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Abstract. This survey paper is devoted to inequalities for zeros of algebraic polynomials. 
We consider the various bounds for the moduli of the zeros, some related inequalities, as 
well as the location of the zeros of a polynomial, with a special emphasis on the zeros in 
a strip in the complex plane. 

1. Introduction 

In this paper we give an account on some important inequalities for zeros of alge-
braic polynomials. Let 

(1.1) 

be an arbitrary algebraic polynomial of degree n with complex coefficients ak 
(k = 0,1, ... ,n). According to the well-known fundamental theorem of algebra, 
the polynomial (1.1) has exactly n zeros in the complex plane, counting their 
multiplicities. 

Suppose that P(z) has m different zeros Zl, ... , Zm, with the corresponding mul-
tiplicities kl' ... , km . Then we have 

m m 

(1.2) P(z) = an II (z - zv)kv, 
v=l 

Rouche's theorem (cf. [45, p. 176]) can be applied to prove the proposition that the 
zeros of a polynomial are continuous functions of the coefficients of the polynomial. 
This property can be stated in the following form. 
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Theorem 1.1. Let P(z) be given by (1.1) and let Zl, ... , Zm be its zeros with the 

multiplicities kl' ... , km, respectively, such that (1.2) holds. Further, let 

Q(z) = (aD + Eo) + (al + Edz + ... + (an-l + En_dz

n

-

l 

+ anz

n

, 

and let 

j = 1, ... ,1/ - 1,1/ + 1, ... ,m. 

There exists a positive number E such that, if lEi I E for i = 0, 1, ... ,n - 1, then 

Q(z) has precisely k

y 

zeros in the circle Cy 

with center at Zy and radius ry. 

There are several proofs of this result. Also, this theorem may be considered as a 
special case of a theorem of Hurwitz [27] (see [45, p. 178] for details and references). 

Thus, the zeros Zl, ... , Zm, can be considered as functions of the coefficients aD, 

aI, ... , an, i.e., 

(1/ = 1, ... ,m). 

Our basic task in this paper is to give some bounds for the zeros as functions of all 
the coefficients. For example, we try to find the smallest circle which encloses all 
the zeros (or k of them). Instead of the interiors of circles we are also interested 
in other regions in the complex plane (half-planes, sectors, rings, etc.). 
The paper is organized as follows. Section 2 is devoted to the bounds for the 
moduli of the zeros and some related inequalities. The location of the zeros of a 
polynomial in terms of the coefficients of an orthogonal expansion is treated in 
Section 3. In particular, we give some important estimates for zeros in a strip in 
the complex plane. 

2. Bounds for the Moduli of the Zeros 
In this section we mainly consider bounds for the moduli of the polynomial zeros. 
We begin with classical results of Cauchy [11]: 

Theorem 2.1. Let P(z) be a complex polynomial given by 

(2.1) 

and let r = r[P] be the unique positive root of the algebraic equation 

(2.2) f(z) = lanlz

n - (lan_Ilz

n

-

1 

+ ... + lallz + lao!) = 0. 

Then all the zeros of the polynomial P(z) lie in the circle Izl r. 

Proof. If Izl > r, from (2.2) it follows that f(lzl) > 0. Since 

(2.3) IP(z)1 2: lanllzl

n 

- (lan_Illzl

n

-

1 

+ ... + lalllzi + lao!) = f(lzl), 

we conclude that IP(z)1 > 0, i.e., P(z) :I 0, for Izl > r. Thus, all the zeros of P(z) 

must be in the circle Izl r. 0 
The polynomial f(z), which appears on the left hand side in (2.2), is called asso-

ciated polynomial of P(z). As usual, we call r[P] the Cauchy bound of P(z). 



Theorem 2.2. Let P(z) be a complex polynomial given by (2.1) and let 

M = max lalll and 

Then all the zeros of P(z) lie in the ring 

laol M 
laol + M' < Izl < 1 + lanl . 

Proof. Suppose that Izl > 1. Then from (2.3) it follows 

lP(z)1 lanllzl n - M(lzln-l + ... + Izl + 1) 

= lanllzln(l- Izl-II) 

( 

M +00 ) 
> lanllzln 

1- Izl-II 

= I II In lanllzl- (Ianl + M) 
an z I I . z -1 
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Hence, if Izl 1 + Milani we see that lP(z)1 > 0, i.e., P(z) =I- o. Therefore, the 
zeros of P(z) can be only in the disk Izl < 1 + Milani. Applying this result to the 
polynomial znp(llz) we obtain the corresponding lower bound. 0 

The circle Izl :S 1 + Milani cannot be replaced by a circle Izl :S 1 + OMllanl, 
with a universal constant 0 such that 0 < 0 < 1 as the simple example Po(z) = 
zn - M zn-l demonstrates if only M is sufficiently large. 

Cohn [13] proved that at least one of zeros of P(z) satisfies the following inequality 

Izl r( V'2 -1), 

where r is the Cauchy bound of P(z). His proof based on the Grace-Apolarity 
theorem. Using the elementary symmetric functions and AG inequality, Berwald 
[4] proved: 

Theorem 2.3. Let Zl, ... ,Zn be the zeros of the polynomial P(z) given by (2.1) 
and let r be the unique positive root of the equation (2.2). Then 

with equality in the second inequality if and only if Zl = ... = Zn. 

Similarly as in the proof of Theorem 2.2 we can use the well-known Holder in-
equality (cf. Mitrinovic [48, pp. 50-51]) 
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where Xk 0, Yk 0 (k = 1, ... ,n) and l/p + l/q = 1 with p > 1, to estimate 
the right hand side in (2.3). So we obtain 

(

n-l ) lip 

where Mp = lavl

P and 

n-l 1 

A(z) = L Izl(v-n)q < :-Iz:-Iq---l 

v=o 

(l

z
l>I). 

Thus, for Izl > 1 we have 

IP(z)1 > lanllzl

n (1 - Mp 1/)' 
lanl (izlq - 1) q 

Therefore, if (Izlq - l)l/q Mp/lanl, i.e., 

( 
M q)l/q 

Izl 1 + (la:l) , 

we conclude that IP(z)1 > 0, i.e., P(z) f- O. 

Thus, we can state the following result (Kuniyeda [31]-[32], Montel [49]-[50], Toya 
[73], Dieudonne [16], Marden [39]): 

Theorem 2.4. Let P(z) be a complex polynomial given by (2.1) and let 

where p, q > 1, l/p + l/q = 1. Then all the zeros of P(z) lie in the disk 

Izl < Rpq. 

Taking p ---+ +00 (q ---+ 1) we obtain Theorem 2.2. 

The special case p = q = 2 gives the bound investigated by Carmichael and Mason 
[10], Fujiwara [18], and Kelleher [29]: 

vlaol2 + lall

2 

+ ... + la

n

l

2 

R22 = lanl . 
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We mention here also a similar result of Williams [81], who changed R22 by 

I JJ

a

oJ2 + Jal - aoJ2 + ... + Jan - a

n

-lJ

2 + Ja

n

J2 

R22 = JanJ 

From some Cauchy's inequalities (see Mitrinovic [48, p. 204 and p. 222]) we can 

obtain the following inequalities 

(2.4) 

which hold for the real numbers a

v

, f3v > 0, Av > 0 (v = 1, ... ,n), with equality if 

and only if the sequences Q = (aI, ... ,an) and f3 = (131, ... ,f3n) are proportional. 

Using these inequalities, Markovic [40J considered 

n 

and 

v=o v=o 

with b

v 

> 0 (v = 0, I, ... ) and proved the following result: 

Theorem 2.5. Let ro be a positive root of the equation M f(r) = JaoJ, where 

M = max 

l:::;v:::;n b

v 

Then all the zeros of P(z) lie in JzJ ro. 

In particular, when b

v 

= t-V (v = 1,2, ... ) and 

g(t) = max (JavW), 

l:::;v:::;n 

where t is any positive number, one has that all the zeros of P(z) lie in the domain 

JaoJt 

JzJ JaoJ + g(t) 

The same result was also obtained by Landau [33J in another way. 

Assuming that Al > ... > An > 0, Simeunovic [63J improved (2.4) in following 

way 

(

V ) n (V ) 

L ak L avAv L ak 

. a

v < . k=l < v=l < k=l 

mm - mm -- max --

l:::;v:::;n f3v - l:Sv:Sn t 13k - f f3v

A

v - l:Sv:Sn t 13k 

k=1 v=1 k=1 

and then proved that all the zeros of P(z) lie in the domain 

> JaoJt 

JzJ - JaoJ + h(t) , 

where 

h(t) = max JakJt

k

) max (JakJtk). 

l<v<n V l<k<n 

- - k=1 - -

In Bourbaki [8, p. 97J the following result is mentioned as a problem: 
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Theorem 2.6. Let 

(2.5) P() n n-l 
Z = Z + an-lz + ... + alz + ao 

be a polynomial with non-zero complex coefficients, and let Zv (v = 1, ... , n) be 

the zeros of this polynomial. Then 

max Izvl ::; max(2Ian-ll, 21 a

n

-

2 1, .. · ,21 al 1,1 ao I)· 
l:Sv:Sn an-l a2 al 

Introducing a new variable w = z + an-tin, the polynomial (2.5) can be trans-
formed to a polynomial of the form 

P(w - an-tin) = wn + Cn_2Wn-2 + ... + ClW + Co. 

lf we define a polynomial S(w) by 

(2.6) 

then we can prove the following result (cf. Milovanovic [43, pp. 398-399]): 

Theorem 2.7. If at least one of the coefficients C

v 

(v = 0, 1, ... , n - 2) is 
non-zero, then all the zeros of P(z) lie in the circle 

Iz + a:- l I::; r, 

where r is the unique positive zero of the polynomial (2.6). 

Setting Pk = lan-klanl (k = 1, ... , n) the equation (2.2) reduces to 

(2.7) 
n 

zn = LPkzn-k, 

k=l 

n 

where Pk ::::: 0 (k = 1, ... , n) and I: ak > O. Westerfield [80] found an estimate 
k=l 

for the positive root of this equation. 

Theorem 2.8. Let r be the unique positive root of the equation (2.7) and let 

positive quantities vPk (k = 1, ... , n), after being arranged in order of decreasing 

magnitudes, form a sequence ql ::::: q2 ::::: ... ::::: qn' Then r satisfies the inequality 

n 

r ::; I: qkSk, where 

k=l 

Sk=Yk-Yk-l (k=2, ... ,n), 

and where Yk is the unique positive root of the equation 

(k = 1, ... ,n). 

A simple proof of this theorem was given by Bojanov [5] as an application of the 
following his theorem: 
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Theorem 2.9. If Xv are positive roots of the equations 

(avI' av2 ... ,avn 0; II = 1, ... ,m), 

then the positive root Z of the equation 

satisfies the inequality Z :::; Xl + X2 + ... + X
m

· 

The method of Bojanov [5] gives also a lower bound for the positive root of (2.7). 

Zervos [82] proved the following result: 

Theorem 2.10. Let h, ... ,In be index sets and Bij 0) real numbers satisfying 

the condition 

L Biv = II - t (II = 1, ... ,n), 
iv E1v 

where t (0 < t :::; 1) is a fixed number. Then, the positive root r of the equation 

(2.7) satisfies the inequality 

where M = max{ Mi

v

} and Miv are any positive numbers. 

Presic [54] proved a lemma which with certain specifications proves the previous 

theorem of Zervos. An extension of this lemma, which gives a lower bound of r, 

was proved by Taskovic [70]. 

Let A2, ... ,An be arbitrary positive numbers and let r be the unique positive root 

of the equation (2.7). Then (see Zervos [82, p. 343] and Mitrinovic [48, p. 223]) 

(2.8) 

r :::; max ( A2, . .. ,An, (PI + + ... + I ) ) . 

In order to prove this we put A = max(A2, ... ,An). If a r, then (2.8) holds. Let 

A < r. Then A2, ... ,An < r, and therefore 

P2 Pn P2 Pn 

PI + - + ... + -- > PI + - + ... + --
).2 - r r

n

-

1 

1 (n-l ) = -- PI r + ... + Pn = r 

r n - l 

and inequality (2.8) is true. 
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Introducing a mini-max principle to a totally ordered sets, Taskovic [71] stated a 
result which in a special case gives that 

r = min + max (A2, ... , An, (Pl + + ... + 1 )) 
A2 ,,,. ,An EIR 1\2 An 

= max +min(A2, ... + ... + 

A2, ... , An EIR 1\2 An 

Walsh [77] proved the following result: 
n 

Theorem 2.11. If all the zeros of a polynomial P(z) = L avzv lie in a circle 
v=o 

Izl :::; r, then all the zeros of the polynomial P(z) - a lie in the circle 

Izl :::; r + la/anl l /n. 

Precisely, this is an useful consequence of a general result of Walsh [77], which 
is known as Coincidence Theorem (see Theorem 2.20) Walsh [78] also proved the 
following result: 

Theorem 2.12. Let P(z) be a polynomial of degree n given by (2.1). Then all 
its zeros lie in the circle Izi :::; R, where 

R = 1 :k Il/(n-k) . 

k=O n 

Proof. Suppose that all the zeros of the polynomial 

P ( ) k k-l k Z = anz + an-lz + ... + an-k+lZ 

lie in the circle Izi :::; rk-l (k = 1, ... , n). Since Pt(z) = anz, we have ro = O. 

Applying Theorem 2.11 to Pdz), with a = -an-k, we conclude that all the zeros 
of the polynomial 

lie in the circle Izl :::; rk-l + lan_k/anll/k. Since 

Pk(z) = ZPk-l(Z) + an-Hl 

taking rk = rk-l + lan_k/anll/k, we obtain 

(k = 2, ... ,n), 

R _ _I an-l 1 1 an_2
I

l

/

2 
1 ao Il/n - rn - -- + -- + ... + -

an an an 
o 

Some improvements of this result were given by Rudnicki [61]. Tonkov [72] gave 
an elementary proof of this theorem and also determined the lower bound for the 
zeros. 

The following result was also proved by Walsh [78]: 
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Theorem 2.13. All the zeros of the polynomial P(z) given by (2.1), where an = 1, 
lie in the disk 

(2.9) 

n 

where M = L: Ian_viI/v. 

v=2 

Another proof of this theorem was given by Bell [3]. 

Rahman [55] replaced the disk (2.9) by 

Iz + lan-II + aM, 

where (i) a = 0 if P(z) is of the form an_Iz

n

-

I 

+ zn, and (ii) 

_ (M-II II/V) (v-I)/v a - max a

n

-

v 

2:Sv:Sn 

if P(z) is not of the form an_Iz

n

-

I 

+ zn. 

The classical Cauchy's bounds were improved in various ways by many authors. 
As an improvement Joyal, Labelle, and Rahman [28] proved the following theorem: 

n 

Theorem 2.14. Let P(z) = L: avz

v 

(an = 1) be a polynomial of degree n, and 

v=o 

let (3 = max lavl. Then all the zeros of P(z) lie in the disk 

O:Sv<n-I 

(2.10) I{ [ 2 ]1/2} 
Izl 1 + lan-II + (I-lan-II) + 4{3 . 

The expression (2.10) takes a very simple form if an-I = O. If lan-II = 1, it 
reduces to 1 + .JjJ, which is smaller than the bound obtained in Theorem 2.2. If 

lan-II = (3, Theorem 2.14 fails to give an improvement of Theorem 2.2. A ring-
shaped region containing all the zeros of P(z) was obtained by Datt and Govil 
[14]: 

n 

Theorem 2.15. If P(z) = L: avz

v 

(an = 1) is a polynomial of degree nand 

v=o 

A = max lavl, then P(z) has all its zeros in the ring-shaped region 

O:Sv:Sn-I 

(2.11) laol < Izl < 1 + A A 

2(1 + A)n-I(An + 1) - - 0, 

where Ao is the unique root of the equation x = 1 - 1/(1 + Ax)n in the interval 

(0, 1). The upper bound 1 + Ao A in (2.11) is best possible and is attained for the 

polynomial zn - A(zn-I + ... + z + 1). 

If one does not wish to look for the roots of the equation x = 1 - 1/ (1 + Ax) n , 

one can still obtain a result which is an improvement of Theorem 2.2, even in the 
case lan-II = {3: 
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Theorem 2.16. Under the conditions of Theorem 2.15, P(z) has all its zeros in 
the ring-shaped region 

laol < Izl < 1 + (1 _ 1 )A. 
2(1 + A)n-l (An + 1) - - (1 + A)n 

Some refinements of Theorems 2.14 and 2.15 were obtained by Dewan [15]. 

We mention here also a result of Abian [1]: 

Theorem 2.17. Let P(z) = ao + alZ + ... + anzn with ao i- 0 be a polynomial 
and let A(z) and B(w) be given by 

1 

A(z)=-----
ao + ... + anzn and 

1 

B(w) = , 
aown + ... + an 

respectively. 
given by 

Then the precise annulus which contains all the zeros of P(z) zs 

1 - k 11 I 

----,==== Izl lim ,B(k)(O). 
- k 11 I k-t+oo k. lim - A(k) (0) 

k-t+oo k! 

(2.12) 

From the well-known Stirling's formula it follows that lim k- 1 (k!)k-l = e- 1

. 

k-t+oo 
Then (2.12) reduces to 

1 -. (0)1 
< Izl < e hm 
- - k-t+oo k 

e lim 
k-t+oo k 

In 1881, Pellet [53] published the following result: 

Theorem 2.18. If the equation Fk(Z) = 0, where 

Fdz) =Iaol + lallz + la21z2 
+ ... + lak_llzk-1 -Iakl zk 

(0 < k < n, aoan i- 0), 

has two positive roots rk and (Jk (0 < rk < (Jk), then the polynomial 

z I-t P(z) = ao + alZ + a2z2 + ... + anzn 

has no zeros in the annulus rk < Izl < (Jk and precisely k zeros in the disk Izl :S rk. 

Pellet's proof uses Rouche's theorem [60] (see also [45, p. 176]). Walsh [79] pub-
lished in 1924 another more direct proof and established a sort of converse of 
Pellet's theorem. Walsh allows in his proof the zeros of P(z), which are in abso-
lute value less than a, to vary continuously and monotonically (in absolute value) 
and to approach O. Walsh [79] remarked that his proof of Pellet's theorem remains 
valid also in the case of a power-series and of its zeros inside the circle of con-
vergence. Ostrowski [51] remarked that his proof of Walsh's theorem also applies 
mutatis mutandis to a power series when one considers its zeros within the circle 
of convergence. 
Precisely, Walsh's converse of Pellet's theorem can be stated in the following form 
(cf. Marden [39, p. 129]): 
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Theorem 2.19. Let Fk be defined as in Theorem 2.18, where ao, a1, ... , an 
are fixed coefficients, and let co, C1, ... , Cn be arbitrary complex numbers with 
Icol = hi = ... = Icnl = 1. 

If r is a positive number such that 

(1) r is not a zero of any polynomial 

(2) every polynomial P(z) has k (0 < k < n) zeros in the circle Izl = r. 

Then Fk(z) has two positive zeros rk and {!k (0 < rk < (!k) and rk < r < (!k. 

Steckhin [68] considered a generalized case 

where 'Pk(Z) are arbitrary complex functions and ICkl = 1 (k = 0,1, ... ,n). Let 

!mG be the set of all the zeros of G(z) when co, e1, ... ,en vary independently, but 

such that hi = 1 (k = 0,1, ... ,n). Steckhin [68] gave an elementary proof of the 

following result: 

Theorem 2.20. In order that z E !mG, the necessary and sufficient conditions 
are given by 

(2.13) Gk(z) = l'Po(z)1 + ... + l'Pk-1 (z)I-I'Pk(Z)1 + ... + l'Pn(z)1 0, 

where k = 0,1, ... ,n. 

Proof. Suppose that GII(z) < ° for some v (0 :S v :S n). Then 

IG(z)1 1'PII(z)1 - L l'Pk(Z)1 = -GII(z) > 0, 

kill 

i.e., z (j.!m. 

Conversely, let Ak = l'Pk(Z)1 and Aq = max Ak. Inequalities (2.13) show that 

°9':;n 
Aq :S L: Ak. Since every term of the right sum does not exceed Aq , this sum can 

k-/q 

be split on B1 = L:1 Ak and B2 = L:2 Ak so that IB1 - B21 :S Aq • Then, we have 

i.e., it is possible to build a triangle by the line segments having the lengths B1 , 

B2, and Aq. This ensures existence of the numbers 'fJk (k = 0,1, ... ,n), l'fJkl = 1, 

n 
so that L: 'fJkAk = 0. But, Ak = l'Pk(Z)1 = 8k'Pk(Z)' where 18

k

l = 1. Thus, 

k=O 
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n 

L: ck'Pk(Z) = 0, where Ck = 'f/k6k, ICkl = 1 (k = 0,1, ... ,n). In this way, z E OO1a 
k=O 
and the proof is completed. D 

The conditions of this theorem can be stated in a compact form 

n 

"1'Pk(Z)1 > 2 max l'Pk(Z)I· - O<k<n 
k=l - -

Let P(z) be a polynomial, defined by 

(2.14) 

where 

z = xei() (x 0, ° S () < 271'), ak 0, ICkl = 1 (k = 0,1, ... ,n), 

and let 001 be the corresponding set of all the zeros of P(z) when ak are fixed and 
co, C1, .. · ,Cn vary independently, but ICk I = 1 (k = 0,1, ... ,n). 
Applying the previous theorem to (2.14) Steckhin obtained the following result: 

Corollary 2.21. In order that z E 001, the necessary and sufficient conditions are 
given by 

where k = 0,1, ... ,n. 

Let aoan "i O. Then 

PO(x) < 0 (0 S x < go), 

Pn(x) 0 (0 S x S rn), 

and for k = 1, ... , n - 1, 

Po(x) 0 (go S x < +(0), 

Pn(x) < 0 (rn < x < +(0), 

which yields the result of Walsh [79) and Ostrowski [51). 

Select now some subset S C {O, 1, ... , n} and denote by 0015 the set of zeros of 
all polynomials P(z) for fixed values of ak (k = 0,1, ... ,n) and cp (p E S), when 
other Ck independently take values so that ICkl = 1. Steckhin [68] also proved: 

Theorem 2.22. Set 

Q(x, '1') = L cpapxPeipcp, 
pES 

r(x) = max {o, 2maxakxk - R(X)}. 
k(/.S 
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For z E 9J1s it is necessary and sufficient that inequalities 

r(x) IQ(x,cp)1 R(x) 

hold. 

The special case when S = {p, q} (0 p < q n) was considered by Lipka [37] 
and Marden [38] (see also Marden [39, pp. 130-133]). A complete description of 
the set 9J1

pq 

== 9J1s can be given by Theorem 2.22 (see Steckhin [68]). 

Riddell [59] considered the problem of the zeros of the complex polynomial 

under the assumption that some lakl is large in comparison with the other lail, 
and he proved that then P(z) has n - k zeros near 0 and one zero near each of 
the k values of (-ak?/k. He established certain conditions under which precise 
estimates can be given. The results obtained rest on the following observation. 
Let k denote an integer in the range 1 k n, chosen and fixed in the sequel. 
Given a polynomial P(z) as above, suppose that P(z) = 0 and z ::j:. o. It follows 
that 

Define 

and 

IZk + akl L laillzlk-i. 
i# 

{ 

br + cr

k

-

n 

g(r) = br

k

- 1 + cr-1 

(0 < r 1), 
(r 1), 

where it is understood that b = 0 in case k = 1, and c = 0 in case k = n. 

It is an immediate consequence that if P(z) = 0 and Izl > 0, then 

In the following, we will consider two cases, where the quantities P(z), k, a, b, c, 
and g(r) will continue to have the meanings given above. 

Case 1. Annuli which contain no zero. Riddell [59] proved the following estimate 
which asserts the existence of a zero-free annulus 

Estimate A. The polynomial P(z) has n - k zeros in the disk Izi m_ and k 

zeros in the region Izi m+, where m_ < m+ a

1

/

k 

(zeros are being counted 

with their multiplicities). 

The proof of this result depends on the following lemma: 
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Lemma 2.23. Estimate A holds if r = m_ and r = m+ are two solutions of an 

equation of the form a = h(r), where 

h(r) rk + g(r). 

Lemma 2.23 is essentially the result of Pellet [53, p. 393] (see also Dieudonne [16, 

p. 10D in our context. 

The first application of Riddell's lemma is to the existence of m± to the right of 

r = 1. For this, Riddell [59] proved the following result: 

Theorem 2.24. Let 1 < a ::; 1 + b + c, and D > 0, where 

1 a1

/

k 

- 1 

D = - (a 

1

/ k + b) 

2 

- (ab + c). 
4 a-I 

Then Estimate A holds with 

(2.15) 

If m_ and m+ lie on opposite sides of r = I, Riddell [59] proved: 

Theorem 2.25. Let 1 + b + c < a. Then Estimate A holds with 

(2.16) 

= ( c ) l/(n-k) 

m_ , 

a-b-l 

_ (a-C)l/k 

m+ - b+ 1 ' 

and also with m_ given by (2.16) and m+ by (2.15). 

The case b = 0 of Theorem 2.25 strengthens a result of Parodi [52, pp. 139-140]. 

When both m± are to the left of r = I, Riddell [59] obtained: 

Theorem 2.26. Let c < a ::; 1 + b + C and b + 2d

1j2 

< a, where 

Then Estimate A holds with 

if k < n/2, 

if k n/2. 

Case 2. Disks which contain a single zero. In the following we will present Riddell's 

Estimate B, which under stronger conditions implies the existence of k disks 

each one of which isolates a single zero of P(z). 
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Estimate B. The polynomial P(z) has n - k zeros in the disk Izl m_ and one 

zero in each of the k disjoint disks 

For the proof of this estimate the following lemma is essential. 

Lemma 2.27. Suppose that Estimate A holds with m± given as in Lemma 2.23. 

Suppose for some upper bound M on the moduli of the zeros of P(z), 

g(M) a - mi. 

Then Estimate B holds with the given m_ and with R = a

l

/

k 

- m+, provided also 

that, in case k 3, R < al

/

k 

sin(7r/k). 

The first result derived from this lemma applies, in case k 2, only to lacunary 

polynomials P(z). 

Theorem 2.28. Let a > 1, b = 0, and D > 0, where 

D = _ a

l

/

k 

- 1 c. 

4 a-I 

Then Estimate B holds, with 

_ D l

/

2 

2 ' 

if a 1 + c, 

(c/(a _ 1))I/{n-k), 
if a> 1 + c, 

provided also that, in case k 3, R < al

/

k 

sin(7r/k). 

The case k = 1 of the above theorem simplifies an estimate due to Parodi [52, pp. 

76-77]. 

With some slight loss in precision for small values of k, the next theorem does not 

require the restriction P(z) to be a lacunary polynomial. Riddell [59] proved the 

following results: 

Theorem 2.29. Let 1 + 2b < min{a

l

/

k

,a + b - c}. Then Estimate B holds, with 

= ( c ) 1/{n-k) 
m_ b 1 ' 

a- -

R = a

l

/

k 

_ (a _ ab + C) l/k 

l+b ' 

provided also that, in case k 3, R < al

/

k 

sin(7r/k). 
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Theorem 2.30. Let c < an

/

k 1 and b + 2d

1

/

2 < a, and suppose b

2 

d if 

a + b + c > 1, where 

d = { a(c/a)k/{n-k) , 
c, 

if k < n/2, 

if k n/2. 

Then Estimate B holds, with 

( 2d )l/k 
R = a1

/

k - a - b - -- , 
a-b 

provided also that, in case k 3, R < a1/ k sin( 7r / k). 

If k = n and a + b > 1, the previous theorem does not apply, because of the fact 
d = c = 0 and the additional hypothesis b

2 
d is not satisfied. If b < a/2, then 

Estimate A is satisfied with 

m+ = a - ab / (a - b) > O. 

Therefore in the case k = n, a + b > 1, we can replace the hypotheses of the 
previous theorem by 2b < a 1 and preserve the result with 

R = a1

/

n - (a - ab/(a _ b))l/n. 

At the end of this section we consider numerical radii of some companion matrices 
and bounds for the zeros of polynomials. Let P(z) be a monic polynomial of degree 
n 3 given by 

(2.17) P() 

n n-l 

Z = Z - alZ - ... - an-lZ - an 

Some bounds for the zeros of P(z) can be obtained using results on the numerical 
range and the numerical radius of the Frobenius companion matrix of P(z). Some 
other companion matrices of P(z) can be obtained by a similarity transformation 
of the Frobenius companion matrix of P(z). Recently Linden [36] (see also [35]) 
used some types of generalized companion matrices, which are based on special 
multiplicative decompositions of the coefficients of the polynomial, in order to 
obtain estimates for the zeros of P(z) mainly by the application of Gersgorin's 
theorem to the companion matrices or by computing the singular values of the 
companion matrices and using majorizations relations of H. Weyl between the 
eigenvalues and singular values of a matrix. 

Proposition 2.31. Let P(z) is given by (2.17) and let there exist complex numbers 

Cl, C2, ... ,C

n 

E C, 0 f- b

1

, b

2

,· .. ,b
n

-

1 

E C such that 

(2.18) 
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If the matrix A E en x n 
is given by 

0 bn- I 0 0 

0 0 bn- 2 0 

(2.19) A= 

0 0 0 

b

l 

Cn Cn-I C2 CI 

then 

P(z) = det(zIn - A), 

where In is the n-by-n identity matrix. 

Thus, the eigenvalues of A are equal to the zeros of P(z). A discussion of the 

normality condition for A is given in [35]. 

Decompositions of type (2.18) of the polynomial coefficients are always possible. 

The simplest one is Ck = ak (k = 1, ... ,n) and b

l 

= ... = bn - I = 1, when we get 

the Frobenius companion matrix. 

Let x, y E en, (x, y) = y*x, and Ilxll = J(X,X). For a given M E e nxn , we 

define the numerical range F(M) by 

F(M) = {(Mx,y) : x E en, Ilxll = I} 

and the numerical radius r(M) by 

r(M) = max{lzl : z E F(M)}. 

Let O"(M) denotes the spectrum of M. Since O"(M) C F(M), we see that estimates 

for r(M) give estimates for the eigenvalues of M. 

Theorem 2.32. Let M = [ajk] E e nxn and m E {I, ... ,n}. If the matrix 
Mm E e(n-I)x(n-I) is obtained from M by omitting the m-th row and the m-th 

column and dm 2': r(Mm) is an arbitrary constant, then 

1 

r(M) ::; 2 (lamml + dm) 

+ l(la

mml 

-dm )' + ( lam'I') 'I' + la,ml') 'I') '1 'I' 

The following propositions were proved in [36]. 
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Proposition 2.33. Let A E c

nxn 

be given by (2.19) and 

(31 = min{cos _71"_ max Ibkl, -2

1 

max (Ibkl + Ib
k

+1I)}, 

n + 1 1:Sk:Sn-1 1:Sk:Sn-2 

Then 

where 

and 

Proposition 2.34. Let A E c

nxn 

be given by (2.19) and 

(31 = min cos -- max -, - max - + -- , - {71" 1 1 ( 1 1)} 

n + 1 1:Sk:Sn-1 Ibkl 21:Sk:Sn-2 Ibkl Ibk+11 

Then 

where 

and 

For b

1 

= b

2 

= ... = b

n

-

1 

= b, the constants (3i and (i = 1,2) reduce to 

71" 71" - 1 71" - 1 71" 

(31 = Ibl cos --, (32 = Ibl cos -, (31 = -Ibl cos --, (32 = -Ibl cos -. 

n+1 n n+1 n 

From Propositions 2.33 and 2.34 Linden [36] determined annuli for the zeros of 

P(z). 
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Theorem 2.35. Let P(z) be a monic polynomial as in Proposition 2.31 and let 
Ui, Vi (i = 1,2) be defined as in Propositions 2.33 and 2.34, respectively. Then, all 
the zeros of P(z) lie in the annuli 

Another cases were also considered in [36]. Some other interesting papers in this 
direction are [12], [17], [30]. For example, Kittaneh [30] computed the singular 
values of the companion matrix of a monic polynomial, and then applying some 
basic eigenvalue-singular value majorization relations, he obtained several sharp 
estimates for the zeros of P( z) in terms of its coefficients. These estimates improve 
some classical bounds on zeros of polynomials. 

3. Zeros in a Strip and Related Inequalities 

Tunin [74] outlined reasons why it is important to extend some classical ques-
tions of the theory of the algebraic equations to the case of other representations, 
different from the standard polynomial form 

(3.1) 

He considered in this respect the role of the Hermite expansion 

n 

(3.2) P(z) = 2: akHk(z), 
k=O 

where the k-th Hermite polynomial Hk(z) of degree k. He showed that one can 
obtain results for strips containing all zeros using the representation (2.2) as for 
circles containing all the zeros using representation (2.1) (cf. Theorems 2.2 and 
2.12). Precisely, Tunin [74] proved the following analogs of Cauchy's and Walsh's 
estimates for complex zeros. 

Theorem 3.1. If the polynomial P(z) is given by (3.2) and 

(3.3) max lakl = M*, 
O::;k::;n-l 

then all the zeros of P(z) lie in the strip 

(3.4) 1 ( M*) I Imzl 2 1 + lanl . 

Theorem 3.2. Let P(z) be a polynomial of degree n given by (3.2). Then all the 
zeros of P(z) lie in the strip 

(3.5) 1 I ak 11/(n-k) IImzl - - . 
2 an 

k=O 
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For the proof of the above estimates an inequality for Hermite polynomials is 
needed. 

Using the identity = 2kHk-dz), we can write 

where Zvk denote the zeros of Hk(Z). Therefore we have 

(3.6) 

By the fact that all the Zvk-zeros of Hk are real, it follows that 

(3.7) 
1 1 --....,<-Iz - zvkl - Iyl (z=x+iy). 

From (3.6) and (3.7) it follows that 

For all k n - 1 and arbitrary non-real Z it follows that 

(3.8) 

This inequality is very important for the proof of Theorems 3.1 and 3.2. Using 
(3.8), Turan [74] provided the following proofs. 

Proof of Theorem 3.1. We obtain 

From (3.3) and (3.8) we get for 

(3.10) 1 ( M*) Iyl >"2 1 + lanl 

the inequality 
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Because of the fact that Hn(z) does not vanish in the domain given in (3.10), it 
follows that for such z-values, P(z) O. 0 

To prove that the strip in Theorem 3.1 cannot be replaced by a strip of the form 

(3.11) 

with a fixed 0 < () < 1, we consider the polynomial 

(3.12) 

where a denotes a sufficiently large positive number. Therefore M* = a. The 
equation PI (z) = 0 can take the form 

(3.13) 

From (3.12) and (3.13) we obtain 

n 1 

Lz-z 
v=1 vn 

2n 

Assume for example that n is even, i.e., n = 2m, then (3.13) reads as follows 

m 1 2m 
z L z2 _ Z2 =-;;;; 

v=1 vn 
(zvn > 0). 

If z = iy where y is a real number, then 

(3.14) f, 1 2my 
v=1 1 + (zvn/y)2 = -a-' 

However m is fixed, therefore we can choose a sufficiently large, such that 

m 1 1+() L >-m 
v=1 1 + [Zvn/ ete a)]2 2 

or 
1+() () 
-4- a> '2(1 + a). 

Therefore the equation (3.14) has a real root with y > t(1 + ())a. This implies 
that the polynomial z r-+ PI (z), defined by (3.12), has a zero iyo such that 
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implying that inequality (3.11) is not valid. 

Proof of Theorem 3.2. From (3.8) and (3.9) we have 

IP(z)1 lanIIHn(z)l{ 1- I :: I 

> lanIIHn(z)l{ 1- n-11 :: I) n-k}. 

Therefore if z is not a point in the strip (3.5), then all the following inequalities 
hold 

I 

ak Il/(n-k) 1 
- --<1 

an 21yl - , 

i.e., 

{ 

n-l I ak Il/(n-k) 1 } 

lP(z)1 lanIIHn(z)1 1- an 21YI > O. 0 

Let e be a small positive number and define 

P(z) = Hn(z) + eHn- l (z) + e2 Hn- 2(z) + ... + en Ho(z). 

Then by (3.5) all the zeros lie in the strip 11m zl ::; (n/2)e, which shrinks to the 
real axis if e --+ O. Therefore the strip (3.5) is best possible in that sense. 

Tur;in [75] also considered the case of even polynomials and proved the following 
results: 

n 
Theorem 3.3. If P(z) = L: C2kH2k (z) with arbitrary coefficients and 

k=O 
max IC2kl = M, 

then all zeros of P (z) lie in the strip 

1 ( 5 M ) Ilmzl::;- 1+ -I . 
2 2n - 1 C2n 

n 
Theorem 3.4. If z = x + iy and P(z) = L: C2kH2k(Z) with max IC2kl = M, 

k=O 
then all zeros of P(z) lie in the hyperbole 

Ixyl ::; (1 + 1:1)' 

Denoting by Xl > X2 > ... > Xn-l the zeros of Hn-l(z) and using the well-known 
Christoffel-Darboux formula, Tlmin [75] obtained the formula 

Hv(Xk)2 1 2 

2vv! = 2n(n _ I)! Hn(Xk) . 

An application of this simple formula gives the following result: 
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Theorem 3.5. If the coefficients of 
n 

P(z) = L CkHk(Z) 
k=O 

are real and 
n-2 

(3.15) L < 2n(n -
k=O 

is fulfilled, then all zeros of P(z) are real and simple. 

The condition (3.15) is obviously fulfilled if the coefficients Ck do not decrease 
"too quickly". As a counterpart of the previous theorem, Turan [75J proved that 
the same conclusion holds if the coefficients decrease sufficiently quickly. More 
precisely, he proved: 

Theorem 3.6. If P(z) has the form 

n 

P(z) = L( -1)kc2kH2k(z) 
k=O 

with positive coefficients C2k and for k = 1,2, ... ,n - 1 we have 

(3.16) 

then all zeros of P (z) are real. 

Changing (3.16) by 

c·) 1 
--.:. >-

Co 4 ' 
... , 

C2k 1 
-->-

C2k-2 4 
(k n), 

then P(z) has at least 2k real zeros with odd multiplicities (see Turan [75]). 

In 1966 Vermes [76] considered the location of the zeros of a complex polynomial 
P(z) expressed in the form 

n 

(3.17) P(z) = L akqk(z), 
k=O 

where {qk (z)} is a given sequence of monic polynomials (deg qk (z) = k) whose 
zeros lie in a prescribed region E. His principal theorem states that the zeros of 
P(z) are in the interior of a Jordan curve S = {z E C : IF(z)1 = max(l, R)}, 
where F maps the complement of E onto Izl > 1 and R is the positive root of the 
equation 

n-l 

L Aklakl tk - Anlanl tn 
= 0, 

k=O 
with Ak > ° depending on E only. In a special case he obtained the following 
result: 
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Theorem 3.7. If all the zeros of the monic polynomials qk (z) (k E N) lie in 
[-1,1] and the zeros of qk(Z) and qk+1(Z) separate each other, then all the zeros 
of (3.17) are in the ellipse 

X2 y2 1 

(R + R-I)2 + (R - R-I)2 = 4 (z=x+iy), 

where R = max(2 + vI3 , (}) and {} is the only positive root of the equation 

In particular, if the sequence {qk(Z)} in Theorem 3.7 is a sequence of monic or-
thogonal polynomials then the zeros of qk(Z) and qk+1(Z) separate each other and 
we have that all the zeros of P(z) are in the ellipse as given in this theorem. 

We mention now a problem from the graph theory. Namely, it has been conjectured 
that the J3-polynomials of all graphs has only real zeros. Recently, Li, Gutman 
and Milovanovic [34] showed that the conjecture is true for complete graphs. In 
fact, they obtained a more general result for polynomials given by 

(3.18) J3(n,m,t,x) = Hen(x) +tHen-m(x), 

where Hen is one of the forms of the Hermite polynomials [2, p. 778]. Such 
(monic) Hermite polynomials are orthogonal on (-00, +00) with respect to the 
weight function x I--t e- x2

/

2 and their connection with the "standard" Hermite 
polynomials Hk(X) can be expressed by Hek(X) = 2-k/2 Hk(xjV2). Here, 1 
m nand t is a real number. Clearly, for n 2: 3, It I = 2 and 3 m n, the 
previous formula represents the ,B-polynomial of the complete graph on n vertices, 
pertaining to a circuit with m vertices. 

Theorem 3.8. For all (positive integer) values of n, for all m = 1,2, ... ,n and 
for It I :::; n -1 the polynomial ,B(n,m,t,x), given by (3.18), has only real zeros. 

Proof. We use here the following facts for the Hermite polynomials Hen(x): 

(a) The three-term recurrence relation 

(b) All zeros of Hen(x) are real and distinct; 

(c) 

and conclude that Hen(x) has a local extreme Xi if and only if Hen-l(xi) = O. 
So, the extremes of Hen(x) are distinct. 

Let Xl, X2, ... ,Xn-l denote the distinct zeros of H en-l (x). If for all i = 1,2 ... , 
n - 1, the sign of J3(n, m, t, Xi) = H en(Xi) + tH en-m(Xi) is the same as that of 
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Hen(Xi), we can prove that !3(n,m,t,x) has only real zeros. Indeed, from (c) we 
have that Xi (i = 1,2, ... ,n - 1) are the extremes of Hen(x). Since Hen(x) does 
not have multiple zeros, we know that H en(xi) -::J 0 for all i = 1,2, ... ,n - 1, and 
that H en(xd and H en(xi+d have different signs (i = 1,2, ... ,n - 2). Thus, we 
can deduce that !3(n, m, t, x) has at least as many real zeros as H en(x), that is at 
least n real zeros. On the other hand the degree of !3(n, m, t, x) is n. 
Then, if IH en(xi) I > (n - 1)IH en-m(Xi) I for all i = 1,2, .. , ,n - 1, we prove that 
!3(n, m, t, x) has only real zeros for It I ::; n - l. 

Define now the auxiliary quantities an,m as 

(3.19) 
I 

Hen-m(Xi) I anm = max . 
, l::;i::;n-l H en(xi) 

Because of the previous fact, if 

(3.20) 

1 
a <--n,m - n-1 

then !3(n, m, t, x) has only real zeros for It I ::; n-l. Therefore, in order to complete 
the proof of Theorem 3.8 we only need to verify the inequality (3.20). 

Using the well-known three-term recurrence relation (a) for the Hermite polyno-
mials Hen(x), (3.19) reduces to 

and we conclude immediately that 

an,l = 0, 
1 

an 2 =--, n-1 (n 2), 

and 

1 { = 

an 3 = max Ixil 

, (n - l)(n - 2) l::;i::;n-l 2 In=3 
< ----,---- < 

(n-1)(n-2) -
1 

n-1 

(n = 3), 

(n 4). 

The upper bound for an ,3 follows from the inequality IXil < 2v'n - 3, which holds 
for all i = 1,2, ... ,n - 1 and n 4 (see Godsil and Gutman [25, Theorem 7]). 

Note that the relation an,l = 0 provides a proof that the polynomial !3(n, 1, t, x) 
has only real zeros for n 1 and any real value of the parameter t. 
The case when n m 4 can be verified using the condition (3.15), rewritten in 
the form 

n-2 

L k! c% < (n - 1)! . 
k=O 
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n 
Then, according to Theorem 3.5, the polynomial P(z) = l: Ck Hek(Z) has n 

k=O 
distinct real zeros. Considering the ,a-polynomial given by (3.18), we conclude 
that it has all real zeros if It I < J(n - 1)!/(n - m)!. On the other hand, it is 
easily verified that for n > m 4 the expression J(n - 1)!/(n - m)! is greater 
than n - 1. Notice that a4,4 = 1/3. 
By this, the proof of Theorem 3.8 has been completed. 0 

Taking other orthogonal polynomials instead of Hermite polynomials, Specht [64] 
- [67] obtained several results which are analogous to results of Tunin. For details 
on orthogonal polynomials see, for example, Szego [69]. 

Let dJ-L be a positive Borel measure on the real line, for which all the moments 
J-Lk = tk dJ-L(t), k = 0,1, ... , are finite. We suppose also that supp(dJ-L) contains 
infinitely many points, i.e., that the distribution function J-L: lR ---+ lR is a non-
decreasing function with infinitely many points of increase. It is well known that 
then there exists an infinite sequence of orthogonal polynomials with respect to 
the inner product (., .) defined by 

(f,g) = L f(t)g(t) dJ-L(t). 

The corresponding orthonormal and monic orthogonal polynomials will be denoted 
by Pn(t) and 1l'n(t), respectively. Thus, we have 

and 

Pn(t) = 1'ntn + 8ntn- 1 + lower degree terms, 1'n > 0, 

(Pn,Pm) = 8nm , n,m 0, 

1l'n(t) = Pn(t) = tn + lower degree terms. 
1'n 

If J-L is an absolutely continuous function, then we say that J-L'(t) = w(t) is a weight 
function. In that case, the measure dJ-L can be express as dJ.L(t) = w(t) dt, where 
the weight function t I-t w(t) is a non-negative and measurable in Lebesgue's 
sense for which all moments exists and J-Lo > O. If supp(w) = [a, b], where 
-00 < a < b < +00, we say that {Pn} is a system of orthonormal polynomials in 
a finite interval [a, b]. For (a, b) we say that it is an interval of orthogonality. 

The system of orthonormal polynomials {Pn(t)}, associated with the measure 
dJ-L(t), satisfy a three-term recurrence relation 

(n 0), 

where P-l(t) = 0 and the coefficients Un = un(dJ-L) and Vn = vn(dJ-L) are given by 

and 
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Since Po(t) = 10 = 1/ JIiO and In-l = U

nln 

we have that In = 10/(U1U2··· Un). 

Notice that Un > 0 for each n. 

The corresponding monic orthogonal polynomials {7r n (t)} satisfy the following 

three-term recurrence relation 

(3.21) 

n = 0, 1,2, ... , 

where an = Vn and (3n = U;' > o. 

Because of orthogonality, we have that 

(n 0), 

(n 1). 

The coefficient (30, which multiplies 7r-l(t) = 0 in three-term recurrence relation 

(3.21) may be arbitrary. Sometimes, it is convenient to define it by (30 = J-to = 
dJ-t(t). Then the norm of 7rk can be express in the form II7rkll = .../hk, where 

(3.22) 

Consider now an arbitrary polynomial P(z) of degree n, given by 

(3.23) 

Then, it can be expanded, for example, in terms of the orthonormal polynomials 

pdz) (k = 0,1, ... ,n) in the form 

(3.24) 

P(z) = copo(z) + clPdz) + ... + cnPn(z). 

Specht [64] proved the following result: 

Theorem 3.9. All the zeros of a complex polynomial P(z) expanded in the form 

(3.24) lie in the strip 

where Ik is the leading coefficient in the orthonormal polynomial Pk (z) . 

In the case of the Legendre polynomials Pk(x), i.e., when 

Specht obtained the following estimate 

Giroux [24] proved a sharper result than Theorem 3.9. 
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Theorem 3.10. Let Zl, ... , Zn be the zeros of the polynomial P(z) given by (3.24). 
Then 

(3.25) 

with equality if and only if 

Co = ... = Cn -2 = 0 and Re(cn_I/cn) = O. 

Proof. Following Giroux [24] we start with the identity 

and 

we have 

P(Z) = Cn'Yn IT (z - Zk) = Cn'Yn (zn - Cf: Zk )zn-l + ... ) 
k=O k=l 

n 

P(z) = L CkPk(Z) = cn'Ynzn + (cnb"n + Cn_l'Yn_l)Zn-l + ... , 
k=O 

n 

cnb"n + Cn-l 'Yn-l = -Cn'Yn L Zk· 
k=l 

It is sufficient to prove the theorem when Cn = 1. In that case, since b"n is real, we 
n 

have Imcn-l = -("(n/'Yn-l) E Imzk· Hence 
k=l 

'Y 1 n 1 ( 2 ) 1/2 _n Llmzk = IImcn-ll ICn-ll IIPII -1 , 
'Yn-l k=l 

so that 

1 + ('Y::J 21 t. Imzk r 11P112. 

Applying this result to the polynomial 

Q(Z) = P(z) II(z - zv)/(z - zv), 
v 
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where the zeros Zv appearing in the product are precisely those for which 1m Zv < 0, 

we get 

1 + Cy::J 2 (t, 11m Zk1r IIQI12 = 11P112. 

This is the statement of the theorem (when Cn = 1). Equality in (3.25) is attained 

if only if Co = ... = Cn-2 = 0, cn-dcn is purely imaginary and the zeros Zk 
(k = 1, ... ,n) are either all above or all below the real axis. 0 

Remark. For every real number c, the zeros of Pn(z) + iCPn-l(Z) are either all 

above or all below the real axis. 

Using an inequality of de Bruijn [6] (see also [45, p. 114]), Giroux [24] also proved: 

Corollary 3.11. Let P(z) be a polynomial of degree n > 1 given by (3.24) and 
let WI, ... ,Wn-l be the zeros of P'(z). Then we have 

I:llmwkl n:1 /n- 1 
(I: 12)1/2, 

k=l In k=O n 

with equality if and only if P(z) is a multiple of the polynomial Pn(z) + iCPn-l (z) 
with creal. 

Another consequence of Theorem 3.10 is the following result: 

Corollary 3.12. There is at least one zero of the polynomial (3.24) in the strip 

11m zl .!. In-l (I: 1 Ck 12) 1/2 

n In k=O Cn 

Giroux [24] also proved: 

Theorem 3.13. Let 

f(x) = (x - Xt)(X - X2)··· (x - Xn ), 

g(x) = (x - yt}(x - Y2)··· (x - Yn-d, 

with Xl < YI < X2 < ... < Yn-l < Xn · Then, for any real number c, the 
zeros of the polynomial h(x) = f(x) + icg(x) are all in the half strip Imz 0, 

Xl Re z x n , or all are in the conjugate half strip. 

Using the system of monic orthogonal polynomials defined by the 

three-term recurrence relation (3.21), Gol'berg and Malozemov [26] considered 

estimates for zeros of polynomials of the type 

(3.26) 

Setting 13k = u% > 0, Cl = b1 = a + i13, 
b2 b3 bn 

C2=--,C3= , ... ,Cn =-----
U n-l Un-l Un-2 Un-l Un-2 ... Ul 

n 
and C = l: ICkI2, Gol'berg and Malozemov [26] proved: 

k=2 
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Theorem 3.14. Let Xl and Xn be the minimal and the maximal zero of the poly-
nomial7rn(z), respectively, and let be an arbitrary zero of the polynomial Q(z), 
defined by (3.26). Then 

Xl - (a + J a2 

+ C) Re Xn - (a - J a2 

+ C) 

and 

- (11 + J (32 + C) 1m - (11 - J 112 + C) . 

Suppose now that an arbitrary polynomial P(z) of degree n is given by (3.23). Let 

(3.27) P(z) = a07ro(z) + al7r1(z) + ... + an7rn(z) (an "# 0) 

be its representation in terms of monic orthogonal polynomials {7rk (z)}. Compar-

ing (2.24) and (3.27) we see that Ck"{k = ak (k = 0,1, ... ,n), so that the Specht's 

estimate given in Theorem 3.9 can be expressed in the form 

(3.28) 

( 

n-1 h 2) 1/2 

Ilmzl {; I :: I ' 
where hk is given by (3.22). 

An interesting property of (3.28) is that its right hand side may be expressed in 

terms of a norm (see Schmeisser [62]). Namely, since for the L

2
-norm of P(z) we 

have 

IIPII2 = L IP(tW dJL(t) = t,lakI2117rkIl2 = t, hklakl2, 

the inequality (3.28) can be rewritten as 

(3.29) I Imzl liP - an 7rn ll = -7rnll· 
lanl hn- 1 hn- 1 an 

This may be interpreted as a perturbation theorem. Namely, since 7rn (z) has all its 

zeros on the real line, (3.29) tells us that, apart from a constant, the deviation of 

P(z)/an from 7rn(z), measured by the norm, is an upper bound for the distances of 

the zeros of P(z) from the real line. Several refinements of (3.28) or its equivalent 

form (3.29) were derived in [62]. We mention some of them. 

Theorem 3.15. Denote by 6, ... the zeros of 7rn(z). Then every polynomial 
P(z) of the form (3.27) has all its zeros in the union U of the disks 

where 

r= 

(k = 1, ... ,n), 

n-1 

hn- 1 an k=O 

Moreover, if m of these disks constitute a connected component of U, then their 
union contains exactly m zeros of P(z). 
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Theorem 3.16. Let ZI/ (v 
(3.27). Then 

1, ... ,n) be an arbitrary zero of the polynomial 

I ( 1 an-I) I 1 

1m ZI/ + 2 ::; 2 

Theorem 3.17. Let Zl, ... ,Zn be the zeros of the polynomial (3.27). Then 

n () 2 n-2 2 

2)Im ZI/)2::; 1m an-1 + -hI L hk I ak I 
an 2 n-1 an 1/=1 k=O 

Theorem 3.17 improves upon (3.28) but it does not imply Theorem 3.16. As a 

consequence, Schmeisser [62] obtained the following individual bounds. 

Corollary 3.18. Let Zl, . .. ,Zn be the zeros of the polynomial (3.27) ordered as 

Then 

1 I an -1 1 L h ak 
(( 

)

2 n-2 1 12) 

n - v + 1 m + 2hn- 1 k=O k an 

for v = 1,2, ... ,n. 

Notice that the estimate for Zn is not as good as that of Theorem 3.16. 

In the case of real polynomials Schmeisser [62] proved the following result: 

Theorem 3.19. Let the polynomial (3.27) have real coefficients. Then each zero 
ZI/ (v = 1, ... ,n) of P(z) satisfies the inequality 

provided that the radicand is non-negative, else P(z) has n distinct real zeros which 
separate those of 7fn -1. Here, is defined by 

where 6, ... , are zeros of 7f
m

(z). 

, 

Schmeisser [62] considered also some estimates involving the distance function 

(Z E q, 
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where I n is the smallest compact interval that contains the zeros of the monic 

orthogonal polynomial 7rn (z). It is easy to see that 

which means that any upper bound for dn(z) is also an upper bound for 11m zi. 

Let P(z) be given by (3.23) or by its equivalent form (3.27). Taking the Cauchy 

bound of P{z) as the unique positive zero of the associated polynomial (see The�

orem 2.1) n-l 
f{z) = L IAkl zk -IAnl zn , 

k=O 

Schmeisser [62] gave a short proof of the following result: 

Theorem 3.20. Let P{z) be a polynomial given in the form (3.27). Then each 
zero Zy (/I = 1, ... ,n) of P{z) satisfies the inequality dn{zy) ::; r, where r = r[P] 
is the Cauchy bound of P(z). 

Using this fact and upper bounds for r[P]' he obtained several estimates for dn{zy): 

I Il/n I Il/(n-l) I I 
dn{Zy)::; :: + :: + ... + a:: l , 

Notice that in these estimates the parameters which determine the system of or�

thogonal polynomials, do not appear explicitly. The reason is that Theorem 3.20 

holds for a much wider class of expansions. 

Now we mention a few results which also were given in [62]. 
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Theorem 3.21. Let Zl, ... , Zn be the zeros of the polynomial (3.27) in an arbi-

trary order. Then 

(3.30) 

In this theorem, we can order the zeros as 

(3.31) 

The left hand side of (3.30) is a sum of non-negative terms and h
n

_

1

d

n

(zn)2 is one 
of them. Hence dividing both sides by h

n

- 1 , we see that (3.30) is a refinement of 
(3.28). Furthermore, if (3.31) holds, then we may estimate the left hand side of 
(3.30) from below by 

n n 

I>v-ldn(Zv)2 ... d

n

(Zn)2 2:: I>v_

1

d

n

(Zk)2(n-V+1) 2:: hk_l

d

n(Zk)2(n-k+1), 

v=k 

v=k 

where 1 :S k :S n. This allows the following individual bounds for the zeros of 
P(z). 

Corollary 3.22. Let ZI, ... , Zn be the zeros of the polynomial (3.27) ordered as 

in (3.31). Then 

(v = 1,2, ... , n) . 

Gautschi and Milovanovic [21) considered special linear combinations of the form 

(3.32) 

where is a system of monic polynomials orthogonal with respect to 
an even weight function x I-t w(x) on (-a, a), 0 < a < +00, and {}n-I is a real 
constant. Then these monic polynomials satisfy a three-term recurrence relation of 
the form (3.21) with CXk = 0 and (3k > O. Since 7fk( -z) = (-1)k

7fk

(Z), k = 0,1, ... , 
the polynomial Pn(z), defined by (3.32), can be expanded in the form 

() n .{} n-l 
Pn Z = Z - t n-1Z + ... , 

n 

so that L Zk = i{}n-I, hence 
k=l 

(3.33) 
n 

LImzk = {}n-I, 

k=1 
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where Zl, Z2, ... , Zn are the zeros of the polynomial Pn(z). 

By Theorem 3.13 and (3.33) all zeros of the polynomial Pn(z) lie in the half strip 

(3.34) 1m Z > 0, -a < Re Z < a if B
n

- 1 > 0, 

or 

(3.35) Imz<O, -a<Rez<a if Bn-1<0, 

strict inequality holding in the imaginary part, since Pn(z) for B

n

-

1 

=I ° cannot 
have real zeros. Of course, if B

n

- 1 = 0, all zeros lie in (-a, a). 

Let Da be the disk Da = {z E C : Izi < a} and aDa its boundary. Gautschi and 
Milovanovic [21] first proved the following auxiliary result: 

Lemma 3.23. For each z E aDa one has 

(3.36) I 7fk(Z) I 7fk(a) 

7fk-l (z) 7fk-l (a) 
(k=1,2, ... ). 

Their main result can be stated in the form: 

Theorem 3.24. If the constant B

n

-

1 

satisfies 

then all zeros of the polynomial Pn (z) lie in the upper half disk 

Izl < a 1\ 1m z > 0. 

If -7f

n

(a)/7f

n

-l(a) < B
n

-

1 

< 0, then all zeros of the polynomial Pn(z) are in the 

lower half disk 

Izl < a 1\ 1m z < 0. 

Proof. By (3.36) we have 

I 7fn(z) I 7f

n

(a) 

7fn -l (z) 7fn -l (a) 

Applying Rouche's theorem to Pn(z), we conclude that all zeros of Pn(z) lie in the 
open disk Da. Combining this with (3.34) or (3.35), we obtain the assertions of 
the theorem. 0 



199 

Remark. A class of orthogonal polynomials on the semicircle 

r = {z E C : z = eiO , 0 :S () :S 7r} 

with respect to the complex-valued inner product 

was introduced and studied by Gautschi and Milovanovic [22]-[23]. Such polyno-
mials can be expressed in the form (3.32), where 7rk(Z) should be replaced by the 
monic Legendre polynomial A(z). Generalizing previous work, Gautschi, Lan-
dau, and Milovanovic [20] studied a more general case of complex polynomials 
orthogonal with respect to the complex-valued inner product 

under suitable assumptions on the complex "weight function" w(z). Some further 
results in this direction and applications of such polynomials were obtained by 
Gautschi [19], Milovanovic [41]-[42], [44], de Bruin [7], Milovanovic and Rajkovic 
[46]-[47], and Calio', Frontini, and Milovanovic [9]. 
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