = 0.577215664901532 . . . .

In order to overcome the severe ill-conditioning in obtaining the recursion coefficients with a satisfactory accuracy, a
multi-precision arithmetic can be used. For example, in the simplest case α = β = 0, taking 55-decimal-digit arithmetic
we get the first N = 50 recursion coefficients to about 20 decimal digits. The following code in the Mathematica
package OrthogonalPolynomials [3] generates recursion coefficients for k ≤ 2N − 1 = 99 and quadrature
parameters (nodes and weights) to 20 decimal digits for n = 10(10)50:

<<orthogonalPolynomials‘
w[t_,a_,b_]:=(1-t)^1 t^b Log[1/t]
mom=Integrate[t^k w[0,0],{t,0,1}]; moments=Table[mom,{k,0,99}];
{alpha,beta}= aChebyshevAlgorithm[moments, WorkingPrecision->55];
param=Table[aGaussianNodesWeights[n,alpha,beta,Precision->20,

WorkingPrecision->20,{n,10,50,10}];

The same method enables us to include also a logarithmic singularity at x = 1, i.e., to take

w(x) = w(α,β )(x) = (1− x)α xβ log
1

x(1− x)
, α,β >−1.

Similarly as before, we can find the corresponding moments

μk(α ,β ) =
∫ 1

0
(1− x)α xk+β log

1
x(1− x)

dx =
Γ(α +1)Γ(β + k+1)

Γ(α +β + k+2)
[2H(α +β + k+1)−H(β + k)−H(α)] .

As an example we consider (cf. [5])

I =
∫ 1

0

(1− x)−1/2x−1/2 log(1/x)√
1+ x

dx =

√
2π
8

Γ
(1

4

)2
= 4.118718374926872014366740 . . . . (7)
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An application of the standard Gauss-Legendre quadrature (transformed to [0,1]) gives a very slow convergence.
Relative errors rn(GL) for n = 10(10)100 are presented in Table 1. Numbers in parentheses denote decimal exponents.
Slightly better results can be obtained by using Gauss-Chebyshev quadratures with relative errors rn(GC).

However, we can directly apply the quadrature formula (3) to integral (7). Let Q
(α,β )
n be the corresponding quadra-

ture sum and r
(α,β )
n = |(Q(α,β )

n − I)/I|. Taking the quadrature formula with the logarithmic weight w(x) = log(1/x),
the corresponding function in (7) is f (x) = 1/

√
x(1− x2). The convergence of this rule is again very slow. Rela-

tive errors r
(0,0)
n are given in Table 1. But, if we include also algebraic singularities in the weight, i.e., if we take

w(x) = (1− x)−1/2x−1/2 log(1/x) (α = β = −1/2), the convergence becomes very fast. Gaussian approximations
Q
(−1/2,−1/2)
n and relative errors are given in the second part of Table 1 for small values of n ≤ 10. Incorrect decimal

digits are underlined. As we can see, 17 exact decimal digits are obtained using Gaussian rule with only n = 10 digits.
TABLE 1. Relative errors of quadrature sums for n = 10(10)100 and Gaussian approxima-
tions with respect to logarithmic weight and the corresponding relative errors for n = 1(1)10

n rn(GL) rn(GC) r
(0,0)
n n Q

(−1/2,−1/2)
n r

(−1/2,−1/2)
n

10 1.84(−1) 5.29(−2) 1.42(−1) 1 4.0801983843688532 9.35(−3)
20 1.08(−1) 2.64(−2) 8.69(−2) 2 4.1179039770237825 1.98(−4)
30 7.80(−2) 1.76(−2) 6.41(−2) 3 4.1186986430715864 4.79(−6)
40 6.17(−2) 1.32(−2) 5.14(−2) 4 4.1187178694526636 1.23(−7)
50 6.17(−2) 1.06(−2) 4.31(−2) 5 4.1187183615750484 3.24(−9)
60 5.14(−2) 8.81(−3) 3.73(−2) 6 4.1187183745672496 8.73(−11)
70 4.41(−2) 7.55(−3) 3.30(−2) 7 4.1187183749170540 2.38(−12)
80 3.88(−2) 6.61(−3) 2.96(−2) 8 4.1187183749266013 6.57(−14)
90 3.47(−2) 5.87(−3) 2.69(−2) 9 4.1187183749268644 1.83(−15)

100 2.87(−2) 5.29(−3) 2.47(−2) 10 4.1187183749268718 5.10(−17)
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