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Abstract The present article provides a solution to the open problem on the
exponential type operators, connected with 1+x2. We are able to achieve the
semi-exponential extension of such operators.

Keywords Semi-exponential operators · Ismail-May operators · · operators.

Mathematics Subject Classification (2010) 41A35

1 Operators connected with 1 + x2

The exponential operators (see [4]) connected with 1 + x2 are defined by
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κλ(x, t)f(t)dt
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eλt arctan xf(t) dt (1)
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Following A. Tyliba and E. Wachnicki in [7] and M. Horzog [3], very recently
Abel et al. [1] captured the extension of exponential type operators, but for
the operators (1) authors [1] were not able to find the extension of Tn to its
semi-exponential version and they proposed it an open problem. In this note
we provide the answer to the open problem, associated with 1 + x2.

2 Solution to Open Problem

The semi-exponential operators associated with 1 + x2, with β > 0 the kernel
κβ
λ(x, t) satisfy the following partial differential equation

∂

∂x
κβ
λ(x, t) =

%
λ(t− x)

1 + x2
− β

&
κβ
λ(x, t)

integrating, we get

log κβ
λ(x, t) = λt arctanx− βx− λ

2
log(1 + x2) + logAβ

T (λ, t)

i.e.,

κβ
λ(x, t) = Aβ
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'
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(−λ/2
,

where Aβ
T (λ, t) is constant of integration independent of x. The operator have

the form:
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Our target is to find Bβ
T (λ, t). To have the normalization we need Bβ

T (λ, t)
such that ! ∞

−∞
Bβ

T (λ, t)
et arctan x

(1 + x2)
λ/2

dt = eβx. (2)

The Meixner-Pollaczek polynomials {p(λ)n }∞n=0 are defined by the following
three-term recurrence relation (cf. [5], [2])

(n+ 1)p
(λ)
n+1(t) = t p(λ)n (t)− (n− 1 + 2λ)p

(λ)
n−1(t), n = 0, 1, 2, . . . ,

with p
(λ)
0 (t) = 1 and p

(λ)
−1 (t) = 0, where the parameter λ > 0. These polyno-

mials are orthogonal on the real line with respect to the weight function
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and their generating function is

Gλ(t, x) =
et arctan x

(1 + x2)
λ
=

∞+

n=0

p(λ)n (t)xn. (3)

In our work we will use the corresponding monic polynomials P
(λ/2)
n (t) (Note

the parameter λ is replaced by λ/2), which satisfy three-term recurrence rela-
tion

P
(λ/2)
n+1 (t) = t P (λ/2)

n (t)− n(n− 1 + λ)P
(λ/2)
n−1 (t), n = 0, 1, 2, . . . , (4)

with P
(λ/2)
0 (t) = 1 and P

(λ/2)
−1 (t) = 0. We note that P

(λ/2)
n (t) = n!p

(λ/2)
n (t),

n ∈ N , so that (3) reduces to

Gλ/2(t, x) =
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(1 + x2)
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P (λ/2)
n (t)

xn

n!
. (5)

Explicit expressions for these orthogonal polynomials can be given in terms
of the Gauss hypergeometric function,

P (λ/2)
n (t) = (λ)ni

n
2F1

,
−n, (λ+ i t)/2

λ

""""" 2
-
, n = 0, 1, 2, . . . . (6)

For example,

P
(λ/2)
0 (t) = 1, P

(λ/2)
1 (t) = t, P
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(λ/2)
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P
(λ/2)
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'
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(
t,

P
(λ/2)
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'
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P
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(
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'
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(
t, etc.

According to (5), Eq. (2) can be written as
! ∞

−∞
Bβ

T (λ, t)Gλ/2(t, x)dt = eβx,

i.e, ! ∞
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,

from where, by comparing the coefficients of xn, we get
! ∞

−∞
Bβ

T (λ, t)P (λ/2)
n (t) dt = βn, n = 0, 1, 2, . . . . (7)

In Ismail and May case (β = 0) the previous relations become
! ∞

−∞
B0

T (λ, t)P (λ/2)
n (t) dt = δn,0, n = 0, 1, 2, . . . ,
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where δi,j is Kronecker’s delta, and evidently B0
T (λ, t) must be equal to

Wλ/2(t), up to some normalization constant.

In a general case we suppose that Bβ
T (λ, t) = Φ(t;λ,β)Wλ/2(t), where

t #→ Φ(t;λ,β) is an analytic function for which the following expansion in

polynomials {P (λ/2)
n }∞n=0,
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(λ/2)
k (t), (8)

holds, where the coefficients bk depend on the parameters λ and β. Then (7)
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Because of orthogonality
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we conclude that
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n ‖2 = βn, n = 0, 1, 2, . . . .

In order to find ‖P (λ/2)
n ‖2 we use the recurrence coefficients βk = k(k−1+λ),

k = 1, 2, . . . from (4), so that (cf. [6, p. 97])
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In this way, we obtain the coefficients bk in the expansion (8) as
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Then the semi-exponential operators connected with 1+x2 have the form:
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3 Moments

Using the generating function (5) we have
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λ f
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For f(t) = es(t) = ts, s = 0, 1, 2 we obtain the moments for the semi-
exponential operators as follows:
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Using three-term recurrence relation (4) it reduces to
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Similarly, for f(t) = e2(t) = t2 we have
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