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Mootz Orthogonal Polynomials 
and Their Numerical Evaluation 

Gradimir V. Milovanovic1 

Abstract. This paper is devoted to some classes of orthogonal Muntz poly-
nomials on (0,1), their connection with orthogonal rational functions, as well 
as their numerical computation. Also, we consider some important special 
cases of such polynomials. For evaluating Muntz polynomials we develop a 
numerical procedure based on numerical integration in the complex plane. 

1. Introduction 

Let A = {AO, AI, A2,"'} be a complex sequence. We adopt the following definition 
for x A: 

xE(O,OO), AEC, 

and the value at x = 0 to be the limit of x A as x ---+ 0 from (0,00) whenever the 
limit exists, and consider Muntz polynomials as linear combinations of the Muntz 
system {xAO , XA1 , ... ,xAn}. By Mn (A) we denote the set of all such polynomials, 
i.e., 

M (A) - {AO A1 An} n -span x ,X , ••. ,X , 

where the linear span is over the real (or complex) numbers. The union of all 
00 

Mn(A) is denoted by M(A), i.e., M(A) = U Mn(A). 
n=O 

Such generalized polynomials can be orthogonalized and applied to several 
approximation problems, including quadrature problems. The orthogonal Muntz 
systems were considered first by the Armenian mathematicians Badalyan [2] and 
Taslakyan [18]. Recently, they were investigated by McCarthy, Sayre and Shawyer 
[13] and more completely by Borwein, Erdelyi, and Zhang [4] (see also the recent 
book [3]). 

In this paper we consider orthogonal Miintz polynomials and their numerical 
evaluation. Section 2 is devoted to some classes of orthogonal Muntz systems on 
(0,1) and their connection with orthogonal rational functions. Numerical evalua-
tion of Muntz polynomials is considered in §3. 

IThis work was partly supported by the Serbian Scientific Foundation under grant #04M03. 
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2. Orthogonal Miintz Polynomials 
We investigate two classes of Muntz polynomials which are orthogonal with respect 
to some inner products. The first ofthem was introduced by Badalyan [2J, and we 
refer to it as Muntz-Legendre polynomials. The second class was recently defined 
in [5J and [15J. 

2.1. Orthogonal Mootz-Legendre polynomials 
Let the complex sequence A = {Ao, AI. A2,"'} be such that Re (Ak) > -1/2 for 
every kENo and let An = {Ao,A1, ... ,An}. 

If r is a simple contour surrounding all the zeros of the denominator in the 
rational function 

n-1 -
Wn(s) = II s + Ak + 1 . _1_ ( N ) (2.1) 

S _ Ak S _ A n Eo, 
k=O n 

then the Muntz-Legendre polynomials are defined by (see [2J, [18J, [13], [4], [3]) 

Pn(x) = Pn(x;An) = _21 .1 Wn(s)xSds. (2.2) 
7rZ 1'r 

In the case n = 0, an empty product in (2.1) should be taken to be equal to 1. 
If Ak :f:. Aj (k :f:. j), by the Cauchy residue theorem, these generalized poly-

nomials can be expressed in power form as 

n 

Pn(X) = LCnkX'>'k, 
k=O 

n-1 
I1 (Ak + 'xv + 1) 

C - "--v=--,o:::----___ _ nk - - n 
I1 (Ak - Av) 

v=o v-j.k 

(2.3) 

For the Muntz-Legendre polynomials (2.2) the following orthogonality rela-
tion holds: 11 - Dnm 

(Pn, Pm) = Pn (x)Pm (x) dx = A A . ° n+ n+ 1 
Also, some recurrence relations exist, e.g., 

- (x) = AnPn{X) + (I + 'xn-1)Pn- 1 (x) (2.4) 

and 

Pn{x) = Pn- 1(x) - (An + 'xn-1 + l)x'>'n 11 c'>'n-1 Pn- 1{t) dt (x E (0,1]). 

It is easy to prove that 
n-1 

and = An + L(Ak +'xk + 1). 
k=O 

In the special case when AO = A1 = ... = A, (2.2) gives 
.>. -Pn{x; An) = X Ln{ -(A + A + 1) log x), 
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where Ln(x) is the Laguerre polynomial orthogonal with respect to e-x on [0,00) 
and such that Ln(O) = l. 

Taking x = e- t , the Muntz-Legendre polynomials can be expressed in terms 
of a Laplace transform. Namely, we can prove: 

Theorem 2.1. If Wn(s) is given by (2.1) and 

nrr-l S - (5. k + 1) 1 
Gn(s) = -Wn(-s) = A· -,-, 

s + k S + An 
k=O 

then Pn(e-t ) is the inverse Laplace transform of Gn(s), i.e., 

Pn(e- t ) = .c-1[Gn(s)]. 

In the proof of this result we can take, for example, a > 1/2, and then prove 
that 

a-ioo 

An interesting question is connected with the zero distribution of the Muntz-
Legendre polynomials for a real sequence A. A nice proof of the following result 
was given in [4]. 

Theorem 2.2. For real numbers Av > -1/2 (v = 0,1, ... ) the Muntz-Legendre 
polynomial Pn(x; An) has exactly n distinct zeros in (0,1), and it changes sign at 
each of these zeros. Furthermore, the zeros of the polynomials 

Pn-1(x; An-d 

in (0,1) strictly interlace. 

and 

Now we consider the important special case where 

(k = 0, 1, ... ). 

Namely, we take A2k = k and A2k+l = k + f (k = 0,1, ... ), where f decreases to 
zero. The corresponding limit process leads to orthogonal Muntz polynomials with 
logarithmic terms. Then, (2.1) becomes 

{
mn-l(S+V+1)2_1 , when n = 2m, 
v=O s - v s - m 

Wn(s) = 
m (S+V+1)2 1 n when n = 2m + l. 

v=O s - v s + m + 1 ' 

Applying the Cauchy residue theorem to the integral in (2.2), with this ratio-
nal function, we obtain the following representation for the corresponding Muntz 
polynomials: 

(n = 0,1, ... ), (2.5) 
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where Rn(x) and Sn(x) are algebraic polynomials of degree [n/2] and [(n -1)/2], 
respectively, i.e., 

[n/2] [(n-I)/2] 

Rn(x) = L aSn)xv , Sn(x) = L bSn)xv . 

v=o 11=0 

Notice that Pn (1) = Rn(l) = 1. The first few Muntz polynomials (2.5) are: 

Po(x) = 1, 

PI (x) = 1 + log x, 
P2(x) = -3 + 4x -log x, 

P3 (x) = 9 - 8x + 2(1 + 6x) log x, 

P4(X) = -11 - 24x + 36x2 - 2(1 + 18x) logx, 

P5(X) = 19 + 276x - 294x2 + 3(1 + 48x + 60x2) logx, 

P6 (x) = -21- 768x + 390x2 + 400x3 - 3(1 + 96x + 300x2) logx. 

(2.6) 

The following theorem gives explicit expressions for the coefficients of the 
polynomials (2.6) for arbitrary n. 

Theorem 2.3. If n is an even number, n = 2m, we have 

(2m) m + V m 2m + 1 ) 2J + 1 
a =- ---+2m-v ( )

2 ( ) 2 [ m-I. 1 
v m v 2v + 1 ( (j - v) (j + v + 1) 

#11 

and 

bS2m) = -(m - v) (m vr 
for each O:S v :S m - 1. For v = m we have 

and 

If n is an odd number, n = 2m + 1, we have 

2j.+l 1 
v m v 2v+l f;:o (J-v)(J+v+l) 

#11 

and 

bS2m+ I) = (m + v + 1) (m v) 2 2, 

for each O:S v :S m. 

A simple proof of Theorem 2.3 can be obtained from the residue theorem. 
An explicit expression for Sn(x), n = 2m + 1, is given in [3, Theorem A.2.1]. 

These orthogonal Muntz polynomials can be used in the proof of the irra-
tionality of ((3) and of other familiar numbers (see [3, pp. 372-381] and [19]). 



Muntz Orthogonal Polynomials and Their Numerical Evaluation 183 

Putting Ak + f3 /2 instead of Ak, k = 0, 1, ... , in the sequence A, we can define 
a kind of Muntz-Jacobi polynomials p;t)(x) by 

(2.7) 

where 

Then, the following result holds: 

Theorem 2.4. Let f3 E IR and Re Ak > -(f3 + 1)/2 for each kENo. Then 

(p({3) p({3)) = rl p({3) (x)P'({3) (x) x{3 dx = {jnm . 
n 'm Jo n m An + An + f3 + 1 

The proof of this result and other properties of p;t) (x) will be given else-
where. 

In the special case Ak = k (k = 0,1, ... ), the generalized polynomials (2.7) 
reduce to the classical Jacobi polynomials PAO,(3) (f3 > -1) shifted to [0,1]. Then 

p;t)(x) = - 1) = (_I)n (n: (3)2Fl( -n, n + f3 + 1; f3 + 1; x) 

= (-It (n + (3) t (-nh(n + f3+ l)k . xk 
n k=O (f3 + l)k k! 

where 

({3) _ (_I)n-k nrr-l 
Cnk - k!(n _ k)! 1/=0 (f3 + 1 + k + 1/). 

Here, 2Fl is the hypergeometric function, (P)k is defined by (p)k = r(p+k)/r(p), 
and r is the gamma function. For f3 = ° these polynomials reduce to the Legendre 
polynomials shifted to [0,1]. 

Remark 2.5. It would be interesting to construct the Muntz-Jacobi polynomials 
ex ,(3) (x) orthogonal with respect to the inner product 
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2.2. Another class of orthogonal Miintz polynomials 
Recently, we defined an external operation for the Muntz polynomials from M(A) 
(see [5J and [15]). Namely, for 0:, f3 E C we define 

(x E (0,00)), 

and then for polynomials P E Mn(A) and Q E Mm(A), i.e., 

we define 

n 

P(x) = LPiXAi 
i=O 

and 

n m 

m 

Q(x) = L %XAj , 
j=O 

(P 8 Q)(x) = L LPiqjXAiAj . 
i=O j=O 

Under the restrictions that for each i and j we have 

(2.8) 

(2.9) 

(2.10) 

we can introduce a new inner product for Muntz polynomials (2.8) (see [15]), 

11 - dx 
[P,QJ = (P8 Q)(x) 2"' 

o x 
(2.11) 

where (P 8 Q)(x) is defined by (2.9). 
Under the conditions (2.10), we defined (see [15]) the Muntz polynomials 

Qn(x) == Qn(xjAn), n = 0,1, ... , orthogonal with respect to the inner product 
(2.11). These polynomials are associated with the rational functions 

n-1 
I1 (s - IjXv ) 

Wn (s) = __ _ (n = 0, 1, ... ) (2.12) 
I1 (s - .xv) 

v=O 

in the sense that 

(2.13) 

where the simple contour r surrounds all the points .xv (v = 0,1, ... ,n). We note 
that the functions (2.12) form a system known as Malmquist system of rational 
functions (see Walsh [20, p. 305J, Djrbashian [6J-[8]), which are orthogonal on the 
unit circle lsi = 1 with respect to the inner product 

1 i -ds 1 j1r "IJ-(u, v) = -. u(s)v(s) - = -2 u(et )v(eiIJ ) dO. 
27rz 181=1 S 7r_1r 

(2.14) 

This generalizes the Szego class of polynomials orthogonal on the unit circle (see 
Szego [17, pp. 287-295]). 

The following theorem gives the orthogonality relation for the polynomials 
Qn(x). 
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Theorem 2.6. Under the conditions (2.10) on the sequence A, the Muntz polyno-
mials Qn(x), n = 0,1, ... , defined by (2.13), are orthogonal with respect to the 
inner product (2.11), i.e., 

1 
[Qn,Qml = (IAnI2 -1)IAoAl ... An_112 bn,m. 

The proof of this theorem is based on the orthogonality of the Malmquist 
system of rational functions (2.12). Namely, we can prove that 

[Qn,Qml = (Wn, Wm), 
where the inner products [ ., ·l and ( . , . ) are given by (2.11) and (2.14), respec-
tively. 

Assuming that Ai =I- Ai (i =I- j), we get a representation of (2.13) in the form 

n 

Qn(x) = L:An,kXAk, 
k=O 

n-l 
II (Ak - 1/5.v) 

A - -=-v=...::o:--__ _ n,k - n 
II (Ak - Av) 
v=o vf.k 

(k = 0,1, ... , n). 

Now we mention some recurrence relations for the polynomials Qn(x). 

(2.15) 

Theorem 2.7. Suppose that A is a complex sequence satisfying (2.10). Then the 
polynomials Qn(x), defined by (2.13), satisfy the following relations: 

n-l 
= AnQn(X) + L:(Ak -1/5.k)Qk(x), 

k=O 
n-l 

= (An + L:(Ak 
k=O 

n-l 
Qn(l) = 1, = An + L:(Ak -1/5.k), 

k=O 

Qn(x) = Qn-l(X) - (An -1/5.n_l )XAn 11 rAn-1Qn_l(t) dt (x E (0,1]). 

One particular result for (2.13) when Av --+ A for each v, may be interesting: 

Corollary 2.8. Let Qn(X) be defined by (2.13) and let Ao = Al = ... = An = A. 
Then 

Qn(X) = XA Ln (-(A - 1/5.) logx), 
where Ln (x) is the Laguerre polynomial. 

Also, for a real sequence A such that 

1 < Ao < Al < ... 
we have: 

(2.16) 
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Theorem 2.9. Let A be a real sequence satisfying (2.16). Then the polynomial 
Qn(x), defined by (2.13), has exactly n simple zeros in (0,1) and no other zeros 
in [1, (0). 

3. Numerical Evaluation of Mootz Polynomials 

A direct evaluation of Muntz polynomials Pn(x) (or Qn(x)) in the power form 
(2.3) (or (2.15)) can be problematic in finite arithmetic, especially when n is a 
large number and x is close to 1. The polynomial coefficients Cnk (or Ank ) become 
very large numbers when n increases, but their sums are always equal to 1. (Recall 
that Pn(l) = 1 and Qn(l) = 1.) In order to illustrate this fact we consider a special 
class of Muntz polynomials determined by (2.5). Their coefficients are given in 
Theorem 2.3. 

3.1. A special case of Mootz polynomials 

Let a.. and bn be the vectors of coefficients of the polynomials Rn (x) and Sn (x) , 
defined by (2.6), i.e., 

[ (n) (n) (n) ] T 
bn = bo b1 • •• b[(n-l)/2] . 

Using Theorem 2.3, we can calculate these vectors. For n = 10 and n = 20 we 
have 

and 

alO = [-134 -52020 -999810 -1133440 1994895 190512(, 

blO = -5 [1 720 26460 125440 79380( 

-7318 
-52049250 

-24527715300 
-2114001489600 

-48491344751850 
-337299299349012 
-625811341034880 

163660745064960 
674793629510715 
173135700710830 

2150491110768 

b 20 = -10 

1 
10890 

7056720 
824503680 

26512946460 
286339821768 

1131219048960 
1633930721280 
775478838420 
85336948840 
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respectively. The absolute values of some coefficients increase very fast. For exam-
ple, the vectors a30 and b 30 are 

-1189751 
-44524636800 

-114037231854000 
-57424250116396800 

-8712106595849556900 
-497343278165994868608 

-12111056103238468936560 
1 -134308661572934174177280 

6006 -686397947699727236368395 
-1495971634625290991808640 
-818037563553451371290160 
1213101132351099611692800 
1461592959488813080647900 

respectively. 

439304716456359806505600 
33189655142727694141200 

144513038735768102400 

1 
53760 

176729280 
110279070720 

20527415148240 
1445130026436096 

44257107059605440 
-15 642345550526085120 

4645714010933775780 
17129875530027420160 
32118516618801412800 
29659336430994816000 
12512532556825938000 
2060815557834432000 

90230418791064000 

Using Horner's scheme for evaluating the values of Pn(x), written in the form 
(where = 0 for n even) 

[n/2] 

Pn(x) = L cSn)xv, c(n) = a(n) + b(n) log x 
II 1I V , 

v=O 

we obtain numerical results heavily affected by errors. Relative errors in the values 
of Pn(x), for n = 10(10)40 and some selected values of x, obtained by using D-
arithmetic (with machine precision::::::; 2.22 x 10-16), are presented in Table 3.1. 
Numbers in parentheses indicate decimal exponents. 

TABLE 3.1. Relative errors in the values Pn(x) in D- (and Q-) arithmetic 
x n= 10 n= 20 n= 30 n=40 Q-arith. (n = 40) 

10 -;j 3.08(-15) 9.92(-14) 2.31(-12) 1.03(-10) 
10-2 2.84(-14) 2.44(-11) 5.72(-9) 1.12( -6) 
0.1 1.52( -12) 8.29(-7) 8.06(-3) 7.62(+1) 
0.2 8.38( -12) 3.21(-6) 4.10(-1) 2.43( +5) 9.05( -14) 
0.5 3.42(-10) 3.83(-4) 1.93( +2) 5.49(+11) 5.08( -7) 
0.9 5.34( -10) 1.11(-2) 7.28(+4) 9.24(+12) 4.95( -5) 
1.0 2.13(-10) 5.13(-3) 4.89(+4) 4.81(+11) 8.41( -5) 

As we can see, the values obtained for n 30 are quite wrong, excluding 
cases when x is very close to zero. When n = 10 and n = 20, at x = 1 we 
lost approximatively 6 and 13 decimal digits, respectively. Also, when we used 
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Q-arithmetic (machine precision 1.93 x 10-34 on the MICROVAX 3400), for 
n = 40 and x = 1 we lost about 30 digits (see the last column in Table 3.1). Notice 
that the shapes of the curves y = Rr,(x) and y = Sn(x) log x (Fig. 1) are very 
similar at first sight, but we know that the sum Rr,(x) + Sn(x) log x represents 
the Muntz polynomial Pn(x) which changes its sign n times on [0,1]. Its zeros 
are more densely distributed around 0 than in other parts of the interval [0,1]. In 
Figs. 2 and 3 we display P20(x) on the intervals [0.05,1] (14 zeros), [10-3 ,0.05] (4 
zeros), and [0,10-3] (two zeros). 

--, - , 
'" 100000 '" 

, 
'" '" '" '" 50000 '" 

0 

-50000 

-100000 

0 0.2 0.4 0.6 0.8 

2 , , , 1 
\ 

-1 

-2 
1 

1012 

1012 

0 

1012 

1012 

0 

, 

" , , , \ 

,," \ , \ 

0.2 0.4 0.6 0.8 

FIGURE 1. Graphics x t--t Rr,(x) (solid line) and x t--t Sn(x) log x 
(broken line) for n = 10 and n = 20 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

0 0.2 0.4 0.6 0.8 1 

FIGURE 2. The Muntz polynomial P20 (x) = R20(X)+S20(X) log x 
on [0.05,1] 

Before concluding this subsection we mention that the Muntz polynomials 
(2.5) have a logarithmic behaviour in the neighbourhood of zero, i.e., 

P2m(X) rv -m log x, P2m+l(x) rv (m+ 1) log x (x -t 0+). 
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°v -2 
__________________ 

0.00020.00040.00060.0008 0.001 

FIGURE 3. The Muntz polynomial P20(X) on [0.001,0.05] and [0,0.001] 

3.2. A numerical method for evaluating Miintz polynomials 
In this subsection we give a stable numerical method for evaluating the values of 
the Miintz-Legendre polynomials defined by (2.1) and (2.2), i.e., 

n-l -

Wn(S) = II s+AII +1._1_. 
11=0 S - All S - An 

(3.1) 

For evaluating Muntz polynomials Qn(x), defined in §2.2, we can use the same 
procedure with the rational function (2.12). 

Our method is based on a direct evaluation of the contour integral in (3.1). 
First we take the contour r = r R = C R U L R (see Fig. 4). Thus, C R is a semicircle 
with center at a < -1/2 and radius R such that all poles of Wn(s) are inside the 
contour rR, and LR is the straight line S = a + it, -R:::; t :::; R. (Notice that the 
function Wn(s) has only real poles marked by crosses in Fig.4 for n = 5.) 

FIGURE 4. The contour of integration for the integral in (3.1) 

Lemma 3.1. We have fCR Wn(s)XS ds -+ 0 when R -+ 00. 
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Proof. Let s E CR, i.e., s = a+ReiO , -7r :5 0 :5 7r. For a sufficiently large R, there 
exists a positive constant M > 1 such that IWn(s)1 :5 M/R. Indeed, this follows 
from 

Now, we have 

1 
a - An + ReiO 

1 a + .xv + 1 -iO + R e 

a - Av 00 1+--e-t 
R 

r Wn(s)XS ds :517</2 IWn(s)I·1 e(u+Re i8 ) log x I RdO 
JCR -7</2 

:5 Meulogx 17</2 e-RcosOlog(l/x) dO. 
-",,/2 

Using the Jordan inequality coso> 1 - 2()/7r (0 < 0 < 7r/2) and putting w = 
log(1/x) > 0, we get 

r Wn(s)XS ds 1:5 2Me-uw r/2 e-Rw(1-20/7<) dO = M7re-uw (1- e-Rw ) ----t 0 
JCR Jo Rw 

when R----t 00. 0 

Thus, when R ----t 00, integration along the contour r R reduces to integration 
over the line LR, so that 

i.e., 

Pn(X) = XU 100 [_! Wn (a - i!)] eit dt. 
27r -00 w W 

Since n-l ° -_! HI: (a - i!) = _! rr a - 2t/W + Av + 1 . 1 = !n(t· w) 
wnw W a - it/w - Av a - it/w - An i " v=o 

where nrr-l t + i(a + Xv + 1)w 1 
!n(t;w) = v=o t+i(a-Av)w 't+i(a-An)w' (3.2) 

we obtain 
Pn(X) = -0 !n(t;w)eit dt. XU 100 

27r2 -00 

This gives the following result: 
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Theorem 3.2. Let tj < -1/2, fn(t;w) be defined by (3.2), and 

'Pn(t;w) = ;i (fn(t;w)eit + fn(-t;w)e-it). (3.3) 

Then the Muntz-Legendre polynomials can be represented in the integral form 

x a 100 Pn(X) = - 'Pn(t;w)dt. 
7r 0 

(3.4) 

In the sequel we consider the case when the sequence A is real. An important 
corollary of Theorem 3.2 is the following result: 

Theorem 3.3. Let A = {Ao, )'1, A2""} be a real sequence such that Ak > -1/2 for 
everyk E No, fn(t;w) be defined by (3.2), andtj < -1/2. Then the Muntz-Legendre 
polynomials have the following integral representation: 

Pn(x) = 1m {1°O fn(t; w)eit dt} . (3.5) 

In this case we have fn(-t;w) = fn(t;w), and then (3.3) becomes 'Pn(t;w) = 
1m Un(t;w)eit }, and (3.4) gives (3.5). The poles of fn(t;w) are then purely imagi-
nary, i(Av - tj)w, /J = 0,1, ... , n, and located on the positive part of the imaginary 
axis, because of Av > tj and w = log(l/x) > O. 

In order to calculate the integral in (3.5) (or in (3.4)), we use the following 
idea on complex integration (see [14, Theorem2.2]). We select a positive number 
a = m7r (m E N) and put 

100 fn(t;w)e it dt = l a fn(t;w)e it dt + 1+00 fn(t;w)e it dt 

Here, 

Le., 

and 

L2 (fn ( . ;w)) = 1+00 fn(t;w)e it dt. 

Since fn(z; w) is a holomorphic function in the region D = {z Eel Re z 
a > 0, Imz O} and Ifn(z;w)1 ::; A/izi when Izl ----> +00, for some positive 
constant A, we can prove 

(3.7) 
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o 

FIGURE 5. The contour of integration for the integral L2(fn(· ;w)) 

Indeed, if we take a closed contour of integration as in Fig. 5, consisting of 
the real segment [a, a + RJ, the circular arc CR , and the line segment joining the 
points a + iR and a, we get, by Cauchy's residue theorem, 

l a+R 17r/2 1 (t· w)eit dt + [1 (z· w)eiz ] . Riei!) dO n , n, z=a+Re,6 
a 0 

+ i LO fn(a + iy; w)ei(a+iY) dy = O. 

Using Jordan's lemma, we obtain the following estimate for the integral over the 
circular arc C R, 

. . n A 
I [f (z· w)etZ] . Ried) dO I < - . (1 - e-R) -+ 0 on, z=a+Re,6 - 2 va2 + R2 

when R -+ +00. Thus we conclude that (3.7) holds. 
Finally, for a = mn, (3.7) becomes 

L2(fn(- ;w)) = (_l)m 100 7/Jn(y;w)e-Y dy, (3.8) 

where 

n-l ( . . II y + a + >'v + l)w - ia 1 
7/Jn(Y;w) =zfn(a+zy;w) = +( >.) . . +( >.) .. v=O y a - v w - za y a - n W - za 

Theorem 3.4. Under the conditions of Theorem 3.3, the Muntz-Legendre polyno-
mials have a computable representation 

(3.6) 

where Ldfn( .; w)) and L2(fn(·; w)) are given by (3.6) and (3.8), respectively. 
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In the numerical implementation we use the Gauss-Legendre rule on (0,1) 
and the Gauss-Laguerre rule for calculating L1 (f n ( . ; w)) and L2 (f n ( . ; w) ), respec-
tively. Numerical experiments show that a convenient choice for the parameter a 
is Amin -7r/w, where Amin = min{Ao, AI, ... }. 

In order to calculate the relative errors in Table 3.1, we used the previous nu-
merical procedure for evaluating Pn (x) with machine precision (in D-arithmetic). 

Remark 3.5. At the Oberwolfach Meeting on "Applications and Computation of 
Orthogonal Polynomials" (March, 1998), we also presented a stable numerical 
method for constructing the generalized Gaussian quadratures using orthogonal 
Muntz systems, but it is not included in this paper because of limited space. Some 
references in that direction are [1], [9], [10], [11], [12], and [16]. 

Acknowledgments. The author is grateful to Professor Walter Gautschi for helpful 
comments. 
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