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1. Introduction

Recently Acharya et al. [1] have considered numerical approximation of integrals

I(w;f) = /Lf(Z)dL (1.1)

over a directed line segment L from the point zo — h to the point zy + h in the complex plane C, where fis an analytic function
in the disk

Q={zeC:|z—2z)| <r, r>|h|}, (1.2)
by means of a 7-point quadrature formula of the form

Q7 (w:f) = Af(20) + Blf (z0 + th) + f(zo — th)] + C[f (zo + h) + f(z0 — h)] + D[f (20 + ih) + f (20 — ih)],
where t is a positive parameter different from 1. Such a formula is exact for all odd degree monomials f(z) = (z — zo)**". In
order that the formula is also exact for even monomials f(z) = (z — zo)*, k= 0,1,2,3, the authors in [1] determine coeffi-
cients in Q,(w;f) as functions on ¢,

h
(A,B,C,D) :ﬁ<

8(21t* - 5) 20 2(9 -14¢%) 3 - 7t2>
t? A=t 1-t2 1482 )

and obtain a general formula of degree of precision at least seven for any finite positive value of the real parameter t # 1.
Letting t — oo, this rule reduces to the well-known five-point Birkhoff-Young formula of fifth degree precision [3], for which

* The author was supported in part by the Serbian Ministry of Education and Science (Project: Approximation of integral and differential operators and
applications, Grant Number #174015).
E-mail addresses: gvm@mi.sanu.ac.rs, gvm@sbb.rs

0096-3003/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2012.02.015


http://dx.doi.org/10.1016/j.amc.2012.02.015
mailto:gvm@mi.sanu.ac.rs
mailto:<xml_chg_old>gvm@mi.sanu.ac.rs</xml_chg_old><xml_chg_new>gvm@sbb.rs</xml_chg_new>
http://dx.doi.org/10.1016/j.amc.2012.02.015
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

8538 G.V. Milovanovi¢/Applied Mathematics and Computation 218 (2012) 8537-8551

A=8h/5, (B=0), C=4h/15, D= —h/15, and its remainder term RS (w;f) can be estimated as (see [18] or Davis and
Rabinowitz [5, p. 136])

By, In)’ ®
RS (W:f)| < {ggg Max|f® (@),

where S denotes the square with vertices zy + i*h, k=0,1,2,3. The case of Q,(w;f) with h = 1 was considered in [17]. This
kind of Birkhoff-Young quadrature formulae has been investigated by several authors [7,16,15,12-14]. Such quadrature for-
mulas can also be used to integrate real harmonic functions (see [3]).

We mention here that Lyness and Delves [8] and Lyness and Moler [9], and later Lyness [10], developed formulae for
numerical integration and numerical differentiation of complex functions.

By an analysis of the remainder term for the general 7-point quadrature formula Q,(w;f) with respect to the parameter ¢,
it can be obtained a quadrature rule of the maximal precision nine for t = ,/7/15 (see [1]). Some other rules of degree of
precision seven can be also derived.

However, with a little modification of Q,(w;f) we can obtain a modified 7-point quadrature rule Q¥ (w;f) of degree pre-
cision eleven. Furthermore, using such an approach we derive a general (4n + 3)-point quadrature formula of the maximal
degree of precision for a weighted integral.

The paper is organized as follows. In Section 2 we give the modified quadrature formula Q’;"(W;f). Section 3 is devoted to a
general weighted quadrature of Birkhoff-Young type with 4n + 3 nodes and degree of precision 6n + 5. The nodes of such
quadratures are characterized by an orthogonality relation. The corresponding weight coefficients of quadratures are given
in Section 4. A general numerical method for determining nodes of such quadratures of maximal degree of precision is
discussed in Section 5, including numerical results.

2. The modified quadrature formula QQ" (w;f)

For numerical calculating of the integral (1.1) of an analytic function in the disk (1.2), in this section we consider a mod-
ification of the quadrature formula Q,(w;f) in the following form

Q7' (Wif) = Af (20) + BIf (20 + th) + f (20 — th)] + C[f (zo + th) + f (20 — ¢h)] + DIf (z0 + ith) + f (20 — ith))],
where t and ¢ are mutually different positive parameters. In this case, from the corresponding system of equations

%A+B+C+D:h,

Bt2+C€27D€2=g,

Bt4+C£4+D£“:g7

Bt6+C€6—D£6:g,

we get

a2 105¢2¢* — 216 — 35¢* + 15 g I 7¢* -3

~ 105 2 21 2 -ty

c_ h 350 +212 21215 h 35004212 +214 15
~ 210 A2 -0 ©T 210 NGRS

where 0 <t, /<1, t#/.

It is pertinent to note that the modified quadrature formula Q% (w;f) boils down to the seventh degree rule due to Ach-
arya et al. [1] for ¢ = 1, and the modified Birkhoff-Young rule due to To3i¢ [16] for ¢ = (3/7)"* and t — cc.

Now, the error-term RY (w; f) = I(w; f) — QY (w;f) for f(2) = (z— z0)*, k = 4,5,6, reduces to

9
Ri((z - 20)%) = % [21/4(5t2 — 3) — 451 + 35,

11
Ri((z—2)") = 22%[1154(%4 —3)—33t* +21),
13

Ry((z—20)'%) = 21

1365 (9163 (562 — 3) + 65¢*¢3(7t* — 3) — 195t° + 105].

Finally, from

Ri((z-20)%) =0, Ry((z—20)"°) =0,
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we obtain two solutions for parameters:

1
24_@(57—&-4\/102)7 tzzﬁ(45—2\/102), (2.1)
and
= (57 4V102), t? :71—7(45—1—2\/102). (2.2)

Thus, there exist two modified 7-point quadratures QY (w;f), v = 0,1, of the maximal degree of precision eleven, with the
following parameters:

Qowif): €= \/633 (57 +4v102 ) ~ 0.9155808999196944,

t= l(4572\/102) ~ 0.5675304228160498,
256(198 — v102)

A= W — 0.6232915676809758h,
2939400 + 116087102
B= 630644 — 0.4736769794706059h,

C =0.2151573287932331h, D = —-0.0004800921043269324h,

and

QM (wif): (= (‘/% (57 - 4\/102) ~ 0.5883004297385740,

t= 71—7 (45 T 2«102) ~ 0.9201849748878780,

w = 0.6902944381499280h,

2939400 — 116087102
B= 3680644 = 0.2035538803596094h,

C = 0.4582083249363621h, D = —0.006909424370935494h.

A=

Expanding an analytic function in Taylor series

=T gp zea

k=0

and having in mind that QY (w;f) has the maximal degree of precision eleven, the remainder is

(12) (7
R wif) =L B Rl (2 - 2) %)

For the obtained parameters (2.1) and (2.2), its dominant error term reduces to

o e 256(516+13v102) h"
RroWif) * =——3361743 131

(12)(z9) &~ 7.92 x 107203 f12) (z,),

and

Mo e 256(516 — 13V102) h"
R Wif) ~ ——531743 13!

respectively. As we can see the second formula is slightly more accurate than the first one.

(12)(z9) &~ 4.70 x 102 h"2f12)(z,),

3. The generalized weighted quadrature formula Qf'{:, 3(wif)

Let w: (—1,1) — R* be an even positive weight function, for which all moments y, = f Z*w(z)dz, k =0,1,..., exist.
Without loss of generality, in this section we consider a weighted integration over L = [-1, 1] for analytlc functions in the
unit disk Q = {z:|z] < 1} by

I(w;f) = / f@w(2)dz = Qun3(W; f) + Rans3 (Wi f), (3.1)
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where Qg4,.3(w;f) is the (4n + 3)-point quadrature formula of interpolatory type with nodes at the zeros of a monic polyno-
mial of degree 4n +3 (n € N),

n
Quni3(2) = 2(2% — 1o)p,(2') = 2(22 — 10) [ [ (* — T), (3.2)
k=1
where 0 <ry <---<r,<1, 1€ (0,1), and ro # 1y for each k=1,...,n. Here, R4y 3(w;f) is the corresponding remainder

term.
According to (3.2) the quadrature formula in (3.1) has the form

Qan3(W;f) = Af(0) + Blf (x0) + f(—Xo) +Z{Ck (%) + f(=xk)] + Di[f (ixi) + f(=ix)]}, (33)
k=
where xo = /o and x, = 1, k=1,...,n

Theorem 3.1. For any n € N there exist interpolatory quadratures Q4,3 (w;f) with a maximal degree of precision d = 6n + 5. The
nodes of such quadratures Q%l ,3(w;f) are characterized by the following orthogonality relation

/1 o (2)22(Z2 — 1o)p,(ZYW(z)dz=0, k=0,1...,n, (3.4)
-1

where {T,},.y, is a sequence of orthogonal polynomials with respect to the weight function on (—1,1).

Proof. Let P, denotes the set of algebraic polynomials of degree at most d. For a given n € N, suppose that f € P4, where
d > 4n + 3. Then, it can be expressed in the form

f(2) = u(@)Quni3(2) + v(2) = u(2)2(Z* — 10)pa(Z*) + v(2),
where u € Py_4,_3 and v € Pan,2. Applying (3.1), we get

I(w;f) = L u(2)z(z* = ro)p, (2" w(2)dz +I(v).

Since this quadrature is of interpolatory type we have that I(w; v) = Q4,.3(?) and also v(z) = f(z) at the zeros of the polyno-
mial Quy,,3. Therefore, Qg4,,3(W; v) = Q4n.3(W;f), so that for each f € P; we have

Iwif) = / U@l = o)y W)z + Qo ().

It is clear that the quadrature formula Q4,3 (w;f) becomes Q%M (w;f), i.e., it has a maximal degree of precision, if and only if
1

[ @@ - ropuwizidz 0 (35)
-1

for a maximal degree of polynomials u € P4_4,_3. Evidently, (3.5) is true for every even polynomial. Taking u as an odd poly-
nomial u(z) = zh(z?), where h € P,, the previous “orthogonality conditions” can be represented as

/h 22— ro)pa(ZYW(2)dz =0, he Py (3.6)

Since the maximal degree of the polynomial u € Py_4,_3 is
dnax —4n -3 =14+2n+1,
we conclude that the maximal degree of precision of such a quadrature Q4,,3(W;f) iS dmax = 61 + 5, i.e., Qgn 3(W;f) =

Qs (Wsf).

Introducing the inner product in a usual way as

(f.) = / @gw)z

the last orthogonality conditions (3.6) can be expressed in terms of orthogonal polynomials {7, },, with respect to this in-
ner product in the form (zmy, Q4n3) =0, 0 < k< n,ie, (3.4). O

According to (3.2), the polynomial (z* — rz?)p,(z*) can be expressed in the form

@ —)pa(d) = 3 (e (Y — ), 37

=0
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where g; are the so-called elementary symmetric functions, defined by

Gi= > Ty, j=1,...n

[(SP)]
and the summation is performed over all combinations (ki,...,k;) of the basic set {1,...,n}. Thus,
O1=T1+Ty+ - +Tn, O =TT+ + Ty 1Tn,..., Op =T1T2 Ty,

and for the convenience we put gy = 1. Also, we put r instead of rg.
Using the orthogonality conditions (3.4) and the expansion (3.7) we get the following system of nonlinear equations

n

fi=> (—1Y0i{Skanzji2 — ISkanj1 } =0, k=0,1,....n, (3.8)
=0
with respect to unknowns r, 1, ..., 0y, or equivalently to ry, k=0,1,...,n, where r = rg and sy ; = (T, 2%), k, j > 0.
Introducing the notations ¢ = [6; 65 --- 6,]",

A=A(r) = [at% 1, b=b(r)=[bo by - by,
where

akj = (=1 "[Skan-2je2 — TSkan-2+1), bk = Skans2 — ISkans1, (3.9)
the system of n + 1 nonlinear equations (3.8) can be written in the matrix form
Ac =Db. (3.10)

We have seen that the problem for n = 1 (and w(z) = 1) has two solutions. Numerical experiments show that for an arbitrary
n, the number of solutions is n + 1. This hypothesis can be checked numerically for some reasonable values of n (e.g. n < 10)
in the following way.

If we take a fixed value of r € (0, 1), then the overdetermined system of n+ 1 linear equations

A(r)e =b(r), (3.11)
with n unknowns ¢ = (61, 03,...,0,), can be solved as a least squares problem (in the 2-norm)
min |A(r)e — b(r)[, = [|A(r)& — b(r)|,

where the vector A(r)a — b(r) is the corresponding least squares residual and the solution & can be expressed in terms of
Moore-Penrose inverse.

Only when for some r =Ty, the vector A(r)é —b(r) becomes zero, we can identify the existence of a solution
(To,6) = (T, G1,. .., 0y) of our original (nonlinear) system of Egs. (3.10).

Consider now the case w(z) = 1. Following [2, §10.10] we get

v (3N TG+1/2) i\ 2
(P, 2 )*k!<k r(k+j+3/2)*k! k)L 2j v+ 1 (3.12)

where Py (z) is the Legendre polynomial of degree 2k. Taking (3.12) instead of sy ;, the corresponding norm ||A(r)& — b(r)]|, as
a function of r is presented in Fig. 1 for 1 <n <4 and n = 10.

As we can see, for the weight function w(z) = 1 and these values of n, the 2-norm vanishes only at n + 1 points in (0, 1),
which means that for a given n, there exist n + 1 different quadratures Q%HM, v=0,1,...,n, each of degree of precision
Amax = 61 + 5.

In a general case, if we have a solution of our nonlinear problem, say Ty, then in order to construct the corresponding
quadrature formula Q) ;(w;f) for such a r = 7o, we should solve a system of n linear equations from (3.11) in order to
get the values (G4, ..., 6,), and then the zeros (71,...,T,) by solving the equation

(Z-T1) - (2-To)=2"- 012"+ 02"~ +(-1)"G, = 0.

Then, the nodes in the corresponding quadrature formula (3.3) are

Xo=VTo and xy=+/Tv, k=1,...,n.

A determination of the weight coefficients A, B, C, and Dy, k =1,...,n, in the corresponding quadrature formula (3.3) is a
linear problem and it is considered in the next section.

A general numerical method for solving our nonlinear problem (3.8) and finding all solutions for o, for a given n and for
an arbitrary weight function w(z), is given in Section 5. Also, a general numerical method for calculating the necessary inner
products s j = (7, 2%), 0 < k <, is given. Furthermore, analytic expressions for the generalized Gegenbauer weight are
derived.
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Fig. 1. The norm ||A(r)é — b(r)||, as a function of r for 1 <n <4 and n = 10.

4. The weight coefficients in quadrature formula Q}, L3(wi f)

In order to determine the weight coefficients W, in a quadrature formula of interpolatory type

QAn+3 (W§f) = Z va(Z\,)7

zyeZ

we use the Lagrange polynomial constructed at the set of simple nodes Z = {z,}. In our case,

Z ={0, £xo, £y, tixg, k= 1,...,n},

where xy = /Tg and x, = Y1, k=1,...,n, and the node polynomial is

Quni3(2) = (2% — 19) lﬁ[(z4 —T)-
k=1

The corresponding Lagrange polynomial is

Quni3(2)

Lins(f;2) =) ———5——~f(@),
" ; (z2 = 2)Qy,5(20) !
so that
W, = . 1 /] Q4n+3(Z)W(Z) dz.
Q@) Ja z2-2

(4.1)
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Theorem 4.1. Letrgandry, k=1,...,n, be determined according to Theorem 3.1. Then the weight coefficients in the quadrature
formula Qﬂl+3(w;f) with the maximal degree of precision d = 6n + 5 are given by

-1 / '@ — rp @ W)z

1o, (0) /.
~ g [ iz
= i [ E R W k=l
D= v ) e Wt k=1n

where p,(2) = [T)_4(z — ).

Proof. Let xo = \/To and X, = /T, k=1,...,n. According to

Q,.5(2) = (322 — o) H -1 +424Z2 - 1o ZH -1,

v=1 Jj=1 v#j

=

we have
Qiln+3 =-To H T‘ = —Topn )
Q) 3(EX0) = 2T0H —1y) = 2rop, (r3),

Qi3 (2%6) = 4r(Vic+ 10) [ [ (rie = 1) = 4r(Vric = ro)p; (o),

v#k

Q3 (£ix) = Arie(—v/Tic —r0) [ [ (re = 1) = —4re(v/Tic +ro)pi, (1),

v#k

where k = 1,...,n. Now, applying (4.1) and using notations for coefficients as in (3.3), we get desired results. O
For analytic functions we can give an explicit formula for the interpolation error Es,,3(z) = f(2) — Lan,3(f;2) in the form
(see [11, pp. 55-56])

1 Q4n13(2) ﬂ_€)d§ (z € intI),

E4n+3 (Z) = ﬁ r Q4n+3 (5) -z

where I is a simple closed contour in C, such that all interpolation nodes belong to intI". Then, the remainder term in (3.1)
can be expressed in the integral form

a1 f©Q) ' Qun3(2)W(2)
Rass:0) = 321§ e (/1 iz dz)‘i “2)

Some estimate of (4.2) will be given elsewhere.

5. Numerical methods for constructing quadratures

In the sequel we need the inner products sy ; = (72, 2%), 0 < k < j. For k = 0 these products reduce to the moments of the
weight function w, i.e.,

1
sy = (1,29) = / AW)dz = iy, j=01,.... (5.1)
-1

First, we give an analytic expression of s, ; for a wide class of weight functions, and after that we introduce a general numer-
ical method for easy calculation of s, ; for every even weight function.

5.1. Analytic expression of sy ; for the generalized Gegenbauer weight
We consider the so-called generalized Gegenbauer weight function defined by w(z) = |z|"(1 — 22)*, 7, « > —1,0n (-1, 1).

The monic polynomials W*#(z), v=0,1,..., orthogonal with respect to this weight function, where § = (y — 1)/2, were
introduced by LasCenov [6] (see, also, Chihara [4, pp. 155-156] and Mastroianni and Milovanovic [11, pp. 147-148]). These
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polynomials can be expressed in terms of the Jacobi polynomials P{**(z), v =0,1, ..., which are orthogonal on (-1, 1) with
respect to the weight function w®#(z) = (1 — 2)*(1 +2)*, o, > —1. Namely,

k!

Weh iy & pepi2_4q )
2k () (k+0(+ﬂ+l)k k ( ) (52)
k! , '
OB) [y _ (1) (92
W30 (2) _(k+oc+ﬁ+2)kzp" (2z° - 1).
Notice that W3,”) (z) = zWS;**"(z). These polynomials satisfy the following three-term recurrence relation
W2 =W (@) - pW (@), v=0.1,...,
Wz =0, Wiz =1,
where
B = k(k + o) B s = (k+pB)(k+o+p)
*T2k+a+pRk+oa+p+1)" "HTT 2k+a+p-1)2k+a+p)’
fork=1,2,..., except when o+ = —1; then g; = (+1)/(c + f + 2).
Now, we want to find an explicit expression for the products
s = (W5, 2%) / WP (222" (1 - 22dz, 0 <k <J. (53)
Lemma 5.1. Let o, f > —1. Then the products defined in (5.3) are
o - k! (j)l"(k+ac+1)l"(j+ﬁ+1) (5.4)
ST kto+ 1) \k) Tk+j+o+p+2) '

for 0 < k < j. Otherwise, sy ; = 0.
In order to prove this lemma we need an auxiliary result.

Lemma 5.2. For o, f > —1 and j € N the expansion in Jacobi polynomials P*? (t),v = 0,1,..., ],

INv+oa+p+ DIV +a+p+1)
t)J_ZJFUJrﬁH)Z <k> (v+/3+1)1“(v+j+oc+ﬁ+2)P"ﬁ)(t)

v=0

holds.
The proof of this expansion can be given by induction in j, having in mind that
20+ H(v+a+p+1) p B — o up
1+ 0P (1) = PPt + (1 PO(t
(1+0OP(E) v+ o+ +1)R2v+a+p+2) v (6 + +(2v+oc+ﬁ)(2v+oc+ﬁ+1) )

v+oa+BR2v+oa+p+1)
We mention that the corresponding expansion in Bateman and Erdélyi [2, pp. 212] has a mistake.

Proof of Lemma 5.2. According to (5.3) and (5.2) we have

, 2k! “h)( Z2426+1 %
S = ey [, P28 - DA 1 - 2

Changing the variables t = 2z> — 1 it reduces to

k!
2a+/f+j+1(k+ o+ p+ l)k

Skj =

1 )
/ P () (1 — £)(1 + £ dt.
-1

Now, using the expansion from Lemma 5.2 and the orthogonality of Jacobi polynomials,

2Pkt a+ DD(k+p+1)
kKQ2k+o+p+DI(k+o+p+1)

(PP PUPYy = [P |20k, = -
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where ., is Kronecker’s delta, we obtain

o i
k2T 1)k!

P U+p+D) <k> (2k+a+ﬂ+1)r(k+“+ﬁ+l)HP“"”HZ

k.j 2a+/f+j+1(k+ o+ p+1), Tk+p+ DT (k+j+o+p+2)"k )

i.e., (5.4). For k > j, because of orthogonality, s, ; =0 O

We mention some special cases:
1°w(z) =1,i.e,a=0, y=0 (B =-1/2): In this Legendre case we have

o (kY (j) T(i+1/2)
ST k+1/2) \k)T(k+j+3/2)

Compared with (3.12), the additional factor k!/(k + 1/2), (= 1/ay) comes from the leading coefficient in the Legendre poly-
nomial Py (z) = ayz?* + terms of lower degree.

2°w(z) =1/vV1—-22,ie,a=-1/2, y=0(p = —1/2): In the Chebyshev case of the first kind, the inner product (5.4) re-
duces to

b1 2j
S"JZZZHT j*k .

3 w(z) =v1-2%ie,0=1/2, =0 (8= —1/2): In the Chebyshev case of the second kind, it becomes

T 2k+l<2j+1>

Skj = 2%+2k+1 2 4 1 j—k

4°w(z) = (1 -2%)% i.e, o> -1, y=0(f =—1/2): In this Gegenbauer case, we have

)F(k+oc+1)r(j+1/2)
F'k+j+oa+3/2) °

o - k! (j
T kv a+ 1), \k
5°w(z) = |z|,i.e, =0, y =1 (B =0): In this case

2j
Skj = 1 <Jk> .
k441 2k (2§
()0

5.2. General numerical method for calculating s ;

It is well-known that monic polynomials {7}, orthogonal with respect to an even weight function satisfy the three-
term recurrence relation of the form

Ty.1(2) =zmy(2) — pyT-1(2), v=0,1,..., (5.5)
with 79(z) = 1 and 7_;(z) = 0. It is convenient to put f, = (.
Lemma 5.3. Let 8, v > 0, be recursion coefficients in (5.5) for polynomials orthogonal with respect to the even weight function w
on (—1,1), with the moments u, = ﬁ] 2'w(z)dz, v > O. For the inner products s, j = (7o, 2¥) the following recurrence relation
Sk.j1 = Sk1,j + (Bak + Baks1)Skj + BarPark—15k-1,j (5.6)

holds, with soj = py;, j=0,1,..., and sy ; = 0 for k > j.

Remark 5.4. Coefficients from the relation (5.6) appear in the recurrence relation for polynomials {7r2,((\ﬁ)},<€ND orthogonal
with respect to the weight function w(v/t)/v/t on (0,1) (see [11, pp. 101-103]).

Proof of Lemma 5.3. Because of orthogonality, it is clear that s, ; = (71, z¥) = 0 for k > j. When k = 0, for the boundary val-
ues soj we have (5.1). For diagonal elements we have

2j
j 2
Sjji = (TCzjﬂzzj) = |my)” = H:Bt
v=0
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In order to get (5.6), we start with the recurrence relation (5.5). Thus,
1

1
Ski1,j = [ ] Tk (2)W(2)dz = [ ] [2T211(2) — P12k (2)| 24 W(2)dz
1

1 1
= / Taks1(2)27 ' W(2)dz — Boieiq / T (2)2?w(z)dz = / (27021 (2) — o Took-1(2))27 ' W(2)dZ — Bopes 15k,
J-1 J -1 J-1

1
= Skj+1 — Bak /] ZT3y1 (2)27W(2)dZ — Boyy 1Sk -

Expanding z7my,_1(z) as a linear combination of 7, (z) and 7, »(z), we get

o1
Skjt1 = Skt + Pk /] [Tk (2) + Bok 1 Tok-2(2)|ZPW(2)dZ + Byje1Skj = Skrj + BaueSkj + PaBak 1Sk-1.5 + Bars1Sk»
ie,(5.6). 0O
Fig. 2 displays the triangular array of the inner products s ; = (72, z%), 0 < k < j, and the computing stencil showing that
the circled entry is computed in terms of the three other entries. The entries in the boxes are the known boundary values
Soj = Hojr  Sij= Bobn "‘ﬁ2j7 Sj+1,i =0, Jj=01,....2n+2.

Zero entries s;,4 ; are displayed as white circles (in the boxes).
As we can see, for generating the system of Egs. (3.8), i.e., (3.10), we use only entries s ; for k < n. Thus, we need the fol-
lowing matrix of the type (n+ 1) x (2n + 3),

Soq1 So1 --- Som --- So2n+1  So2n+2
S11 -+ Stn -+ S12n41 S12n42

S= (5.7)
Snn --- Sn2n+1 Sn2n+2

5.3. Method for calculating the nodes

Consider again the system of n + 1 nonlinear equations (3.8). Taking only the last n equations of (3.8), we get

Co=d, (5.8)
where C=C(r) = [ak,j]ﬁﬂl_jzl andd =d(r) = [b; --- by]". According to (3.9), the elements aij and by are expressed in terms of
the elements of the matrix S given by (5.7). The determinant of the matrix C has the form

St2n —TS12n-1 S12n-2 —TS12n-3 ... S12 —T1S11
2 S22n —1S22n-1 S22n-2 —TS22n-3 ... S22 —1S21
detC = (—1)"" 1/ _ . . . ,
Sn,Zn —TSn2n-1 Sn2n-2 —TSp2n-3 ... Sn.,2 —TSna
k
2n+2 &t
(k+1,))
o] °

< 80,j = M2

!

0 2n+2=8

Fig. 2. The scheme for calculating the inner products sy ; = (7, 2z%) for n = 3.
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where its elements Sin212 — I'Sk2n-2j+1 are equal to zero for each k, j € {1,2,...,n} such that k + 2j > 2n + 2, because of
sij = 0 for k > j. It is easy to see that such zero-elements are the last n — 2 elements in the last nth column, the last n — 4
elements in the (n — 1)st column, etc. Otherwise, detC = A,(r) is a polynomial of degree n. Since the vector d on the right
side in (5.8) is given by

S1.2n42 = TS12n41

S22n+2 — I'S22n+1

Sn2n+2 — I'Sn2n+1

the corresponding determinants in Cramer’s rule A,({)(r), j=1,...,n,are also polynomials of degree n. Thus, for a given r, such
that A, (r) # 0, the unique solution of (5.8) is given by
- Ay .
gi=0irnN=- -, j=1,...,n.
J ]( ) An(r) ]
Using matHemATICA package it can be obtained in a symbolic form as rational functions in r. Substituting &;(r), j=1,...,n, in

n

fo= (=16 {Soan2:2 — So2n-2js1} =0,

j=0

we obtain the following algebraic equation of degree n + 1,
n

Opya(r) = Z(_l)j{SO,Zn—ZHZ — ISoan-2j41}AY (1) = 0,
j=0
where A? (1) = A, (r).
Numerical experiments show that the (monic) polynomial ®,(r) has n + 1 different real zeros located in (0, 1).
In the case n = 1 we have seen in Section 2 that two different solutions exist for r and they give two quadratures of the
same precision eleven.

0.004

0.002 |

L
—— L

0.2 4 . 0.8 1.0

—-0.002}

—-0.004

—-0.006

—-0.008

Fig. 3. Graphs of ®@,.4(r), n=3,4,5, for w(z) = 1.

Table 1
Different solutions of ®,1(r) =0 for n = 2(1)5 and w(z) = 1.
n=2 n=3 n=4 n=>5
0.2044987378293505 0.1439216162367618 0.1081897446669971 0.08510161904718037
0.6167356745407912 0.4619273121368076 0.3598672165580655 0.2897653961037322
0.9208470355936592 0.7593055545829755 0.6211046569905429 0.5148988061113188
0.9519663824480733 0.8360221823612692 0.7211387868476094
0.9678238003414767 0.8814830739148880

0.9769659264002607
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The graphs of monic polynomials ®,.(r) on [0,1] for n = 3,4, 5 are displayed in Fig. 3.

In Table 1 we present the corresponding numerical values of the zeros of the polynomials ®,,,(r) for n = 2,3,4,5.

Similar results can be obtained for other weight functions. The cases with the Chebyshev weight function of the first kind
w(z) = (1 — z2)""? and the weight function w(z) = |z| are displayed in Figs. 4 and 5, respectively.

The previous method for finding all solutions for 7, works for some reasonable values of n, e.g. n < 50. For
example, for the Chebyshev weight of the first kind and n =20 we obtain 21 solutions for 7, (given to 30 decimal
digits):

out7]= {0.0150485864753572668744527330521,
0.0557532669882252298665743917182, 0.108187398514305913909380337895,
0.167824679058336195589651992843, 0.232108607836412242442640888453,
0.299251018982542294927095298222, 0.367850351163304408081805272186,
0.436729680690725174227220507435, 0.504858032671624316488143131170,
0.571309464731063706091020367257, 0.635241286837459266216610097877,
0.695882703617760968552811397194, 0.752529402435763252982400288756,
0.804541615955365152530647156549, 0.851344214028606784515849170776,
0.892427938359564164814715995310, 0.927351213720803665019429733552,
0.955742161852690778718938880015, 0.977300564840333779616628490742,
0.991799603894642762751920785079, 0.999087253927436018093044192512}

0.0040059914529631981612, 0.015198148896652530762, 0.030153553927246011838,

In the case w(z) = 1 and n = 50, the following sequence of 51 solutions for 7y is given with 20 decimal digits:
out[11]= {

047786461968069102119, 0.067502176479469289610, 0.088904351714626293601,

0.

0.11170137135198798583, 0.13566492220893164063, 0.16060826297875345727,
0.18637354088540880140, 0.21282382747632203945, 0.23983784595920233875,
0.26730633917663595361, 0.29512949030801918880, 0.32321504715488414291,
0.35147693246320767511, 0.37983419928314226360, 0.40821023692094646313,
0.43653216243154454449, 0.46473035175990477588, 0.49273807747585617047,
0.52049122885459292527, 0.54792809622616881572, 0.57498920592171805202,
0.60161719533987947594, 0.62775672001012940416, 0.65335438628580607294,
0.67835870462602991647, 0.70272005943876842745, 0.72639069223892979455,
0.74932469548418699756, 0.77147801492965236242, 0.79280845872161408075,
0.81327571175331934504, 0.83284135404945289269, 0.85146888214350868901,
0.86912373257358626880, 0.88577330675487417323, 0.90138699659712564769,
0.91593621032745143452, 0.92939439805653787567, 0.94173707669323433174,
0.95294185387170192266, 0.96298845061167595446, 0.97185872249560409663,
0.97953667924407666148, 0.98600850280069667575, 0.99126256482379910043,
0. 0 0

99528944820940483897, 0.99808200354293588811, 0.99963584456149960413}

0.004

0.002 -

—0.002

—0.004

—0.006

—0.008

—0.010 =

Fig. 4. Graphs of @, (), n = 3,4,5, for w(z) = (1 - 22) /2.
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—-0.02

—0.04

—-0.06

Fig. 5. Graphs of ®,(r), n=1,2,3, for w(z) = |z|.

From the theoretical point of view it would be nice to prove (or disprove) the following conjecture:

Conjecture 5.5. For a given weight function w(z) and each n € N, all zeros of ®,,,{(r) are real and distinct and are located in
(0,1). Zeros of @, 1(r) and &y, (r) interlace.

5.4. Numerical results

For quadratures Qﬁ”n +3(w; f) of degree of precision d = 6n + 5, in our MATHEMATICA procedure we obtain complete parameters
in the form

{x0,xk, A, B, CK,DK} = {Xo, {X1,...,%n},A,B, {C1,...,Cu},{D1,...,Dn}}.

For example, let w(z) = 1 and n = 2. Then we have three quadratures Q] (1;f) of degree of precision d = 17 (see first column
in Table 1). For these values of ry, i.e.,

{0.2044987378293505,0.6167356745407912,0.9208470355936592}

we get the following parameters:

{0.4522153666444237,{0.7754684395027309,0.9570916645968834},
0.4880467095490914,0.3936044844812900,{0.2527549012554169,0.1099114468981711},
{-0.0003299665322107021,0.00003577912278703132}},

{0.7853252030469869,{0.4741479794169331,0.9589531260262328},0.5473979047003460,
0.2416521097533237,{0.3846699903497127,0.1051207091442720},
{-0.005150757567968953,8.995970487465769 % 10" —6}},

{0.9596077509032840,{0.4802111190778518,0.7885463525798828},
0.5616568463150571,0.1034616930531016,{0.3835087691311978,0.2383909330938098},
{—0.006285348161458679, 0.00009552972582096275}},

respectively.
In the case of the Chebyshev weight w(z) = 1/v1 — z2 and n = 2, for the corresponding values of ro,
{0.2321837439443931,0.6740206457250330,0.9609831103305740},
the quadrature parameters are respectively:
{0.4818544842007731,{0.8124087172755511,0.9790447658917281},0.5249337433901672,

0.4705720970208580,{0.4268191199148742,0.4112815014700504},
{-0.0003991705374755941,0.00005590723150597970}},
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Table 2
Relative errors in quadrature sums for w(z) = 1 and w(z) = 1/v1 - 22.
QF N Amax w(z) =1 w(z) =(1- 22)71/2
QY owsf) 4 17 4.44(-5) 7.72(~7)
Qi (w:f) 4 17 5.31(-6) 4.55(-5)
QM wif) 4 17 7.01(-6) 5.79(~5)
Q?(W;f) 4 13 2.48(-4) 3.29 (-4)
QS (w:f) 4 15 5.73(-6) 3.06 (-5)
QS(w:f) 5 17 2.36(—5) 3.67 (=5)

{0.8209876038802492,{0.5034904974569647,0.9799958361402526},0.5871100876953411,
0.4159965436705901,{0.4649125011919272,0.4017086864355387},
{-0.005389674191177676,0.00001322584034774685)},

{0.9802974601265546,{0.5090243926812192,0.8235455809669467},0.6010918915307779,
0.3986693558288102,{0.4647957620089833,0.4131917386857352},
{-0.006515105833929775,0.0001086303399087344}}.

At the end of this paper we give a numerical example. The formula (3.3) could be interesting for real functions of the form
f(2) = g(z%). According to (3.3), in that case each of quadratures Qﬁ’fwa‘,(w;f), v=0,1,...,n(for n + 1 different values of 7),
becomes a quadrature formula of the following form with N (= n + 2) nodes,

Iw;f) = /'1f<x)w<x>dx ~ AF(0) + 2B (%) + 3 Wif(xy) (59)
J- =1

where Wy, =2(Cy+Dy), k=1,...,n.
Let f(x) = 1/(1 + x8). We consider two integrals

T odx 1. m /. T T 1 i
B i {smg |7+ 2tanh ™ (sin g)] +cosg |7+ 2tanh (cosg)] } ~1.849303411551076,
and
1
/ ﬁ%:m& (1 30711 §~—1> ~ 2.626270969212133.
—1 —X

For their calculation we apply all quadratures Qﬂ‘/’],v(w;f), v =0,1,2, whose parameters are given before. Here n = 2, N = 4,
and dp.x = 17. The corresponding relative errors

Qi (w:f) — I(wif)
| I(w:f)
are given in the last two columns in Table 2. Numbers in parentheses indicate decimal exponents.

We compare these results with corresponding ones obtained by m-point Gaussian quadratures (for even functions), with
respect to Legendre and Chebyshev weights,

’ v:07]727

9 X Auminy2f (0), if m is odd

Iwif) = QEwif) =S Af(1,) =2 Y Af(t, m+1)2f (9), :

() = QEWif) = 3 AS() =2 5 AS( +{5 oo
where A, and t,, v=1,...,m, are Christoffel numbers and nodes, respectively (see [11, pp. 324-325]), such that

1>7>...>17,>—1. If we take m=7,8,9, the number of nodes in the corresponding quadrature are N =4,4,5,
respectively.

As we can see, the quadratures Q’l‘/’lv\,(w;f), v =0,1,2, have a higher degree of precision than quadratures Qﬁ(w;f),
m = 7,8 (with the same number of nodes), as well as that they give a better accuracy.
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