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Orthogonal Polynomials on Radial Rays in
the Complex Plane
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Abstract

We consider some classes of polynomials orthogonal on radial rays in the
complex plane with respect to the Hermitian and Non-Hermitian inner products,
as well as some applications of such polynomials. Some applications of such
polynomials could be done, including an electrostatic interpretation of their
zeros.
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Introduction

Orthogonal polynomials play a very important role in applications not only in
mathematics, but in many other computational and applied sciences, physics, chem-
istry, engineering, economics, etc. The most important orthogonal polynomials are
ones which are orthogonal on the real line with respect to the inner product

(p, q) =

Z

R
f(t)g(t)dµ(t)

�
p, q 2 L2(R; dµ

�
,

where dµ is a positive measure on R with finite or unbounded support, for which
all moments µk =

R
R tk dµ(t), k = 0, 1, . . ., exist and are finite, and µ0 > 0 (cf. [4],

[8]). Because of the property (tp, q) = (p, tq), these orthogonal polynomials ⇡k( · ) =
⇡k(dµ; · ) satisfy a three–term recurrence relation

⇡k+1(t) = (t� ↵k)⇡k(t)� �k⇡k�1(t), k = 0, 1, 2 . . . , (1)

with ⇡0(t) = 1 and ⇡�1(t) = 0, where the sequences of recursion coe�cients ↵k and �k

depend on the measure dµ. Only for certain narrow classes of measures, e.g., for the
classical measures (Jacobi, generalized Laguerre, Hermite), these coe�cients ↵k and
�k are known in the explicit form (for a characterization of the classical orthogonal
polynomials see [1]). Orthogonal polynomials for which the recursion coe�cients are
not known we call strongly non-classical polynomials.

In eighties of the last century Walter Gautschi developed the so-called construc-
tive theory of orthogonal polynomials on R, which includes e↵ective algorithms for
numerical generating orthogonal polynomials with respect to an arbitrary measure,
strong stability analysis of such algorithms, necessary software for implementing such
algorithms and applications (cf. [3], [4], [5]).

This constructive theory opened the door for extensive computational work on or-
thogonal polynomials and many their applications (construction of many new classes
of strongly non-classical polynomials, development of other types of orthogonality, s
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and �-orthogonality, Sobolev type of orthogonality, multiple orthogonality, orthogo-
nality on some curves in the complex plane (circle, semicircle [6, 7, 9], circular arc),
orthogonality on radial rays [10, 11, 12, 13], etc.), applications in diverse areas of ap-
plied and numerical analysis (numerical integration, interpolation, integral equations,
. . .), approximation theory (e.g., moment-preserving spline approximation), integra-
tion of fast oscillating functions, summation of slowly convergent series, integration
of fast oscillating functions, etc.

Orthogonal Polynomials on Radial Rays

Let M 2 N, as > 0, s = 1, . . . ,M , and 0  ✓1  · · ·  ✓M < 2⇡. Putting
"s = ei✓s , s = 1, . . . ,M , we consider M points in the complex plane, zs = as"s 2 C,
s = 1, . . . ,M , with arguments ✓s (see Fig. 1). Some of as (or all) may coincide and
also can be 1.

Figure 1: The case of six rays (M = 6)

The inner product can be introduced so that it is hermitian,

(f, g) =
MX

s=1

e�i✓s

Z

`s

f(z)g(z) |ws(z)|dz,

where x 7! !s(x) = |ws(x"s)| = |ws(z)| (z 2 `s; s = 1, . . . ,M) are weight functions
on (0, as), i.e., they are nonnegative on (0, as) and

R as

0 !s(x)dx > 0. It can be
represented as

(f, g) =
MX

s=1

Z as

0
f
�
x"s

�
g
�
x"s

�
!s(x)dx,

and we can see that (f, f) > 0, except when f(z) = 0. Polynomials orthogonal
with respect to this inner product can be considered. In the symmetric case with
even numbers of rays (M = 2m) we can obtained analytic results for the recurrence
coe�cients for all classical weight functions (Jacobi, generalized Laguerre, Hermite).

In the simple symmetric (Legendre) case with four rays (M = 4) and

(f, g) =

Z 1

0

h
f(x)g(x) + f(ix)g(ix) + f(�x)g(�x) + f(�ix)g(�ix)

i
dx,
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we can prove the recurrence relation

⇡N+2(z) = z2⇡N (z)� bN⇡N�2(z), N � 2; ⇡N (z) = zN , N  3,

where the coe�cient bN (N = 4n+ ⌫; n = [N/4]) is given by

b4n+⌫ =

8
>><

>>:

16n2

(8n+ 2⌫ � 3)(8n+ 2⌫ + 1)
if ⌫ = 0, 1,

(4n+ 2⌫ � 3)2

(8n+ 2⌫ � 3)(8n+ 2⌫ + 1)
if ⌫ = 2, 3.

In the general case, using some kind of the discretized Stieltjes-Gautschi procedure,
we can numerically construct the coe�cients �kj in the relation

⇡k(z) = z⇡k�1(z)�
kX

j=1

�kj⇡j�1(z), �kj =
(z⇡k�1,⇡j�1)

(⇡j�1,⇡j�1)
(1  j  k).

The following result is related to the zero distribution of ⇡N (z).

Theorem. All the zeros of the orthogonal polynomial ⇡N (z) lie in the convex hull of
the rays L = `1 [ `2 [ · · · [ `M .

Example. We consider an asymmetric case with five rays (M = 5), defined by points
in the complex plane: z1 = 6, z2 = 5e9⇡i/14, z3 = 2e4⇡i/5, z4 = 5e6⇡i/5, z5 = 5e7⇡i/4,
with weight functions transformed to (0, 1): !1(x) = 1 (Legendre weight), !2(x) =
1/
p

x(1� x) (Chebyshev weight of the first kind), !3(x) =
p
x(1� x) Chebyshev

weight of the second kind), !4(x) =
p
x/(1� x) (Chebyshev weight of the fourth

kind), !5(x) =
p

(1� x)/x (Chebyshev weight of the third kind), respectively.

Zeros of ⇡N (z) for N = 20 and N = 100 are presented in Figure 2.
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Figure 2: Zeros of ⇡N (z) for N = 20 (left) and N = 100 (right)

In some symmetric cases, an electrostatic interpretation of the zeros of ⇡N (z) can
be done [11].

Orthogonal polynomials on radial rays with respect to a complex-valued moment
functional

L(p) =
MX

s=1

Z as

0
p(x"s)!s(x)dx, p 2 P,
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can be also considered, where as > 0 are given real numbers, and "s and !s are as
before.
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[8] G. Mastroianni, G.V. Milovanović, Interpolation Processes: Basic Theory and
Applications, Springer, Berlin – Heidelberg, 2008.
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