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Abstract The Clausen functions arise in numerous applications. An efficient sum-
mation/integration method for the numerical calculation of these functions of ar-
bitrary order is proposed in this paper. The method is based on a modification of
an earlier method and it does not require the construction of the coefficients in the
three-term recurrence relation for the corresponding orthogonal polynomials, but
only a transformation of orthogonal polynomials from the real line to the positive
semiaxis. Numerical experiments are also included.
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1 Introduction

In many problems in quantum field theory, especially in quantum electrodynamics
on vacuum polarization, scattering of light by light, etc. the function

φ(x) =

∫ x

1

log |1 + t|
t

dt

appears very often, and it can be expressed for x on the unit circle (cf. [1]) as

φ
(
eiθ
)

= −θ
2

4
+ iψ(θ),
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E-mail: gvm@mi.sanu.ac.rs



2 Z. Lj. Golubović, G. V. Milovanović

where

ψ(θ) =
+∞∑
k=1

sin(kθ)

k2
. (1)

In 1832 this function (1), known as the Spence function, was tabulated by Clausen
[3] for θ = jπ/180, j = 1, 2, . . . , 180, to sixteen decimal places. The series (1)
is slowly convergent, and a better way for evaluating its values is a numerical
integration of its integral representation (cf. [1])

ψ(θ) = −
∫ θ

0

log
∣∣∣2 sin

t

2

∣∣∣dt. (2)

In [18] Linciano considered the problem of the numerical evaluation of the integral
(2) and showed that Gaussian quadrature rules, for functions with a singularity
of the type

√
x log(1/x) in (0, 1), can be applied to an auxiliary function in order

to solve the problem. In the literature many papers were devoted to this integral,
which is just an element of the sequence known as Clausen’s functions,

Cln(θ) =



+∞∑
k=1

sin(kθ)

kn
, n even,

+∞∑
k=1

cos(kθ)

kn
, n odd.

(3)

Evidently, Cl2(θ) is the integral (2). Otherwise, this function can be expressed in
terms of the dilogarithm function Li2(z) as

Cl2(θ) = Im
{

Li2(eiθ)
}

= −Im

{∫ eiθ

0

log(1− t)
t

dt

}
= Im

{
+∞∑
k=1

eikθ

k2

}
(θ ∈ R)

(cf. [16]). In a similar way, other Clausen’s functions of higher order n ≥ 3 can be
expressed also in terms of the functions Lin(z) for z = eiθ (for details see the book
by Lewin [17]). In the mentioned paper [16], Kölbig derived twenty-digit Chebyshev
coefficients for the Clausen function Cl2(θ), allowing a fast computation of this
function for real values of the argument θ, when θ ∈ [−π/2, π/2] and θ ∈ [π/2, 3π/2].
Earlier in 1968, Wood [28] used the Chebyshev expansion for t 7→ θ cot(πθ/2) and
integration by parts in the integral (2) to obtain a Chebyshev series expansion,
with coefficients given as numerical series, involving Bernoulli numbers. For some
other approaches from 1984 see [9] and [14]. As a remarkable paper on this subject
for n ≥ 2, we mention the work by Wu, Zhang, and Liu [29], which introduces a
certain sequence of approximants ClNn (θ) for Cln(θ), proving an error estimate,
and give some numerical comparision with with Wood’s method [28] for Cl2(θ),
when θ = π/3 and π/2, including a comparision of CPU time. Also, they compare
their two algorithms with 10 digits accuracy, when θ = π/3, and n = 3 and n = 4,
with regard to CPU.

For n = 1 the summation in the sequence of Clausen’s functions (3) can be
expressed in the explicit form

Cl1(θ) = − log

∣∣∣∣2 sin
θ

2

∣∣∣∣ . (4)
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We note that for even n, Cln(0) = Cln(π) = 0, while for odd n ≥ 3, Cln(0) =
ζ(n) and Cln(π) = −(1− 21−n)ζ(n), where z 7→ ζ(z) is the Riemann zeta function
(cf. Ivić [15]).

Let n ∈ N. Because of the periodicity Cln(θ) = Cln(θ + 2mπ) (m ∈ Z) and the
parity Cln(−θ) = (−1)n+1Cln(θ), the computation of the Clausen functions can
be limited to the interval [0, π], so that, in the sequel we consider only the cases
when θ ∈ [0, π] (cf. [29, Remark 1.1]).

In this paper we give an efficient numerical summation/integration method [25]
for calculating Clausen’s functions (3) for each n ≥ 2. This simple method is based
on a modification of the method given in [22] (see also [23]). Our modification
does not require the construction of the coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials, but only a transformation
of orthogonal polynomials from R to R+ (see [21, pp. 102–103]). Such an approach
was presented at the 2nd Meeting of the Serbian Academy of Sciences and Arts,
Belgrade, held on March 26, 2021, by the second author of this paper. At the same
time, an application to the calculation of the values of the Riemann zeta function
was given (see [26]). Our interest in this kind of summation/quadrature methods
on R and R+ was inspired by the remarkable paper of Germund Dahlquist in
three parts [6–8], and deepened by a very intensive epistolary correspondence of
the second author with him in that period. Therefore this paper is dedicated to
the memory of this very prominent scientist. The paper is organized as follows.
In Section 2 we give basic facts on summation/integration methods for slowly
convergent series written in the form

+∞∑
k=1

f(k) =
m−1∑
k=1

f(k) +
+∞∑
k=m

f(k), (5)

where z 7→ f(z) is a given function having certain properties in the complex plane.
The function f may also depend on several other parameters (cf. [24,25]). The
second sum on the right of (5) is then exactly transformed to an integral weighted
by the hyperbolic function w(t) = 1/ cosh2 t on R+ (see [22]). Finally, this integral
is approximated by a corresponding N-point Gaussian quadrature rule, i.e.,

+∞∑
k=m

f(k) =

∫
R+

g(t)w(t)dt =
N∑
ν=1

A
(N)
ν g

(
τ
(N)
ν

)
+RN (g;w), (6)

where the function g is related to f in some way, and RN (g;w) is the remainder
term of this N-point Gaussian formula, which is exact for all algebraic polynomials
of degree at most 2N − 1. Properties and representations of certain functions
connected to Clausen’s functions Cln(θ) are given in Section 3, and they will be
used in Section 4 for the efficient calculation of Clausen’s functions Cln(θ) by
summation/quadrature formulas. Numerical examples are given in Section 5.

2 Basic facts on summation/quadrature methods

After the Laplace transform method presented by Gautschi and Milovanović [12],
where the general term of the series is expressible in terms of the Laplace transform,
or its derivative, of a known function, Milovanović [25] developed a method for
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summing slowly convergent series
∑+∞
k=m(±1)kf(k), based on a contour integration

over a rectangle Γ in the complex plane in which the weight function w is one of
the hyperbolic functions w1(t) = 1/ cosh2 t (as in (6)) or w2(t) = sinh t/ cosh2 t

(for alternating series). The function g can be expressed in terms of the indefinite
integral F of f chosen so as to satisfy the following decay properties in the complex
region (see [19], [22]):

(C1) F is a holomorphic function in the region

D =
{
z ∈ C

∣∣ Re z ≥ α, m− 1 < α < m
}

; (7)

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫
R

e−c|t|
∣∣F (x+ it/π)

∣∣dt = 0,

where c = 2 (or c = 1 for “alternating” series).

In this paper we consider only the case for the series
∑+∞
k=m f(k), which appears

in (6).

Taking the rectangular contour Γ = Γα,β,δ = ∂G, with m − 1 < α < m,
n < β < n+ 1 (n is an integer greater than m), δ > 0 and

G =

{
z ∈ C

∣∣∣ α ≤ Re z ≤ β, |Im z| ≤ δ

π

}
⊂ D,

then an integration of the function z 7→ f(z)(π/ tanπz) over Γ , after integration
by parts, leads to

Tm,n =
n∑

k=m

f(k) =
1

2πi

∮
Γ

(
π

sinπz

)2
F (z)dz, (8)

where F is an integral of f , such that F (∞) = 0. Setting α = m − 1/2, β =
n+1/2, and letting δ → +∞ and n→ +∞, under conditions (C1), (C2), and (C3),
Milovanović [22] transformed the integral (8) to

Tm = Tm,∞ =
+∞∑
k=m

f(k) = −1

2

∫ +∞

−∞
F

(
m− 1

2
+ i

t

π

)
dt

cosh2 t
, (9)

i.e.,

Tm =

∫ +∞

0

Φ

(
m− 1

2
,
t

π

)
dt

cosh2 t
, (10)

where

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] . (11)

The integral (10) can be efficiently calculated by using Gaussian quadrature
rules with respect to the hyperbolic weight function w(t) = 1/ cosh2 t, but their
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construction by the Golub-Welsch algorithm [13] requires knowing the correspond-
ing symmetric tridiagonal Jacobi matrix

JN (w) =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βN−1

O
√
βN−1 αN−1


, (12)

i.e., the coefficients αk and βk in the three-term recurrence relation for the corre-
sponding monic orthogonal polynomials πk(t) ≡ πk(w; t),

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2, . . . , (13)

π−1(t) = 0, π0(t) = 1.

The nodes τ
(N)
ν of this N-point Gaussian quadrature rule given by (6) are the

eigenvalues of the Jacobi matrix JN (w) (or zeros of πN (t)), and the weight coeffi-
cients (Christoffel numbers) can be calculated from the the first components of the
corresponding normalized eigenvectors vν = [vν,1 . . . vν,N ]T (vTν vν = 1) of this
Jacobi matrix JN (w) (cf. Mastroianni and Milovanović [21, p. 326]) in the form

A
(N)
ν = β0v

2
ν,1, ν = 1, . . . , N .

Now, when we have the quadrature formula (6), using (10) we get the following
approximation of the sum (5),

+∞∑
k=1

f(k) ≈
m−1∑
k=1

f(k) +
N∑
ν=1

A
(N)
ν Φ

(
m− 1

2
,
τ
(N)
ν

π

)
. (14)

For generating the recursion coefficients αk and βk in (13), Milovanović [22, §3]
used the discretized Stieltjes-Gautschi procedure [10], with the discretization based
on the Gauss-Laguerre quadrature rule.

Remark 1 Recent progress in variable-precision arithmetic and symbolic compu-
tation now makes it possible to generate these coefficients αk and βk directly
by using the original Chebyshev method in sufficiently high precision. Respective
symbolic/variable-precision software for orthogonal polynomials and quadrature
formulas of Gaussian type is available: Gautschi’s package SOPQ in Matlab (see
[11]) and the Mathematica package OrthogonalPolynomials (see [5], [27]).

Remark 2 If we keep integration over R (instead of reducing to the positive half-
line (0,+∞)) and change the variable t := t/2, (9) can be reduced to an integral

with the logistic weight wlog(t) = e−t/
(
1 + e−t

)2
, i.e.,

Tm = −
∫ +∞

−∞
F

(
m− 1

2
+ i

t

2π

)
wlog(t) dt,

for which the coefficients in the three-term recurrence relation for the correspond-
ing orthogonal polynomials are known in the explicit form (see [22])

αk = 0, β0 = 1, βk =
π2k4

4k2 − 1
, k ≥ 1,
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so we do not need a procedure to generate these coefficients. However, as was
shown in [22], such Gaussian formulas over R converge considerably slower than
the ones for one-sided integration.

Milovanović [26] has recently studied the slightly more complicated hyperbolic
weight function

x 7→ w(x) =
1

√
x cosh2 π

√
x

2

(15)

on (0,+∞) by the one in (10) and determined explicit expressions for the coeffi-
cients αk and βk in the corresponding three-term recurrence relation (13). In this
way, he avoided the most difficult part of the construction, which is otherwise
accompanied by numerical instability. These coefficients are given by

α0 =
1

3
, αk =

32k4 + 32k3 + 8k2 − 1

(4k − 1)(4k + 3)
, βk =

16(2k − 1)4k4

(4k − 3)(4k − 1)2(4k + 1)
, (16)

for k = 1, 2, . . . , and β0 = 4/π.

Remark 3 Depending on the properties of the function f it is often appropriate to
extract and calculate a finite number of initial terms in the series (5) and then
apply the procedure only to the series starting with the index k = m. A rapidly
increasing speed of convergence of a summation process is achieved when m is
increased (see [22,25]).

3 Properties of functions connected to Clausen’s functions Cln(θ)

Let z 7→ Ci(z) be a complex function defined as a cosine integral by

Ci(z) = −
∫ ∞
z

cos t

t
dt,

with a branch cut discontinuity in the complex z plane running from −∞ to 0. In
Wolfram’s Mathematica this function, implemented as CosIntegral[z], is suitable
for both symbolic and numerical manipulation, and it can be evaluated to arbitrary
numerical precision.

In our computation of the Clausen functions (3) we define

f2ν+1(z, θ) =
cos(θz)

z2ν+1
and f2ν+2(z, θ) =

sin(θz)

z2ν+2
, ν = 0, 1, . . . . (17)

The summation/quadrature method needs their corresponding primitive functions
(integrals) F2ν+1(z, θ) and F2ν+2(z, θ), ν = 0, 1, . . ., which vanish at infinity.
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It is easy to see that

F1(z, θ) = Ci(zθ), F2(z, θ) =
1

z
[θzCi(zθ)− sin(θz)] , (18)

F3(z, θ) = − 1

2z2

[
θ2z2 Ci(zθ) + cos(θz)− θz sin(θz)

]
,

F4(z, θ) = − 1

6z3

[
θ3z3 Ci(zθ) +

(
2− θ2z2

)
sin(θz) + θz cos(θz)

]
,

F5(z, θ) =
1

24z4

[
θ4z4 Ci(zθ) + θz

(
2− θ2z2

)
sin(θz) +

(
θ2z2 − 6

)
cos(θz)

]
,

F6(z, θ) =
1

120z5

[
θ5z5 Ci(zθ) + θz

(
θ2z2 − 6

)
cos(θz)

−
(
θ4z4 − 2θ2z2 + 24

)
sin(θz)

]
.

In order to find the general formulas for the primitive functions F2ν+1(z, θ)
and F2ν+2(z, θ), we first use integration by parts

(
u = cos(θz), dv = z−(2ν+1)dz

)
,

so that

F2ν+1(z, θ) =

∫
cos(θz)

z2ν+1
dz = − 1

2ν
· cos (θz)

z2ν
− θ

2ν

∫
sin(θz)

z2ν
dz,

hence,

2νF2ν+1(z, θ) = −cos (θz)

z2ν
− θF2ν(z, θ). (19)

Similarly, we have

F2ν(z, θ) =

∫
sin(θz)

z2ν
dz = − 1

2ν − 1
· sin (θz)

z2ν−1
+

θ

2ν − 1

∫
cos(θz)

z2ν−1
dz,

from which we get

(2ν − 1)F2ν(z, θ) = − sin θz

z2ν−1
+ θF2ν−1(z, θ). (20)

Thus, from (19) and (20), we conclude that the following recurrence relations
hold,

F2ν+1(z, θ) =
1

2ν(2ν − 1)z2ν

{
−(2ν − 1) cos (θz) + θz sin (θz)− θ2z2νF2ν−1(z, θ)

}
(21)

and

F2ν+2(z, θ) = − 1

(2ν + 1)2νz2ν+1

{
2ν sin (θz) + θz cos (θz) + θ2z2ν+1F2ν(z, θ)

}
,

(22)
and we use them for proving the following general results:
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Proposition 1 Let ξ = zθ, 0 < θ < π. The sequence of functions {Fn(z, θ)}+∞n=1 can

be expressed as

F2ν+1(z, θ) =
(−1)ν

(2ν)!z2ν

{
ξ2ν Ci(ξ) + aν−1

(
ξ2
)

cos ξ − ξbν−1

(
ξ2
)

sin ξ
}

(23)

and

F2ν+2(z, θ) =
(−1)ν

(2ν + 1)!z2ν+1

{
ξ2ν+1 Ci(ξ) + ξaν−1

(
ξ2
)

cos ξ − bν
(
ξ2
)

sin ξ
}
, (24)

with a−1(ξ) = b−1(ξ) = 0, where aν and bν are monic polynomials in ξ of degree

ν (≥ 0), given by

aν(ξ) =
ν∑
j=0

(−1)j(2j + 1)!ξν−j and bν(ξ) =
ν∑
j=0

(−1)j(2j)!ξν−j , (25)

respectively.

Proof We put ξ = zθ, where 0 < θ < π. For ν = 0 the formulas (23) and (24) are
true, because they reduce to (18).

Now, we consider the recurrence relation (21) when ν := ν + 1, i.e.,

F2ν+3(z, θ) =
1

(2ν + 2)(2ν + 1)z2ν+2

[
−(2ν + 1) cos ξ + ξ sin ξ − ξ2z2νF2ν+1(z, θ)

]
,

and suppose that (23) holds for some ν (≥ 0). Then, we have

F2ν+3(z, θ) =
1

(2ν + 2)(2ν + 1)z2ν+2

{
−(2ν + 1) cos ξ + ξ sin ξ

− (−1)νξ2

(2ν)!

[
ξ2νCi(ξ) + aν−1(ξ2) cos ξ − ξbν−1(ξ2) sin ξ

]}

=
(−1)ν+1

(2ν + 2)!z2ν+2

{
ξ2ν+2Ci(ξ) +

[
(−1)ν(2ν + 1)! + ξ2aν−1(ξ2)

]
cos ξ

− ξ
[
(−1)ν(2ν)! + ξ2bν−1(ξ2)

]
sin ξ

}
.

Since, according to (25),

(−1)ν(2ν + 1)! + ξ2aν−1(ξ2) =
ν∑
j=0

(−1)j(2j + 1)!ξ2ν−2j = aν
(
ξ2
)

and

(−1)ν(2ν)! + ξ2bν−1(ξ2) =
ν∑
j=0

(−1)j(2j)!ξ2ν−2j = bν
(
ξ2
)
,

we obtain

F2ν+3(z, θ) =
(−1)ν+1

(2ν + 2)!z2ν+2

{
ξ2ν+2 Ci(ξ) + aν

(
ξ2
)

cos ξ − ξbν
(
ξ2
)

sin ξ
}
,

thus completing the inductive proof of (23) for each ν (≥ 0).
In a similar way, using (22) for ν := ν + 1, we can prove the formula (24) for

each ν (≥ 0). ut
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Remark 4 Note that Fn(∞, θ) = 0, as well as that all terms in Fn(z, θ) tend to zero
as z →∞. For example, for the terms in (23) (n = 2ν + 1) we have

lim
z→∞

ξ2ν Ci(ξ)

z2ν
= 0, lim

z→∞

aν−1

(
ξ2
)

cos ξ

z2ν
= 0, lim

z→∞

ξbν−1

(
ξ2
)

sin ξ

z2ν
= 0,

for each 0 < θ < π, where ξ = zθ, as well as for the terms in (24) where n = 2ν+2.
Also, we can check that these functions Fn(z, θ), n ≥ 2, satisfy the conditions
(C1)–(C3), given at the beginning of Section 2.

Remark 5 The explicit form of the monic polynomials ξ 7→ aν(ξ) and ξ 7→ bν(ξ),
ν = 0, 1, . . . , 8, are

a0(ξ) = 1, a1(ξ) = ξ − 6, a2(ξ) = ξ2 − 6ξ + 120,

a3(ξ) = ξ3 − 6ξ2 + 120ξ − 5040, a4(ξ) = ξ4 − 6ξ3 + 120ξ2 − 5040ξ + 362880,

a5(ξ) = ξ5 − 6ξ4 + 120ξ3 − 5040ξ2 + 362880ξ − 39916800,

a6(ξ) = ξ6 − 6ξ5 + 120ξ4 − 5040ξ3 + 362880ξ2 − 39916800ξ + 6227020800,

a7(ξ) = ξ7 − 6ξ6 + 120ξ5 − 5040ξ4 + 362880ξ3 − 39916800ξ2 + 6227020800ξ

− 1307674368000,

α8(ξ) = ξ8 − 6ξ7 + 120ξ6 − 5040ξ5 + 362880ξ4 − 39916800ξ3 + 6227020800ξ2

− 1307674368000ξ + 355687428096000

and

b0(ξ) = 1, b1(ξ) = ξ − 2, b2(ξ) = ξ2 − 2ξ + 24, b3(ξ) = ξ3 − 2ξ2 + 24ξ − 720,

b4(ξ) = ξ4 − 2ξ3 + 24ξ2 − 720ξ + 40320,

b5(ξ) = ξ5 − 2ξ4 + 24ξ3 − 720ξ2 + 40320ξ − 3628800,

b6(ξ) = ξ6 − 2ξ5 + 24ξ4 − 720ξ3 + 40320ξ2 − 3628800ξ + 479001600,

b7(ξ) = ξ7 − 2ξ6 + 24ξ5 − 720ξ4 + 40320ξ3 − 3628800ξ2 + 479001600ξ

− 87178291200,

b8(ξ) = ξ8 − 2ξ7 + 24ξ6 − 720ξ5 + 40320ξ4 − 3628800ξ3 + 479001600ξ2

− 87178291200ξ + 20922789888000,

respectively.

4 Calculation of Clausen’s functions Cln(θ) using quadrature formulas

According to (17) and (5), Clausen’s functions Cln(θ), defined in (3), can be written
as

Cln(θ) =
+∞∑
k=1

fn(k, θ) =
m−1∑
k=1

fn(k, θ) +
+∞∑
k=m

fn(k, θ), (26)

where a finite sum of the first m− 1 terms is extracted. Using (10) and (11), the
infinite series on the right hand side in (26) can be transformed to

+∞∑
k=m

fn(k, θ) =

∫ +∞

0

Φn

(
m− 1

2
,
t

π
, θ

)
dt

cosh2 t
, (27)
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where

Φn(x, y, θ) = −1

2
[Fn(x+ iy, θ) + Fn(x− iy, θ)] , (28)

and the functions z 7→ Fn(z, θ) are given in Proposition 1.

Theorem 1 Let z 7→ fn(z, θ) and z 7→ Fn(z, θ) be functions of the complex variable,

defined in (17) and in Proposition 1 by (23)–(25), respectively. If
(
ξ
(N)
k , A

(N)
k

)
, k =

1, . . . , N , are the parameters (nodes and weights) of the N-point Gaussian quadrature

rule with respect to the weight function (15) on (0,+∞), then

Cln(θ) = QN,mn (θ) + EN,mn (θ), (29)

where

QN,mn (θ) =
m−1∑
k=1

fn(k, θ)− π

4

N∑
ν=1

A
(N)
ν Re

{
Fn

(
m− 1

2
+

i

2

√
ξ
(N)
ν , θ

)}
(30)

and EN,mn (θ) is the error in the Gaussian quadrature formula depending on number of

points N , the number of extracted terms, and θ.

Proof We start with (27) and change the variable t = π
√
x/2. Then (27) becomes

+∞∑
k=m

fn(k, θ) =
π

4

∫ +∞

0

Φn

(
m− 1

2
,

√
x

2
, θ

)
dx

√
x cosh2 π

√
x

2

.

Now, because of (26) and (28), we get

Cln(θ) =
m−1∑
k=1

fn(k, θ)− π

4

∫ +∞

0

Re

{
Fn

(
m− 1

2
+ i

√
x

2
, θ

)}
w(x)dx,

where w(x) is the weight function given by (15). Using the N-point Gaussian

quadrature formula with respect to this weight function (with the nodes ξ
(N)
k and

the weights A
(N)
k , k = 1, . . . , N), we obtain the desired result. ut

Since the recursion coefficients for the respective orthogonal polynomials with
the weight function (15) on (0,+∞) are known in explicit form, an application
of the Golub-Welsch algorithm [13] to the symmetric tridiagonal Jacobi matrix
(12), with αk and βk given in (16), provide us with the quadrature parameters(
ξ
(N)
k , A

(N)
k

)
, k = 1, . . . , N , of the corresponding N-point Gaussian quadrature

rule.

Remark 6 The Golub-Welsch algorithm is included in the Mathematica pack-
age OrthogonalPolynomials (see [5], [27]), so that we need only one command
"aGaussianNodesWeights", with the corresponding parameters. In Tables 1 and 2

we give the parameters of the Gaussian quadratures
(
ξ
(N)
k , A

(N)
k

)
, k = 1, . . . , N , for

N = 10 and N = 20, rounded to 18 and 35 decimal digits, respectively. Numbers
in parentheses indicate decimal exponents.
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ν ξ
(N)
ν A

(N)
ν

1 1.02058363572825669(−1) 1.03011687962788351
2 1.10087335344093285 2.25802208525057270(−1)
3 3.87538426676163313 1.67040618192678355(−2)
4 9.49089900532915982 6.04607037721632010(−4)
5 1.92369217680950509(+1) 1.16718411051188568(−5)
6 3.48489807870071239(+1) 1.15360113152844190(−7)
7 5.88422971202513756(+1) 5.23125205372251291(−10)
8 9.52057687864990326(+1) 8.88585842372452499(−13)
9 1.51245498588511132(+2) 3.78823474931504689(−16)

10 2.44769266678480451(+2) 1.45749170427449731(−20)

Table 1 Gaussian parameters: nodes ξ
(N)
ν and weights A

(N)
ν , ν =

1, 2, . . . , N , for N = 10

ν ξ
(N)
ν A

(N)
ν

1 7.8332741180217739859429592034215121(−2) 9.4521844770213813522739498751084446(−1)
2 7.9948055758028086888504305965764455(−1) 2.8673730910005180272566734208681658(−1)
3 2.6335359843707676053063024600681851 3.7990715886134892035356399814054822(−2)
4 6.0671253548005227137787066398349939 3.1053688857936936812748901103742756(−3)
5 1.1578014308014972867252042160973853(+1) 1.7979523985634735267965413590172828(−4)
6 1.9675742196820073997860223525652155(+1) 7.6599061254187375644605113636273785(−6)
7 3.0929840293273144262920338413642651(+1) 2.4224398021113042502544194520811499(−7)
8 4.5988905145672958078531429470368746(+1) 5.6724641616616866033851184587197347(−9)
9 6.5602854796804040341325251118403039(+1) 9.7400527860869066439740147044731242(−11)

10 9.0652152903729413194007204939563872(+1) 1.2068824524541185034179793734503826(−12)
11 1.2218773346692348152967304321283385(+2) 1.0549929160747151930065637444912904(−14)
12 1.6148763659034474884235758941294436(+2) 6.3107861649521708824465976542847217(−17)
13 2.1014062487874825140443263118075493(+2) 2.4806740961948186082790889707150879(−19)
14 2.7017538453427198248632043154940478(+2) 6.0689440756436478490809693190089710(−22)
15 3.4427146853197803774601145155669254(+2) 8.5770997286711710319485672039762078(−25)
16 4.3612864159248546885840813008006572(+2) 6.2967504148367631106945827191478750(−28)
17 5.5117670639883226012194263085206967(+2) 2.0455706071903958823179960004147795(−31)
18 6.9813208096151573112006881937006476(+2) 2.2580064196927523355325843473600380(−35)
19 8.9318898489528277366744755948592380(+2) 5.1214712907227134883116239441898314(−40)
20 1.1765731082977506193890547798937298(+3) 6.6554055933455521256560152931104940(−46)

Table 2 Gaussian parameters: nodes ξ
(N)
ν and weights A

(N)
ν , ν =

1, 2, . . . , N , for N = 20

Remark 7 According to [21, Eq. (2.2.5)] and (16), we have

‖πN‖2 = β0β1 · · ·βN =
4

π

N∏
k=1

16(2k − 1)4k4

(4k − 3)(4k − 1)2(4k + 1)
,

that is

‖πN‖2 =
21−4NΓ (2N + 1)4

Γ
(
2N + 1

2

)
Γ
(
2N + 3

2

) ≤ (2N)!2

24N−1
,

due to the inequality Γ (2N + 1)2 ≤ Γ (2N + 1/2)Γ (2N + 3/2) (the logarithmic
convexity of Euler’s gamma function).
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Since

∂

∂x
Φn

(
m− 1

2
,

√
x

2
, θ
)

=
∂

∂x

{
−1

2

[
Fn

(
m− 1

2
+ i

√
x

2
, θ
)

+ Fn

(
m− 1

2
− i

√
x

2
, θ
)]}

=
1

8i
√
x

[
fn

(
m− 1

2
+ i

√
x

2
, θ
)
− fn

(
m− 1

2
− i

√
x

2
, θ
)]

,

where

fn(z, θ) =
∂

∂z
Fn(z, θ) =

1

zn

{
cos θz, n is odd,

sin θz, n is even,

we obtain the error estimate in (29) in the form∣∣∣EN,mn (θ)
∣∣∣ ≤ (2N)!π

24N+3
max
x>0

∣∣∣∣ ∂2N−1

∂x2N−1

{
1√
x
fn

(1

2
(2m− 1 + i

√
x), θ

)}∣∣∣∣ ,
but such an estimate has no practical value. A direct calculation of the error term
will be given in the next section.

5 Numerical experiments

In this section we show the application of the formula (30) and present the error

term θ 7→ EN,mn (θ) as a function of θ ∈ [0, π]. For calculating the quadrature ap-

proximations QN,mn (θ) of Cln(θ) for n = 2, 3, 4, 5, 6 we take the number of quadra-
ture nodes N = 10, 20, 30 and m = 1, 2, 3, 6, 11, 16 (the number of extracted terms
is m− 1). These graphics for

Errn(θ) ≡ |EN,mn (θ)| =
∣∣∣QN,mn (θ)−Cln(θ)

∣∣∣ , n = 2, 3, . . . , 6,

are given in Figures 1,2, . . . , 5, respectively. As the exact values Cln(θ) we take
values obtained by using the Mathematica package, with WorkingPrecision->90.
Alternatively, we can use the quadrature approximations for sufficiently large N
and m (here N = 100 and m = 21). All computations were performed in Mathe-

matica, Ver. 13.2 on MacOS Ventura 13.1.



Quadrature processes for efficient calculation of the Clausen functions 13

0 π/4 π/2 3π/4 π
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100
Err2(θ) Number of nodesN = 10

m = 1

m = 2

m = 3

m = 6

m = 11

0 π/4 π/2 3π/4 π
10-60

10-50

10-40

10-30

10-20

10-10

100
Err2(θ) Number of nodesN = 20

m = 1

m = 2

m = 3

m = 6

m = 11

m = 16

0 π/4 π/2 3π/4 π
10-70

10-60

10-50

10-40

10-30

10-20

10-10

100
Err2(θ) Number of nodesN = 30

m = 1

m = 2

m = 3

m = 6

m = 11

m = 16

Fig. 1 Absolute errors Err2(θ) in quadrature approximations QN,m2 (θ) of Cl2(θ), 0 ≤ θ ≤ π,
for N = 10, 20, 30 quadrature nodes and some selected m
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Fig. 2 Absolute errors Err3(θ) in quadrature approximations QN,m3 (θ) of Cl3(θ), 0 ≤ θ ≤ π,
for N = 10, 20, 30 quadrature nodes and some selected m
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Fig. 3 Absolute errors Err4(θ) in quadrature approximations QN,m4 (θ) of Cl4(θ), 0 ≤ θ ≤ π,
for N = 10, 20, 30 quadrature nodes and some selected m
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Fig. 4 Absolute errors Err5(θ) in quadrature approximations QN,m5 (θ) of Cl5(θ), 0 ≤ θ ≤ π,
for N = 10, 20, 30 quadrature nodes and some selected m
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Fig. 5 Absolute errors Err6(θ) in quadrature approximations QN,m6 (θ) of Cl6(θ), 0 ≤ θ ≤ π,
for N = 10, 20, 30 quadrature nodes and some selected m
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From the obtained graphics in Figures 1–5 we can determine the error bounds,
i.e., the maximal values of the errors, max0≤θ≤π Errn(θ), for some typical vales of
the number of nodes N in the quadrature formula (30), as well as of the number
of the extracted terms (m− 1) in the series. These error bounds are presented in
Table 3.

n N m = 3 m = 6 m = 11 m = 16
2 10 4.39× 10−13 5.66× 10−18

20 3.80× 10−16 3.08× 10−28 9.52× 10−34

30 6.03× 10−18 4.06× 10−32 1.18× 10−49

3 10 4.88× 10−12 4.82× 10−19

20 7.39× 10−15 3.15× 10−27 4.19× 10−35

30 1.44× 10−16 5.30× 10−31 4.87× 10−49 7.42× 10−51

4 10 1.46× 10−11 2.16× 10−20

20 2.26× 10−14 9.39× 10−27 1.55× 10−36

30 4.74× 10−16 1.80× 10−30 1.76× 10−48 1.85× 10−52

5 10 3.09× 10−11 1.29× 10−20 2.42× 10−22

20 7.92× 10−14 1.76× 10−26 5.08× 10−38

30 2.14× 10−15 4.68× 10−30 2.58× 10−48 4.08× 10−54

6 10 7.24× 10−11 2.00× 10−20 3.22× 10−23

20 2.11× 10−13 3.92× 10−26 1.45× 10−39

30 5.93× 10−15 1.17× 10−29 5.08× 10−48 7.98× 10−56

Table 3 Error bounds max0≤θ≤π Errn(θ) for quadrature approxi-

mations QN,mn (θ) of Cln(θ), 0 ≤ θ ≤ π, for N = 10, 20, 30 quadrature
nodes and some selected values of m

It can be seen that we can get all values of the Clausen functions Cln(θ)
with at least 17 correct decimal digits (D-arithmetic) if we take N = 10 nodes
in the quadrature formula (30) (see Table 1 for the corresponding parameters,
nodes and weight coefficients) and m = 6, i.e., five extracted terms. The number
of correct decimal digits increases when the order n of Clausen’s function Cln(θ)
becomes larger. For getting exact results in the so-called Q-arithmetic (with about
33 decimal digits) we need a quadrature formula with N = 20 nodes (see Table 2
for nodes and weight coefficients) and m = 11 (ten extracted terms).

The corresponding graphics of Cln(θ), n = 2, . . . , 6, for θ ∈ [0, π] are displayed
in Figure 6 (left).

Example 1 As an illustration of our method we consider the integral (see [4, The-
orem 1] and Figure 6 (right)),

I =

∫ π/2

π/3

log

∣∣∣∣ tan t+
√

7

tan t−
√

7

∣∣∣∣dt = Cl2(θ+) +
1

2
[Cl2(2ω+)−Cl2(2ω+ + 2θ+)] , (31)

where θ+ = arctan(
√

7/3) and ω+ = arctan(
√

7) − 2π/3. This and other related
integrals originate from hyperbolic geometry and quantum field theory (cf. [2],
[20]).

For calculating the values of Cl2(θ) we use the quadrature approximation

QN,m2 (θ) in D-arithmetic (with N = 10 and m = 6) and Q-arithmetic (with N = 20
and m = 11).
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Fig. 6 (left) The Clausen functions θ 7→ Cln(θ), n = 1(1)6, for 0 ≤ θ ≤ π; (right) The
integrand of I

Since τ1 = θ+ ∈ (0, π), τ2 = 2ω+ ∈ (−π, 0), τ3 = τ2 + 2τ1 ∈ (−π, 0), and
Cl2(−θ) = −Cl2(θ), the integral I can be expressed in the form

I = Cl2(τ1)− 1

2
[Cl2(−τ2)−Cl2(−τ3)] ,

In this way, we get the approximation Ĩ of the previous integral I in D- and
Q-arithmetic (see Table 4) and, as we can see, the obtained results are accurate
to the level of machine precision!

θ Q10,6
2 (θ) (D-arithmetic) Q20,11

2 (θ) (Q-arithmetic)

τ1 0.962673014616618041 0.96267301461661804142143261997207522

−τ2 0.837664473558190622 0.83766447355819062193124505652118547

−τ3 0.690148299957661066 0.69014829995766106628618812498413506

Ĩ 0.88891492781635326 0.8889149278163532635989041542035500

Table 4 Approximation of the integral I in D- and Q-arithmetic

Example 2 In a paper on massive 3-loop Feynman diagrams reducible to SC∗ prim-
itives of algebras of the sixth root of unity, Broadhurst [2] mentioned the so-called
two-loop constant defined by

S2 =
∞∑
n=0

2n+ 1

(3n+ 1)2(3n+ 2)2
=

2

33/2
Cl2(2π/3) =

4

35/2
Cl2(π/3).

The relative errors of the partial sums S2(N) (from n = 0 to n = N = 10k) of this
series are 3.91× 10−4, 4.65× 10−6, 4.73× 10−8, 4.74× 10−10, 4.74× 10−12, when
k = 1, 2, 3, 4, 5, respectively.

Using the Laplace transform method ([12], [25]), we can reduce this series to

S2 =
1

4
+

∫ ∞
0

t

et − 1
f(t) dt,



18 Z. Lj. Golubović, G. V. Milovanović

where t 7→ f(t) is the inverse Laplace transform of the function p 7→ F (p), and
−F ′(p) = (2p+ 1)/((3p+ 1)2(3p+ 2)2). In our case, f(t) = 2

27e−t/2 sinh (t/6).
Now, applying Gaussian quadrature with respect to the Bose-Einstein weight

function t 7→ t/(et − 1) on (0,∞) to the last integral with N nodes, e.g., when
N = 5, 10, 15, . . . (see Table 5 of the Appendix in [12]), we get a sequence of the
quadrature approximations with a fast convergence. For example, for N = 10
and N = 20 nodes, the relative errors in the the quadrature approximations are
4.57× 10−12 and 1.03× 10−23, respectively.

On the other hand our method is much more efficient. As before (Example 2),
the quadrature approximations 4×3−5/2Q10,6

2 (π/3) and 4×3−5/2Q20,11
2 (π/3) of the

sum S2 are accurate at the level of machine precision in D- and Q-arithmetic, re-
spectively. However, if we take sufficiently high arithmetic, e.g., WorkingPrecision
-> 24 for the first quadrature approximation the relative error is 9.89×10−22, while
with WorkingPrecision -> 43 for the second approximation it is 1.20× 10−42.
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