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Abstract In this paper, we develop the theory of so-called nonstandard
Gaussian quadrature formulae based on operator values for a general family
of linear operators, acting of the space of algebraic polynomials, such that the
degrees of polynomials are preserved. Also, we propose a stable numerical
algorithm for constructing such quadrature formulae. In particular, for some
special classes of linear operators we obtain interesting explicit results con-
nected with theory of orthogonal polynomials.
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1 Introduction and preliminaries

Let dμ be a finite positive Borel measure on the real line such that its support
supp(dμ) is an infinite set, and all its moments μk = ∫

R
xk dμ(x), k = 0, 1, . . .,

exist and are finite. With P we denote the set of all algebraic polynomials and
with Pn its subset formed by all polynomials of degree at most n (∈ N0).

The n-point quadrature formula

∫

R

f (x)dμ(x) =
n∑

k=1

wk f (xk) + Rn( f ), (1.1)

which is exact on the set P2n−1, i.e., Rn(P2n−1) = 0, is known as the Gauss
quadrature formula (cf. Gautschi [19, p. 29]). His famous method of approxi-
mate integration, Gauss [17] discovered for the Legendre measure dμ(t) = dt
on [−1, 1] in 1814, and he obtained numerical values of quadrature parameters,
the nodes xk and the weights wk, k = 1, . . . , n, by solving nonlinear systems
of equations for n ≤ 7. Computationally, today there are very stable methods
for generating Gaussian rules. The most popular of them is one due to Golub
and Welsch [22]. Their method is based on determining the eigenvalues and
the first components of the eigenvectors of a symmetric tridiagonal Jacobi
matrix Jn(dμ), with elements formed from the coefficients in the three-term
recurrence relation for the monic polynomials {πn(dμ; · )}+∞

n=0 orthogonal with
respect to the inner product

( f, g) = ( f, g)dμ =
∫

R

f (x)g(x) dμ(x) ( f, g ∈ L2(dμ)). (1.2)

Namely, the nodes xk in (1.1) are the eigenvalues of the Jacobi matrix Jn(dμ)

(i.e., zeros of πn(dμ; · )) and the weights wk are given by wk = μ0v2
k,1, where

vk,1 is the first component in the corresponding (normalized) eigenvector
vk (= [vk,1 vk,2 . . . vk,n]T), vT

k vk = 1.
The Gaussian quadrature formulae were generalized in several ways. The

first idea of numerical integration involving multiple nodes appeared in the
middle of the last century (Chakalov [10–12], Turán [49], Popoviciu [43],
Ghizzetti and Ossicini [20, 21], etc.). A survey on quadratures with multiple
nodes of the form

∫

R

f (x)dμ(x) ≈
n∑

k=1

2sk∑

i=0

wk,i f (i)(xk)

was recently published by Milovanović [28]. Further extensions dealing with
quadratures with multiple nodes for ET (Extended Tschebycheff) systems are
given by Karlin and Pinkus [23], Barrow [2], Bojanov, Braess, and Dyn [6],
Bojanov [5], etc. Recently, a method for the construction of the generalized
Gaussian quadrature rules for Müntz polynomials on (0, 1) is given in [32].

The mentioned quadrature rules use the information on the integrand only
at some selected points xk, k = 1, . . . , n (the values of the function f and its
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derivatives in the cases of rules with multiple nodes). Such quadratures will be
called the standard quadrature formulae.

However, in many cases in physics and technics it is not possible to measure
the exact value of the function f at points xk, so that a standard quadrature
cannot be applied. On the other side, some other information on f can be
available, as

1◦ the averages

1

2hk

∫

Ik

f (x) dx

of this function over some non-overlapping subintervals Ik, with length of Ik

equals 2hk, and their union which is a proper subset of supp(dμ);
2◦ a fixed linear combination of the function values, e.g.

af (x − h) + b f (x) + cf (x + h)

at some points xk, where a, b , c are constants and h is sufficiently small positive
number, etc.

Thus, if the information data { f (xk)}n
k=1 in the standard quadrature (1.1)

is replaced by {(A hk f )(xk)}n
k=1, where A h is an extension of some linear

operator A h : P → P, h ≥ 0, we get a non-standard quadrature formula

∫

R

f (x)dμ(x) =
n∑

k=1

wk(A
hk f )(xk) + Rn( f ). (1.3)

Notice that we use the same notation for the linear operator defined on the
space of all algebraic polynomials and for its extension to the certain class of
integrable functions X ( f ∈ X ). As a typical example for such operators is the
average (Steklov) operator mentioned before in 1◦, i.e.,

(A h p)(x) = 1

2h

∫ x+h

x−h
p(x) dx, h > 0, p ∈ P. (1.4)

The first idea on so-called interval quadratures, which are an example of non-
standard quadrature rules, appeared a few decades ago. In 1976 Omladič et al.
[40] considered quadratures with the average operator (1.4) (see also Pitnauer
and Reimer [41]). Some further investigations were given by Kuz’mina [25],
Sharipov [45], Babenko [1], and Motornyi [38].

Let h1, . . . , hn be nonnegative numbers such that

a < x1 − h1 ≤ x1 + h1 < x2 − h2 ≤ x2 + h2 < · · · < xn − hn ≤ xn + hn < b ,

(1.5)

and let w(x) be a given weight function on [a, b ]. Using the previous inequali-
ties it is obvious that we have 2(h1 + · · · + hn) < b − a.
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Recently, Bojanov and Petrov [7] proved that the Gaussian interval quadra-
ture rule of the maximal algebraic degree of exactness 2n − 1 exists, i.e.,

∫ b

a
f (x)w(x) dx =

n∑

k=1

wk

2hk

∫ xk+hk

xk−hk

f (x)w(x) dx + Rn( f ), (1.6)

where Rn( f ) = 0 for each f ∈ P2n−1. Under conditions hk = h, 1 ≤ k ≤ n, they
also proved the uniqueness of (1.6). Moreover, in [8] Bojanov and Petrov
proved the uniqueness of (1.6) for the Legendre weight (w(x) = 1) for any
set of lengths hk ≥ 0, k = 1, . . . , n, satisfying the condition (1.5). The question
of the existence for bounded a, b is proved in [7] in much broader context for
a given Chebyshev system of functions.

Recently in [29], using properties of the topological degree of non-linear
mappings (see [42, 44]), it was proved that Gaussian interval quadrature
formula is unique for the Jacobi weight function w(x) = (1 − x)α(1 + x)β , α,

β > −1, on [−1, 1] and an algorithm for numerical construction was proposed.
For the special case of the Chebyshev weight of the first kind and the special
set of lengths an analytic solution can be given [29]. Interval quadrature rules
of Gauss–Radau and Gauss–Lobatto type with respect to the Jacobi weight
functions are considered in [33].

Recently, Bojanov and Petrov [9] proved the existence and uniqueness
of the weighted Gaussian interval quadrature formula for a given system of
continuously differentiable functions, which constitute an ET system of order
two on [a, b ].

The cases with interval quadratures on unbounded intervals with the classi-
cal generalized Laguerre and Hermite weights have been recently investigated
by Milovanović and Cvetković in [30] and [34].

Another approach in quadrature formulae of Gaussian type for intervals of
the same length with the average operator (1.4) appeared in 1992 in Omladič’s
paper [39]. The middle points of the intervals are zeros of some kind of
orthogonal polynomials. More precisely, Omladič proved that the nodes xk,
k = 1, . . . , n, of his quadratures are zeros of the average Legendre polynomials
ph

n(x) ≡ pn(x), which satisfy the three-term recurrence relation

pn+1(x) = x pn(x) − n2
(
1 − n2h2

)

4n2 − 1
pn−1(x), n ≥ 1.

In this paper we follow this idea and develop the theory and numerical
construction of nonstandard quadratures of Gaussian type for a general family
of linear operators, acting of the space of algebraic polynomials, such that
the degrees of polynomials are preserved. In particular, we consider some
special linear operators, for which we can get some interesting explicit results
connected with theory of orthogonal polynomials.

The paper is organized as follows. In the next section the formulation and
the proof of the main result are given. Section 3 contain further refinement of
the theory, developed for some special classes of operators. Finally, using the
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results presented in Section 3, Section 4 resolves the problem of construction
of this kind of quadrature rules.

2 Nonstandard Gaussian quadrature formulae

Let H = Hδ be any right δ-neighborhood of the number zero, i.e., Hδ = [0, δ),
δ > 0. We consider families of linear operators A h, h ∈ H, acting on the
space of all algebraic polynomials P, such that the degrees of polynomials are
preserved, i.e.,

deg(A h p) = deg(p), (2.1)

and

lim
h→0+

(A h p)(x) = p(x), x ∈ C, (2.2)

for any p ∈ P and each h ∈ H. Concerning degree preserving property for the
convenience we define deg(0) = −1, so that degree preserving property also
means that the zero polynomial is the image only of the zero polynomial.

For a given family of linear operators A h, h ∈ H, we consider the non-
standard interpolatory quadrature of Gaussian type

∫

R

f (x)dμ(x) =
n∑

k=1

wk(A
h f )(xk) + Rn( f ), (2.3)

which is exact for each polynomial of degree at most 2n − 1, i.e., Rn(P2n−1) = 0.
Our main result can be stated in the following form:

Theorem 2.1 Let A h, h ∈ H, be a family of linear operators satisfying the
conditions (2.1) and (2.2) and dμ be a finite positive Borel measure on the
real line with its support supp(dμ) ⊂ R. For any n ∈ N there exists ε > 0, such
that for every h ∈ Hε = [0, ε) there exists the unique interpolatory quadrature
formula (2.3) of Gaussian type, with nodes xk ∈ Co(supp(μ)) and positive
weights wk > 0, k = 1, . . . , n.

We are going to prove existence and uniqueness property of the nonstan-
dard Gaussian quadrature formula (2.3) for a general family A h, h ∈ H, satis-
fying the previous conditions. For some special classes of operators, such as

(A h p)(x) = 1

2h

∫ x+h

x−h
p(t) dt, (2.4)

(A h p)(x) =
m∑

k=−m

ak p(x + kh) or (A h p)(x) =
m−1∑

k=−m

ak p
(

x +
(

k + 1

2

)

h
)

,

(2.5)
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and

(A h p)(x) =
m∑

k=0

b khk

k! Dk p(x), (2.6)

we give more properties of the Gaussian quadrature formula. In the previous
formulae we assume that m is a fixed natural number and Dk = dk/dxk, k ∈ N0.

2.1 Some auxiliary results

According to the fact that we are working with families of linear operators,
we can represent the action of A h applied to any given p ∈ P if we know the
values of this operator A h to monomials xk, k ∈ N0. Suppose that we have

(
A hxn)(t) =

n∑

k=0

αn
k(h)tk, n ∈ N0.

Then it follows from (2.2) that

lim
h→0+

αn
k(h) = δn,k, 0 ≤ k ≤ n,

where δn,k is the Kronecker’s delta. To simplify the notation, we introduce
the convention αn

k(h) = 0 for k > n. In this way, we can state this continuity
property as follows:

Lemma 2.1 The family of linear operators A h, h ∈ H, is continuous, i.e.,

lim
h→0+

(A h p)(t) = p(t), p ∈ P, t ∈ C,

if and only if the functions αn
k(h), k, n ∈ N, defined by

(A hxn)(t) =
∑

k∈N0

αn
k(h)tk, n ∈ N0,

are continuous at zero, with the property

lim
h→0+

αn
k(h) = δn,k, n, k ∈ N0.

Note that this continuity property in a certain sense can be formally written
in the form limh→0+ A h = I , where, as usual, I is the identity operator. We
will use this simple notation to denote the continuity property.

Lemma 2.2 A degree preserving linear operator A h : P �→ P is bijective.

Proof Suppose we have two polynomials p1 and p2 such that A h p1 = A h p2.
According to the linearity A h(p1 − p2) = 0 and the degree preserving prop-
erty deg(p1 − p2) = −1, i.e., p1 − p2 = 0, we conclude that A h is injective.
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If we suppose that A h is not surjective, then there exists some polynomial
q ∈ P

(
for example, q(t) := ∑

qkt k
)
, such that it is not an image by A h of any

p ∈ P. But degree preservation means that in formulae

(A hxn)(t) =
∑

k∈N0

αn
kt k, n ∈ N0,

we have αn
n �= 0, n ∈ N0. Suppose deg(q) = N. Then we can solve the triangular

system of equations

(A hxn)(t) =
∑

k∈N0

αn
kt k, n = 0, 1, . . . , N,

for the values t k, k = 0, 1, . . . , N, so that we have

t k =
k∑

n=0

βk
n (A hxn)(t), k = 0, 1, . . . , N.

Then, the polynomial

N∑

k=0

qk

k∑

n=0

βk
n xn

is mapped by A h into q, which is a contradiction. 
�

This lemma shows that we can treat our family of linear operators as a family
of isomorphisms. Since every operator A h in the family is bijective, it has the
inverse operator (A h)−1, which is also linear (cf. [26, p. 9]).

The following result is related to the inverse family of operators (A h)−1,
h ∈ H.

Lemma 2.3 Let A h, h ∈ H, be a given family of isomorphisms acting on the
space of all algebraic polynomials, such that any operator A h preserves the
degree of a polynomial and that limh→0+ A h = I . Then, the family of inverse
operators (A h)−1, h ∈ H, satisfies the same properties.

Proof Suppose that for some h ∈ H, the operator (A h)−1 does not preserve
the degree of polynomials, i.e., there exists some p ∈ P, with deg(p) = n, such
that deg((A h)−1 p) �= n. Then, deg((A h)−1 p) �= n implies deg(A h((A h)−1 p)) =
n, which means that A h does not preserve degree of the polynomial which is a
contradiction.

As in the proof of Lemma 2.2 we can solve the triangular system of
equations

(A hxn)(t) =
∑

k∈N0

αn
k(h)t k, n = 0, 1, . . . , N,
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so that we have

t k =
k∑

n=0

βk
n (h)

(
A hxn)(t), k = 0, 1, . . . , N.

Applying the inverse operator (A h)−1, we get

(
(A h)−1t k)(x) =

k∑

n=0

βk
n (h)xn, k = 0, 1, . . . , N.

Using Cramer’s formulae, the functions βk
n (h), 0 ≤ n ≤ k, can be expressed as

rational functions of αn
k(h), which denominator is given by

∏N
ν=0 αν

ν (h) �= 0,
h ∈ H, according to the degree preserving property. Since αn

k(h), k, n ∈ N0,
are continuous at h = 0, the functions βk

n (h), 0 ≤ k ≤ n, are also continuous
at h = 0. It means, according to Lemma 2.1, that the family (A h)−1, h ∈ H, is
continuous. 
�

We also adopt the definition βk
n (h) = 0, n > k. As a direct consequence, we

have the following result:

Lemma 2.4 The functions αn
k(h) and βk

n (h) satisfy the following simple property
∑

ν∈N0

αn
ν (h)βν

k(h) = δn,k, k, n ∈ N0.

Proof Applying the inverse operator to
(
A hxn)(t) =

∑

k∈N0

αn
k(h)t k,

we get

xn =
n∑

k=0

xk
n∑

ν=k

αn
ν (h)βν

k(h).

To complete the proof we need only to read the terms with given powers
of x. 
�

Now, for a given family A h, h ∈ H, and a positive measure dμ, with
supp(μ) ⊂ R, we define the following family of the linear functionals

Lh(p) =
∫

((A h)−1 p)(x) dμ(x), p ∈ P. (2.7)

It is obvious that the functional Lh, for a given h ∈ H, is linear. We are now
able to define the following bilinear functional

〈p, q〉h = Lh(pq), p, q ∈ P, (2.8)

with properties which are summarized in the following lemma.
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Lemma 2.5 The bilinear functionals (2.8) satisfy the following properties

〈p, q〉h = 〈q, p〉h, 〈αp + βr, q〉h = α〈p, q〉h + β〈r, q〉h, p, q, r ∈ P.

Proof Direct calculation. 
�

According to these properties, the bilinear functional 〈·, ·〉h can be under-
stood, in a general case, as a formal or non-Hermitian inner product on P

(cf. [3, 46]). In a general case, the linear functional Lh is not regular, i.e., the
sequence of (formal) orthogonal polynomials with respect to 〈·, ·〉h does not
exist. But, under certain assumptions the functional Lh could be regular, and
we have the following lemma.

Lemma 2.6 Let the family A h, h ∈ H, satisfy the property (A h)−1 : (P, R) �→
(P, R). Then, for every n ∈ N there exists an ε > 0, such that every linear
functional Lh, h ∈ [0, ε), is positive definite on (P2n, R) and the sequence of
orthogonal polynomials πh

k , k = 0, 1, . . . , n, exists with respect to Lh, h ∈ [0, ε).

Proof As in the proofs of the previous lemmas, we adopt the notation
(
(A h)−1t k)(x) =

∑

ν∈N0

βk
ν (h)xν, k = 0, 1, . . . , n,

where the functions βk
ν (h), according to Lemma 2.1, have the property

lim
h→0+

βk
ν (h) = δk,ν .

For the moments of the linear functional Lh, we have

mν(h) = Lh(xν) =
∫
(
(A h)−1tν

)
(x) dμ(x) =

ν∑

k=0

βk
ν (h)mk, ν = 0, 1, . . . , 2n,

where mk, k = 0, 1, . . . , 2n, are the moments of the measure μ, i.e., practically
the moments of the linear functional L0. According to the property (A h)−1 :
(P, R) �→ (P, R), we know that all moments are real. The moments mν(h),
ν = 0, 1, . . . , 2n, are continuous functions of h at the point h = 0, and therefore
we have

lim
h→0+

mν(h) = mν, ν = 0, 1, . . . , 2n.

According to the Theorem about positive definiteness of the linear functionals
(see [13, p. 15]), we can conclude that a linear functional is positive definite
on (P2n, R), provided all moments are real and the corresponding Hankel
determinants

Δν(h) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m0(h) m1(h) · · · mν−1(h)

m1(h) m2(h) mν(h)

...

mν−1(h) mν(h) m2ν−2(h)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, ν = 1, . . . , n + 1, (2.9)
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are positive (Δ0(h) := 1). For h = 0 all determinants Δν(0), ν = 1, . . . , n + 1,
are positive, since the measure μ is positive and the corresponding linear func-
tional L0 is positive definite. The determinants Δν(h), ν = 1, . . . , n + 1, are
continuous functions of h at the point h = 0, and therefore there exist εν ,
ν = 1, . . . , n + 1, such that Δν(h) > 0 for h ∈ [0, εν), ν = 1, . . . , n + 1.

We can identify the set [0, ε) in the following form

[0, ε) =
n+1⋂

k=1

[0, εk), ε = min{ε1, . . . , εn+1}.

Therefore, the family of the linear functionals Lh, h ∈ [0, ε), is positive definite
on (P2n, R); hence, there exists the sequence of orthogonal polynomials πh

k ,
k = 0, 1, . . . , n, with respect to each Lh, h ∈ [0, ε). 
�

According to the proof of this lemma it is obvious that ε depends of n.
Namely, the following implication

n1 > n2 ⇒ [0, ε(n1)) ⊂ [0, ε(n2)),

is an immediate consequence. In another words, we can expect that ε is a non-
increasing function of n. It is interesting to pose a question whether there exists
the case in which ε(n) = +∞, n ∈ N. Later, we prove that such families of
operators exist, for example, one family of operators fulfilling this property is

(A h p)(x) = 2p(x + h/2) − p(x − h/2), p ∈ P.

For the families of linear functionals for which (A h)−1 : (P, R) �→ (P, C), in
the general case we cannot claim that the linear functional is positive definite,
but we can prove that some linear functionals Lh are regular.

Lemma 2.7 For every given n ∈ N0 there exists an ε > 0 such that the linear
functional Lh, h ∈ [0, ε), is regular on the space (P2n, C), i.e., there exists a
sequence of polynomials πh

ν , ν = 0, 1, . . . , n, orthogonal with respect to Lh,
h ∈ [0, ε).

Proof Like in the proof of the previous lemma, we start with the moments of
the linear functional Lh,

mν(h) = Lh(tν) =
∫
(
(A h)−1tν

)
(x) dμ(x), ν = 0, 1, . . . , 2n,

and then we form the Hankel determinants Δν(h), ν = 1, 2, . . . , n + 1, as in
(2.9). Since the measure μ is positive, the functional L0 is regular. Using a
continuity argument as in the previous lemma, we prove that there exists an
ε > 0, such that Δν(h) �= 0, ν = 1, 2 . . . , n + 1, for h ∈ [0, ε).

Since the linear functionals Lh are regular on (P2n, C), we conclude that the
corresponding sequence of orthogonal polynomials exists. 
�
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Theorem 2.2 Suppose two families of linear operators A h
1 and A h

2 are given
such that

(
A h

1 − A h
2

)
p = 0, p ∈ P2n−1.

Then two different linear functionals Lh
1 and Lh

2 , defined by (2.7), which are
induced by these operators (in the case they are regular) have the same first
n members of the orthogonal polynomial sequence. In another words if we
denote sequence of orthogonal polynomials with respect to inner product (2.7)
for A h = A h

1 with p1
k, k ∈ N0 and for A h = A h

2 with p2
k, k ∈ N0, then

p1
k = p2

k, k = 0, 1, . . . , n.

Proof It is enough to prove that first 2n − 1 moments are the same for two
inner products. Hence, it is enough to prove that the values of the operators
(A h

1 )−1 and (A h
2 )−1 on 1, x, . . . , x2n−1 are the same. As in the proofs of previous

lemmas, we have

(
A h

1 t k)(x) = (
A h

2 t k)(x) =
k∑

ν=0

αk
ν xν, k = 0, 1, . . . , 2n − 1.

Using this system of equations we can solve for xν , ν = 0, 1, . . . , n, since it is
triangular system of equations with αk

k �= 0. Using the fact that A h
1 and A h

2 are
linear, we get

xν = A h
1

(
ν∑

k=0

βν
k t k

)

= A h
2

(
ν∑

k=0

βν
k t k

)

, ν = 0, 1, . . . , 2n − 1.

It is obvious that ((A h
1 )−1 − (A h

2 )−1)xν = 0, ν = 0, 1, . . . , 2n − 1. Hence, first
2n − 1 moments of the linear functionals Lh

1 and Lh
2 are the same. Using a

representation of orthogonal polynomials via moments (see [13, p. 17])

pk(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

μ0 μ1 . . . μk

μ1 μ2 μk+1
...

μk−1 μk μ2k−1

1 x xk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

we conclude that p1
k = p2

k, k = 0, 1, . . . , n. 
�

This result enables us to consider the family (2.4) as a special case of the
family (2.5), since we can always construct a quadrature rule to such that

1

2h

∫ x+h

x−h
p(x)dx =

n−1∑

k=−n+1

wk p(x + kh),

for each p ∈ P2n−1.
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It also gives us a machinery to treat operator families of the following form

(A h p)(x) = 1

μ([−h, h])
∫ h

−h
p(x + t)dμ(t).

Again, this family can be reduced to the family (2.5) on the space P2n−1, if we
apply a similar interpolation quadrature rule.

Actually, it can be proved that the families (2.5) and (2.6) are equivalent, in
the sense given in the following lemma.

Lemma 2.8 Let A h
1 be the family of operators given by (2.5). Given n ∈ N there

always exists family of operators A h
2 , given by (2.6), such that

(
A h

1 − A h
2

)
p = 0, p ∈ P2n.

Let A h
1 be the family of operators given by (2.6). Given n ∈ N there always

exists family of operators A h
2 , given by (2.5), such that

(
A h

1 − A h
2

)
p = 0, p ∈ P2n.

Proof It is enough to construct an operator A h
2 , given by (2.6), which satisfies

(
A h

1 − A h
2

)
xk = 0, k = 0, 1, . . . , 2n.

The previous reduces to the linear system of equations

k∑

ν=0

(k
ν

)
b νhν tk−ν =

m1∑

	=−m1

a	(t + 	h)k

=
m1∑

	=−m1

a	

k∑

ν=0

(k
ν

)
tk−ν(	h)ν, k = 0, 1, . . . , 2n,

i.e.,

b ν =
m1∑

	=−m1

a		
ν, ν = 0, 1, . . . , 2n. (2.10)

For the proof of the second part of the statement it is enough to note that
equation (2.10) has the unique solution for a	, 	 = −m1, . . . , m1, for the case
m1 = n, since the matrix of the system is a regular Vandermonde matrix. 
�

It is well-known that the construction of a Gaussian quadrature formula
is connected with an interpolation problem. In our case, for any set of real
distinct numbers xk, k = 1, . . . , n, and any operator A h from our family, we
are concerned with the solution of the following interpolation problem: Find
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the polynomial P of degree less than 2n which solves the following system of
equations

(A h P)(xk) = f0,k, [(A h P)(x)]′x=xk
= f1,k, k = 1, . . . , n, (2.11)

where fm,k (m = 0, 1; k = 1, . . . , n) are any two given sequences of numbers.

Lemma 2.9 The interpolation problem (2.11) has the unique solution P∈P2n−1.

Proof At first, for real distinct numbers xk, k = 1, . . . , n, we construct
polynomials

H(x) =
n∏

k=1

(x − xk), Mk(x) = H(x)

(x − xk)H′(xk)
,

Sk(x) = (1 − 2M′
k(xk)(x − xk))(Mk(x))2, Tk(x) = (x − xk)(Mk(x))2,

Uk(x) = ((A h)−1Sk)(x), Vk(x) = ((A h)−1Tk)(x),

for which the following properties can be verified by direct calculations
(
A hUk

)
(xν) = Sk(xν) = δk,ν ,

[(
A hUk

)
(x)
]′

x=xν
= S′

k(xν) = 0,

(
A hVk

)
(xν) = Tk(xν) = 0,

[(
A hVk

)
(x)
]′

x=xν
= T ′

k(xν) = δk,ν .

Hence, we can identify the polynomial P in the following form

P(x) =
n∑

k=1

[ f0,kUk(x) + f1,kVk(x)], P ∈ P2n−1.

It remains to prove that our interpolation problem has the unique solution.
Here it is enough to verify that the corresponding homogenous problem has
only the trivial solution in P2n−1. Suppose that the homogenous problem has a
solution P which is not trivial. Then, according to the system of equations

(A h P)(xk) = 0, [(A h P)(x)]′x=xk
= 0, k = 1, . . . , n,

we conclude easily that the polynomial A h P has n distinct double zeros at the
points xk, k = 1, . . . , n, which means that the polynomial A h P is of degree at
least 2n. However, the operator A h preserves degree of polynomials, hence,
the polynomial P has degree at least 2n, which is a contradiction. Thus, our
interpolation problem has the unique solution. 
�

2.2 Proof of the main result

Now, we are ready to prove our main result in the following reformulated form:

Theorem 2.3 For every positive measure μ, with supp(μ) ⊂ R, and any given
family of isomorphisms A h, h ∈ H, which preserves degree of the polynomial,
is continuous and, has the property (A h)−1 : (P2n, R) �→ (P2n, R), for every
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n ∈ N there exists an ε > 0, such that the quadrature formula (2.3) exists
uniquely for h ∈ [0, ε), i.e.,

∫
p dμ =

n∑

k=1

wk(A
h p)(xk), p ∈ P2n−1,

with nodes xk ∈ Co(supp(μ)) and positive weights wk, k = 1, . . . , n.

Proof As we proved in Lemma 2.6, the linear functional Lh, defined by (2.7),
is positive definite on (P2n, R) for h ∈ [0, ε1), i.e., there exists a sequence
of polynomials orthogonal with respect to Lh. We can express the monic
orthogonal polynomials πh

n in the following form (see [13, p. 17], [48, p. 97])

πh
0 (x) = 1, πh

n (x) = 1

Δn(h)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

m0(h) m1(h) · · · mn(h)

m1(h) m2(h) mn+1(h)
...

mn−1(h) mn(h) m2n−1(h)

1 x xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, n ≥ 1,

where Δn(h) is defined by (2.9). From this formula we conclude that the
coefficients of polynomials πh

n (x) are continuous functions of h at the point
h = 0. Since the zeros of polynomials are continuous functions of their coef-
ficients (see [35, p. 177]), we conclude that the zeros of the polynomial πh

n

are continuous functions of h at h = 0. Since all zeros of the polynomial π0
n

are contained in the set Co(supp(μ)) ⊂ R (see [47, p. 4], [27]), then according
to the mentioned continuity property there exists an ε2 > 0 such that for
h ∈ [0, ε2) the zeros of πh

n are contained in Co(supp(μ)). Thus, for any h ∈
[0, ε), where ε = min{ε1, ε2}, we have that all zeros of πh

n are contained in
Co(supp(μ)).

Now, take n ∈ N and a corresponding ε such that the linear functional
Lh is positive definite on (P2n, R) and that all zeros of πh

n are contained in
Co(supp(μ)). Choose some polynomial P ∈ P2n−1. According to Lemma 2.9,
we have uniquely

P(x) =
n∑

k=1

[ f0,kUk(x) + f1,kVk(x)], (2.12)

with f0,k = (A h P)(xk), f1,k = [(A h P)(x)]′x=xk
, k = 1, . . . , n, where the polyno-

mials Uk and Vk are constructed for the set of points xk, k = 1, . . . , n, which
are zeros of πh

n . Using the definition of Vk we have
∫

Vk dμ =
∫
(
(A h)−1Tk

)
(x) dμ(x) = Lh(Tk) = 1

(πh
n )′(xk)

Lh(πh
n Mk

) = 0,

according to the orthogonality property, since Mk is of degree n − 1. The
previous equality is true for every k = 1, . . . , n.
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If we integrate (2.12), we get

∫
P dμ =

n∑

k=1

[

f0,k

∫
Uk dμ + f1,k

∫
Vk dμ

]

=
n∑

k=1

wk(A
h P)(xk),

with an identification

wk =
∫

Uk dμ, k = 1, . . . , n.

In other words, we have just constructed a quadrature rule which is exact
for each P ∈ P2n−1. Its nodes are zeros of the polynomial πh

n orthogonal with
respect to Lh and, as we know, these zeros belong to Co(supp(σ )). For the
weight coefficients we have

wk =
∫

Uk dμ = Lh(Sk) = Lh((Mk)
2)− 2M′

k(xk)

(πh
n )′(xk)

Lh(πh
n Mk

)= Lh((Mk)
2) > 0,

where we have used the orthogonality property and positive definiteness of the
linear functional Lh.

The uniqueness property of our quadrature formula is identified easily, since
the monic orthogonal polynomial πh

n is determined uniquely for the positive
definite linear functional Lh, hence, its zeros are too. 
�

This completes the existence and the uniqueness property of the quadrature
formula (2.3). However, there exists still problem of the construction of such
a quadrature formula. It can be very instructive if we are able to give an
algorithm for such a construction or if we are able to derive a procedure using
which we can find the family (A h)−1, h ∈ H. In the next section we present
the procedure which can resolve the mentioned questions for certain special
families of operators.

We finish this section with an illustrative example.

Theorem 2.4 Suppose we have the family of operators

(A h p)(t) = p(t) + ht
dp(t)

dt
, p ∈ P.

Then this is a family of continuous, degree preserving, isomorphism of P. The
inverse family can be represented in the following form

(
(A h)−1 p

)
(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x−1/h

h

∫ x

0
t1/h−1 p(t) dt, x > 0,

p(0), x = 0,

(−x)−1/h

h

∫ 0

x
(−t)1/h−1 p(t) dt, x < 0.
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Proof Since the family is degree preserving it is a family of isomorphisms.
Trivially we check it is continuous. We find easily the values of our family on
the polynomial natural basis,

(
A hxk)(t) = (1 + kh)t k i.e.,

(
(A h)−1t k)(x) = xk

1 + kh
, k ∈ N0.

What is left to do is just to check that given representation of (A h)−1 matches
given sequence of values on the natural basis. 
�

For example, this theorem combined with results already presented guar-
anties the existence of the following quadrature rule

∫

R+
p(x) dμ(x) =

n∑

k=1

wk

∫ xk

xk−1

x1/h−1 p(x) dx, p ∈ P,

where x0 = 0, for every measure μ and h small enough, depending on μ and n,
where we can obtain the nodes of the quadrature formula as the zeros of the
n-th polynomial orthogonal with respect to the linear functional

Lh(p) =
∫

R+

(
A h p

)
(x) dμ(x) =

∫

R+

(

p(x) + hx
dp(x)

dx

)

dμ(x), p ∈ P.

It is also interesting to note that the sequence of moments can be given in
the form

Lh(xk) = (1 + kh)L0(xk) = (1 + kh)

∫

R+
xk dμ(x), k ∈ N0.

3 Special families of linear functionals

3.1 Basic consideration

In order to construct the quadrature formula (2.3) we need the zeros of the
polynomial πh

n orthogonal with respect to the functional Lh defined by (2.7).
Hence, the first problem is how to compute the values of the functional Lh.
According to the fact that Lh is linear, we need only the moments of the linear
functional Lh, i.e., we should know how to compute (A h)−1xk, k = 0, 1, . . . , 2n.
If we know the action of A h, i.e.,

(
A htn)(x) =

∑

k∈N0

αn
k xk, n ∈ N0,

then we can calculate

tn =
∑

k∈N0

αn
k

(
(A h)−1xk)(t), n ∈ N0,

and we are able to calculate the moments of the inverse operator (A h)−1,
because the system of linear equations is triangular with elements on the main
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diagonal which are not zeros. Since (A h)−1 is a linear operator, we know its
action on the whole P.

For a special families of linear operators A h, we are able to give more
precise results on the interpretation of (A h)−1.

In the sequel, we use the moments of the operators A h and (A h)−1, de-
noted by

ηn,h(x) = (
A ht n)(x) and μk,h(t) = (

(A h)−1x k)(t) (n, k ∈ N0),

respectively. Note that the first moment of A h is a constant different from zero.

Theorem 3.1 Assume that the moments of the operator A h can be expressed in
the form

ηn,h(x)

n! =
n∑

k=0

xk

k!
Ch

n−k

(n − k)! , n ∈ N0, (3.1)

where Ch
k, k ∈ N0, are constants. Then

n∑

k=0

ηk,h(x)

k!
μn−k,h(t)
(n − k)! = (x + t)n

n! , n ∈ N0, (3.2)

and the moments of the inverse operators (A h)−1 satisfy the property (3.1).
The moments of the operator (A h)−1 are determined uniquely by the mo-

ments of A h and vice-versa.

Proof Applying the operator (A h)−1 to (3.1), we get

tn

n! =
n∑

k=0

Ch
n−k

(n − k)!
μk,h(t)

k! , n ∈ N0. (3.3)

Next we have
n∑

k=0

ηk,h(x)

k!
μn−k,h(t)
(n − k)! =

n∑

k=0

μn−k,h(t)
(n − k)!

k∑

ν=0

xν

ν!
Ch

k−ν

(k − ν)!

=
n∑

ν=0

xν

ν!
n∑

k=ν

μn−k,h(t)
(n − k)!

Ch
k−ν

(k − ν)!

=
n∑

ν=0

xν

ν!
tn−ν

(n − ν)! = (x + t)n

n! .

Starting with the equality (3.3), we note that the matrix of the system of
equations is lower-triangular and has constant elements on diagonals, where
by diagonal we mean elements which have a constant difference of indices.
We prove that the inverse matrix of such a matrix has the same properties.
Trivially it is a lower-triangular matrix. Denote elements of this inverse matrix
by ai, j, i, j ∈ N0. We know that ai, j = 0 provided i < j. The elements on the
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main diagonal of this inverse matrix are constant, since ai,i = 1/Ch
0 , i ∈ N0.

Suppose that elements on the i − j = 0, 1, . . . , k. Using the identity

i∑

ν= j

Ch
i−ν

(i − ν)!aν, j = δi, j, i, j ∈ N0,

we have that

aj+k+1+ν, j+ν = δj+k+1+ν, j+ν

Ch
0

− 1

Ch
0

j+k+ν∑

	= j+ν

Ch
j+k+1+ν−	

( j + k + 1 + ν − 	)!a	, j+ν

= δj+k+1, j

Ch
0

− 1

Ch
0

k∑

	=0

Ch
k+1−	

(k + 1 − 	)!b 	, j, ν ∈ N0,

which means that aj+k+1+ν, j+ν , ν ∈ N0, does not depend on ν, i.e., the elements
of the inverse matrix on the diagonal i − j = k + 1 are constant.

To prove the rest of this theorem, we note that the previous system of
equations is triangular. If the moments of the operator A h are given, we have

μn,h(t)
n! = 1

η0,h(x)

(
(x + t)n

n! −
n∑

k=1

ηk,h(x)

k!
μn−k,h(t)
(n − k)!

)

, n ∈ N0,

where we use the fact that η0,h(x) �= 0, since A h is a degree preserving
operator. According to the fact that ((A h)−1)−1 = A h, the moments of A h

are given uniquely by the moments of (A h)−1. 
�

Now, we introduce two generating functions for the moments of the opera-
tors A h and (A h)−1 by

fA h(u, x) =
∑

k∈N0

ηk,h(x)

k! uk, f(A h)−1(u, t) =
∑

k∈N0

μk,h(t)
k! uk, (3.4)

respectively. These functions are defined at least at the point u = 0. Also
formally, we can form the Cauchy product of these two series which represent
the generating functions

fA h(u, x) f(A h)−1(u, t) =
∑

k∈N0

uk
k∑

ν=0

ην,h(x)

ν!
μk−ν,h(t)
(k − ν)!

=
∑

k∈N0

(u(x + t))k

k! = exp(u(x + t)).

Regarding this we have the following result:

Theorem 3.2 Let DA h �= {0} be the domain of the absolute convergence of
the series representing the generating function fA h(u, x) from (3.4). Then, the
series which represents the generating function f(A h)−1(u, t) has a domain of the
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absolute convergence D(A h)−1 �= {0} and the both generating functions satisfy the
following equality

fA h(u, x) f(A h)−1(u, t) = exp(u(x + t)), (3.5)

where u ∈ DA h ∩ D(A h)−1 , and this intersection does not equal to {0}.

Proof Define the function

gh(u, t) := exp(u(x + t))
fA h(u, x)

,

which is quotient of two analytic functions on DA h . Therefore, gh is a meromor-
phic function of u on DA h . Because of fA h(0, x) = η0(x) �= 0, there exists some
neighborhood D(A h)−1 of the point u = 0, such that the function fA h(u, x) �= 0
for u ∈ D(A h)−1 . If the function fA h( · , x) does not take zero on the whole DA h ,
then we can take D(A h)−1 = DA h . The previous means that the function gh is
analytic on D(A h)−1 , i.e., it has the series representing it in the neighborhood of
u = 0.

Hence, it must be

fA h(u, x)gh(u, t) = exp(u(x + t)), u ∈ D(A h)−1 ,

where all functions in the formula are analytic. If we expand these functions in
potential series, we get

∑

k∈N0

ηk,h(x)

k! uk
∑

ν∈N0

gν,h(t)
ν! uν =

∑

k∈N0

(x + t)k

k! uk.

For every u ∈ D(A h)−1 , the product of series can be calculated using the Cauchy
product for fA h and gh. According to this fact, for u ∈ D(A h)−1 we have

∑

k∈N0

uk
∑

ν∈N0

ην,h(x)

ν!
gk−ν,h(t)
(k − ν)! = exp(u(x + t)).

Finally, if we multiply it by u− j−1, j ∈ N0, and then integrate it over the circle
{u | |u| = r} ⊂ D(A h)−1 , using Cauchy’s theorem, we obtain

j∑

ν=0

ην,h(x)

ν!
g j−ν,h(t)
( j − ν)! = (x + t) j

j! , j ∈ N0.

According to Theorem 3.1, the previous system of equations uniquely deter-
mines the moments of (A h)−1, so that f(A h)−1 = g and the function f(A h)−1 is
analytic on D(A h)−1 . 
�
3.2 Special cases of families (2.4), (2.5), and (2.6)

Knowing the generating function of moments of the operator A h, we can
determine the corresponding generating function of moments of the operator
(A h)−1. For the families given by (2.4), (2.5), and (2.6), we can prove that they
satisfy the previous property (3.1).
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Theorem 3.3 The families of operators given by (2.4), (2.5), and (2.6) satisfy the
property (3.1).

Proof Using a direct calculation, for the family given by (2.4) we have

ηk,h(x)

k! = 1

2k!h
∫ x+h

x−h
t k dt = 1

2h
(x + h)k+1 − (x − h)k+1

(k + 1)! =
k∑

ν=0

xν

ν!
Ck−ν

(k − ν)! ,

where

Ch
ν = 1 + (−1)ν

2(ν + 1)
hν, ν ∈ N0.

For the first family given in (2.5), we have

ηk,h(x)

k! =
m∑

ν=−m

aν

k∑

j=0

x j

j!
(νh)k− j

(k − j)! =
k∑

j=0

x j

j!
Ch

k− j

(k − j)! ,

where Ch
ν = ∑m

j=−m a j( jh)ν , ν ∈ N0. Similarly, we have for the second family
given in (2.5).

Finally, for the family given by (2.6), we have

ηk,h(x)

k! =
k∑

ν=0

b νhν

ν!
xk−ν

(k − ν)! =
m∑

ν=0

xν

ν!
Ch

k−ν

(k − ν)! ,

where Ch
ν = b νhν , ν ∈ N0. 
�

In order to simplify the notation we introduce the following definition:

Definition 3.1 For the families of operators defined by

A h p =
m∑

k=−m

ak p( · + kh) and A h p =
m−1∑

k=−m

ak p
(

· +
(

k + 1

2

)

h
)

,

we introduce the characteristic polynomials as

Q(z) =
m∑

k=−m

akzk+m and Q(z) =
m−1∑

k=−m

akzk+m, (3.6)

respectively. For the family

A h p =
m∑

k=0

b khk

k! Dk p,
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we define the characteristic polynomial as

Q(z) =
m∑

k=0

b k

k! zk. (3.7)

For the family given in (2.4) it is proven in [39] that it is a bijective family
acting on P. The degree preserving and continuity properties of this family
are trivial. For families of the form (2.5) and (2.6), we have the following
statement:

Theorem 3.4

1◦ The family of operators A h, defined by (2.5), is bijective family of contin-
uous and degree preserving operators if and only if for the characteristic
polynomial (3.6) we have Q(1) = 1.

2◦ The family of operators A h, defined by (2.6), is bijective family of contin-
uous and degree preserving operators if and only if for the characteristic
polynomial (3.7) we have Q(0) = 1.

Proof

1◦ It is enough to consider only the first family of operators in (2.5).
If the family (2.5) is continuous then A 0 = I , but

p = A 0 p =
m∑

k=−m

ak p( · + k0) = Q(1)p, p ∈ P,

hence, Q(1) = 1.
Now, let Q(1) = 1. The family (2.5) is evidently linear. It is a degree
preserving as well, since the leading coefficients in the polynomials p and
A h p are the same. The family is bijective according to Lemma 2.2.
Finally, for the continuity we have first A 0 = I and, because of linearity,
we know that it is enough to prove the continuity only for one basis of P,
so that

(
A ht j)(x) =

m∑

k=−m

ak(x + kh) j =
m∑

k=−m

ak

j∑

ν=0

( j
ν

)
xν(kh) j−ν

=
j∑

ν=0

x j
( j
ν

) m∑

k=−m

ak(kh) j−ν.

Since

lim
h→0+

( j
ν

) m∑

k=−m

ak(kh) j−ν = δ j,ν,

we conclude that the family is continuous.
2◦ A similar proof can be given for the family of operators (2.6). 
�



452 G.V. Milovanović, A.S. Cvetković

Theorem 3.5

1◦ The generating functions fA h and f(A h)−1 of the operator (2.5) are given by

fA h(u, x) = Q
(
ehu)eux exp(− deg(Q)hu/2)

and

f(A h)−1(u, t) = exp(u(t + deg(Q)h/2))

Q(ehu)
,

respectively, where Q is defined in (3.6).
2◦ The generating functions for the family (2.6) are given by

fA h(u, x) = Q(hu)eux and f(A h)−1(u, t) = eut

Q(hu)
,

where Q is defined by (3.7).
3◦ The generating functions for the family (2.4) are given by

fA h(u, x) = eux sinh(hu)

hu
and f(A h)−1(u, t) = eut hu

sinh(hu)
.

Proof We will determine only the expressions for fA h(u, x). The expressions
for f(A h)−1(u, t) are obtained directly from (3.5).

1◦ For the first family of (2.5) we get

fA h(u, x) =
+∞∑

k=0

uk

k!
m∑

j=−m

aj(x + jh)k =
m∑

j=−m

aj

+∞∑

k=0

k∑

m=0

(ux)m

m!
( jhu)k−m

(k − m)!

=
m∑

j=−m

aj

+∞∑

k=0

(ux)k

k!
+∞∑

m=0

( jhu)m

m! = eux
m∑

j=−m

a je jhu

= Q
(
ehu)eux exp(− deg(Q)hu/2),

where we have used intensively Cauchy series product theorem and Fubini
theorem.

2◦ For the family given by (2.6), we have

fA h(u, x) =
+∞∑

k=0

uk
min(m,k)∑

j=0

bj h j

j !
xk− j

(k − j)!

=
m∑

j=0

bj (hu) j

j !
+∞∑

k=0

(ux)k

k! = Q(hu)eux.

3◦ Finally, for the family (2.4) we obtain

fA (u, x) = 1

2hu

+∞∑

k=0

uk+1

k!
(x + h)k+1 − (x − h)k+1

k + 1
= eux sinh(hu)

hu
.


�
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Remark 3.1 It may be interesting to give precisely the domain on which
equality (3.5) is valid. Since the functions fA h and exp are entire functions, the
expression is valid on the neighborhood of the number 0 on which the function
f(A h)−1 is analytic. For the family (2.5), the equality is valid on the following set

{
u
∣
∣
∣ h|u| < min

k∈N0,ν=1,...,deg(Q)

{| log |λν | + i(arg(λν) + 2kπ)|} = humin

}
,

where λν , ν = 1, . . . , deg(Q), are zeros of the characteristic polynomial Q,
counting multiplicities.

Similarly, for the family (2.6), the equality is valid on the set
{

u
∣
∣
∣ h|u| < min

ν=1,...,deg(Q)

{|λν |
} = humin

}
,

where, again λν , ν = 1, . . . , deg(Q), are zeros of the characteristic polynomial
Q, counting multiplicities.

From these expressions we can give the following estimate

|μk,h(t)|1/k ≈ k
eumin

,

for the rate of increasing of the moments μk,h(t).

3.3 Representation of inverse families of operators

Using every operator A h we can derive the family of the linear functionals A h
x

acting on the space of algebraic polynomials in the following way

A h
x p = (A h p)(x), p ∈ P.

The linearity of the functionals A h
x is a direct consequence of the linearity of

A h. Also, we can introduce the moments ηx
k,h, k ∈ N0, of the functionals A h

x ,
as well as μx

k,h = μk,h(x) for (A h)−1. The generating functions for the moments

ηx
k,h and μt

k,h of the functionals A h
x and

(
A h

t

)−1, we denote by fA h
x
(u) and

f(A h
t )−1 , respectively. There are the obvious connections

fA h
x
(u) = fA h(u, x) and f

(A h
t )

−1(u) = f(A h)−1(u, t).

Definition 3.2 For the measure μ (possibly complex), we say it represents a
linear functional L : P �→ C, provided

L
(
x k) =

∫

Γ

x k dμ(x),

where Γ is a simple Jordan curve in the complex plane.

In a general case, according to Theorem of representation of the complex
linear functionals (see [13, p. 74]), we can claim that every linear functional
has an interpretation measure, which is even supported on the subset of the
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real line. We have just mention, that for positive definite linear functionals,
if the representation measure is supported on a compact set of the real line,
the representation measure is unique (see [13, p. 71], [26, p. 410]). If the
supporting set is unbounded, the representing measure need not be unique
(see [13, p. 73]), but there are some sufficient conditions for this measure to be
unique (for example, see [3, 16]).

Since, we are interested to interpret the family of the linear functionals
(
A h

t

)−1, as a result we should get a family of the representing measures μt,
with the property

(
A h

t

)−1
xk =

∫

Γ

xk dμh
t (x).

However, when a family of operators satisfies the property (3.1), it is possible
to get the representation using only one measure.

Theorem 3.6 If a family of linear operators satisfies the property (3.1) we have
the representation of

(
A h

t

)−1
in the form

(
A h

t

)−1
xk =

∫

Γ

(x + t)k dμh(x), (3.8)

where Γ is a simple Jordan curve in the complex plane.

Proof According to Theorem 3.1, for some sequence Bh
k, k ∈ N0, we have

μn,h(t)
n! =

n∑

k=0

Bh
n−k

(n − k)!
t k

k! , n ∈ N0.

Now, we suppose that the measure μh, supported on some curve Γ , has the mo-
ments Bh

k, k ∈ N0. Such a measure always exists according to [13, pp. 74–75].
Then, obviously we have

∫

Γ

(x + t)n dμh(x) = n!
n∑

k=0

t k

k!
1

(n − k)!
∫

Γ

xn−k dμh(x)

= n!
n∑

k=0

Bh
n−k

(n − k)!
t k

k! = μn,h(t), n ∈ N0.


�

A direct consequence of the previous theorem is that the linear functional
Lh, defined in (2.7), can be represented as

Lh(p) =
∫

dμ(t)
∫

Γ

p(t + x)dμh(x), p ∈ P.
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Lemma 3.1 If the family of measures μh is a family of positive measures
supported on the subset of the real line for h ∈ [0, ε) ⊂ R

+
0 , then Lh is a positive

definite for h ∈ [0, ε).

Proof Assume that p(x) is non-negative for any x ∈ R. Then, for a fixed t ∈
R so is p(t + x) for x ∈ R. Since positive measures represent positive definite
functionals, for given t ∈ R we have

q(t) =
∫

Γ

p(t + x)dμh(x) > 0, t ∈ R.

Since q is a non-negative polynomial and the measure μ is positive we have
also Lh(p) > 0, which implies Lh is positive definite (see [13, p. 13]). 
�

We are going to see in the next section that such situations actually happen.
Even more we are going to see that there are cases in which ε = +∞. Positive
definiteness of Lh guaranties the existence of the quadrature rule (2.3) with
the real nodes and positive weights for any h ∈ [0, ε), although it might happen
nodes are not contained in the Co(supp(μ)). Assuming the measure μ has
a support which is unbounded towards ±∞, the positive definiteness of Lh

will produce a quadrature rule with nodes inside of the convex hull of the
supporting set.

Theorem 3.6 actually means that we have

(
A h

t

)−1
xn = (

A h
0

)−1
(x + t)n, n ∈ N0,

where
(
A h

0

)−1 operates on x. Actually, we can prove that (3.1) is equivalent
with the previous property.

Lemma 3.2 The sequence of moments ηn,h(t), n ∈ N0, of a linear operator A h

satisfies (3.1) if and only if for the associated linear functionals we have

A h
t p(x) = A h

0 p(x + t), (3.9)

where the operators are acting on x.

Proof Due to linearity it is enough to give the proof only for the natural basis.
Assume (3.1) holds, then putting t = 0, we get

A h
0 xn = Ch

n, n ∈ N0,

so that

A h
t xn

n! =
n∑

k=0

t k

k!
A h

0 xn−k

(n − k)! = A h
0 (x + t)n

n! , n ∈ N0.
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If (3.9) holds, we can use the linearity of A h
0 to obtain

1

n!A
h

t xn = 1

n!A
h

0 (x + t)n =
n∑

k=0

t k

k!
A h

0 xn−k

(n − k)! , n ∈ N0.

Finally, choosing Ch
n = A h

0 xn, n ∈ N0, we get (3.1). 
�

We are going to illustrate this fact for the operators given by (2.4), (2.5)
and (2.6). In order to give the results for the mentioned operators we need the
following auxiliary result.

Lemma 3.3 Let the function f : R �→ C be infinitely continuously-differen-
tiable, i.e. f ∈ C∞(R), with all derivatives integrable on R, and assume its
Fourier transform is given by 2πw. Then polynomials are integrable with respect
to χR(x)w(x)dx, and we have

f (n)(0) =
∫

R

(ix)nw(x)dx, n ∈ N0.

Proof Since f ∈ C∞ it is the well-known that, for any k ∈ N0, there exist a
positive constants Ck such that

|w(x)| ≤ Ck

(1 + |x|)k
, x ∈ R.

This property guaranties that all polynomials are integrable with respect to the
measure χR(x)w(x)dx. Using the continuity of f , we have the Fourier inversion
formula

f (u) = 1

2π

∫

R

eiux2πw(x)dx, u ∈ R. (3.10)

According to Lebesgue theorem of dominant convergence, we can differenti-
ate (3.10), so that we have

f (n)(0) =
∫

R

(ix)nw(x)dx.

For the function which dominates |x|k|w(x)|, k ∈ N0, we can take

Ck+2|x|k
(1 + |x|)k+2

, k ∈ N0,

which is integrable on R. 
�

This lemma together with Lemma 3.2, suggests that we can search for the
representation of the inverse family (A h

t )−1, in the following way: first take the



Nonstandard Gaussian quadrature 457

generating function f(A h
t )−1 at t = 0, find the Fourier transform of it and then

use Lemma 3.2 to recover (A h
t )−1 for all t.

In the sequel we consider the representation of the inverse operators for
the mentioned families of operators. In order to be able to present results in a
simpler way we introduce the following definition.

Definition 3.3 With λν , ν = 1, . . . , M, we denote distinct zeros of the char-
acteristic polynomial Q of a family of linear operators A h, and with mν ,
ν = 1, . . . , M, their multiplicities, respectively, so that

Q(x) = A
M∏

ν=1

(x − λν)
mν , (3.11)

where
∑M

ν=1 mν = deg(Q).

3.3.1 Representation of the inverse family for (2.6)

Since we work only with bijective operators, according to Theorem 3.4, we
must have Q(0) = 1. We can obtain the moments of the linear functional(
A h

t

)−1 by expanding the moment generating function f
(A h

t )
−1(u) into a power

series in the neighborhood of u = 0. Since, Q is a polynomial, at first we can
expand the expression 1/Q into the partial fraction decomposition, and then
expand every term into the power series at the point u = 0. According to (3.11)
we have the following partial fraction decomposition and the series expansion

1

Q(hu)
=

M∑

ν=1

mν∑

j=1

Q j
ν

(hu − λν) j
=

+∞∑

k=0

uk

k!
M∑

ν=1

mν∑

j=1

Q j
νμ

ν, j
k,h, (3.12)

where

μ
ν, j
k,h = (−1) jhk

λ
j+k
ν

( j )k.

Symbol ( j )k = Γ ( j + k)/Γ ( j ) is Pochhammer’s symbol.
We can conclude that it is enough to give a representation of the linear

functional L
λ,m
t,h , with a characteristic polynomial

Q := Qm
λ (z) =

(
λ − z

λ

)m

.

Then we obviously have

(
A h

t

)−1 =
M∑

ν=1

mν∑

j=1

(−1) jQ j
ν

λ
j
ν

L
λν, j
t,h . (3.13)
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For a representation of the previous linear functional we have the following
result:

Theorem 3.7 Let r(λ) = sgn(�(λ)) and i(λ) = sgn(�(λ)) and let a family of
linear operators, defined by (2.6), have the characteristic polynomial determined
by Q := Qm

λ (z).

1◦ For �(λ) �= 0, we have

(
A h

t

)−1
p =

(
λr(λ)

h

)m 1

Γ (m)

∫

R+
p(t + yr(λ))ym−1e−λyr(λ)/h dy.

2◦ For �(λ) = 0, we have

(
A h

t

)−1
p =

(−iλi(λ)

h

)m 1

Γ (m)

∫

R+
p(t − iyi(λ))ym−1eiλyi(λ)/h dy.

Proof According to Lemma 3.2, it is enough to give a representation for
(
A h

0

)−1. We are not going to use method based on the Fourier transform, given
in Lemma 3.3, since for m = 1, we clearly does not have integrability of the
function 1/Q1

λ.
The moments of the functional

(
A h

0

)−1 can be obtained easily. Namely,
we have

f
(A h

0 )
−1(u) = 1

Qm
λ (hu)

=
(

1

1 − hu/λ

)m

=
∑

k∈N0

Γ (m + k)

k!Γ (m)

(
hu
λ

)k

,

so that the moments are (Γ (m + k)/Γ (m))(h/λ)k, k ∈ N0.
We present the proof only in the case �(λ) > 0 and �(λ) > 0. For other cases

the proof is almost the same. Let the contour C in the complex y-plane be the
union of the following arcs

γ R
1 = {y | 0 ≤ y ≤ R}, γ R

2 = {y | |y| = R, − arg(λ) ≤ arg(y) ≤ 0},
γ R

3 = {y | 0 ≤ y ≤ R, arg(y) = − arg(λ)}.
The function y �→ Gk(y) = yk ym−1e−λy/h, k ∈ N0, is analytic, except for the
singularity at y = ∞. According to the Cauchy residue theorem, we have∮

C Gk(y) dy = 0. For the integral over the arc γ R
3 , we have

∫

γ R
3

Gk(y) dy =
∫ R

0
tm+k−1ei(m+k) arg(λ)e−|λ|t/h dt

=
(

h
λ

)m+k ∫ |λ|R/h

0
tm+k−1e−t dt →

(
h
λ

)m+k

Γ (m + k),

as R → +∞. It is simple to prove that
∫
γ R

2
→ 0 as R → +∞, which implies

∫
γ +∞

1
= ∫

γ +∞
3

. Using the integral calculated over γ R
3 as the value of the integral

over γ R
1 , after multiplication with the constant from the statement, we get

exactly the moments we need. 
�
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Note that the representation theorem recovers the well-known generalized
Laguerre measure. Also, note that in the case Q := Qm

λ (z) and λ > 0, the
representation measure is positive. We have the following result:

Theorem 3.8 Suppose all the roots of the characteristic polynomial Q, for
the family given by (2.6), are positive. The linear functional

(
A h

t

)−1
has a

representation given by

(
A h

t

)−1
p =

∫

R+
p(x + t) dμh(x), h > 0, p ∈ P,

where the measure μh is positive.

Proof According to Theorem 3.7, we can always represent the measure μh

from this theorem as a linear combination of the generalized Laguerre mea-
sures. So, we search for the measure μh in an absolutely continuous form
wh

m1,...,mM
(x)dx, where we assume the notation from Definition 3.3.

Let
∑M

ν=1 mν > 2. Then, using Lemma 3.3, we have

w′
m1,...,mM

(x) = 1

2π

∫

R

−iue−iux

Qm1,...,mM(ihu)
du

i.e.,

w′
m1,...,mM

(x) + λM

h
wm1,...,mM(x)

= λM

2πh

∫

R

e−ixu

Qm1,...,mM−1(ihu)
du = λM

h
wm1,...,mM−1(x).

According to the fact that all singularities are placed in the lower half plane
and Qm1,...,mM(ihu) is of order at least u−3 at infinity, we have

wm1,...,mM(0) = 1

2π

∫

R

du
Qm1,...,mM(ihu)

= 0.

The previous means that our function wm1,...,mM is a solution of the following
differential equation

w′
m1,...,mM

(x) + λM

h
wm1,...,mM(x) = λM

h
wm1,...,mM−1(x), wm1,...,mM(0) = 0,

for which we can give the explicit solution in the form

wm1,...,mM(x) = λM

h
e−λMx/h

∫ x

0
eλMt/hwm1,...,mM−1(t) dt.

It is clear that if wm1,...,mM−1(x) > 0, x > 0, and wm1,...,mM−1(x) = 0, x ≤ 0, then
also wm1,...,mM has the same properties. Now, we can apply an inductive
argument.
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What is left to prove is that the inductive base is true. Thus, we need to
prove the statement of theorem for

M∑

ν=1

mν ≤ 2.

If the previous sum is one we have already proved it in the representation
theorem for the characteristic polynomial Q := Q1

λ(z). If the previous sum
equals two we distinguish two cases. The first case, when m1 = 2, is also proved
using the representation theorem for Q := Q2

λ(z), and the second one for
which λ1 < λ2 and m1 = m2 = 1, M = 2.

For this case we calculate directly w1,1 and we get

w1,1(x) = 1

2π

∫

R

λ1λ2e−ixu

(λ1 − ihu)(λ2 − ihu)
du,

i.e.,

w1,1(x) =
⎧
⎨

⎩

1

h
λ1λ2

λ2 − λ1

(
e−λ1x/h − e−λ2x/h), x > 0,

0, x ≤ 0.

Thus, we convince ourself that inductive base is satisfied. 
�

Using Lemma 2.6, we can interpret this result also in the following form:

Theorem 3.9 Assume that all zeros of the characteristic polynomial Q are
positive, then for h ∈ R

+ and any positive measure μ, the linear functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P,

is positive definite.

3.3.2 Representation of the inverse family for (2.5)

For the family given by (2.5) we can use also the partial fraction decomposition
to get

1

Q(z)
=

M∑

ν=1

mν∑

j=1

Q j
ν

(z − λν) j
.

Using series expansions for the functions 1/(ehu − λν)
j, j ∈ N0, ν = 1, . . . , M,

in the form

1

(ehu − λν) j
=
∑

k∈N0

uk

k! μ
ν, j
k,h,
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we obtain

1

Q(ehu)
=
∑

k∈N0

uk

k!
M∑

ν=1

mν∑

j=1

Q j
νμ

ν, j
k,h.

Thus, our problem of the representation is reduced to a representation of
the family of linear functionals having the characteristic polynomial of the form

Q := Qm
λ (z) =

(
z − λ

1 − λ

)m

.

However, we must distinguish the cases |λ| = 1 and |λ| �= 1. (In general, since
Q(1) = 1, we know that λν �= 1, ν = 1, . . . , deg(Q).)

Theorem 3.10 For |λ| �= 1, the linear functional
(
A h

t

)−1
, with the characteristic

polynomial Q := Qm
λ (z), has the following representation

(
A h

t

)−1
p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − λ)m
∑

j∈N0

(m + j − 1

j

)
λ j p(t − ( j + m/2)h), |λ| < 1,

(

1 − 1

λ

)m ∑

j∈N0

(m + j − 1

j

) p(t + ( j + m/2)h)

λ j
, |λ| > 1.

Proof If we expand f
(A h

t )
−1 at the point u = 0, for |λ| > 1 we have

f
(A h

t )
−1(u) = (1 − λ)m

+∞∑

k=0

uk

k! (t + mh/2)k
(−1

λ

)m +∞∑

j=0

(−m
j

) e jhu

(−λ) j

=
(

1 − 1

λ

)m +∞∑

k=0

uk

k! (t + mh/2)k
+∞∑

k=0

uk

k!
+∞∑

j=0

(m + j − 1

j

) ( jh)k

λ j

=
(

1 − 1

λ

)m +∞∑

k=0

uk

k!
+∞∑

j=0

(m + j − 1

j

) (t + ( j + m/2)h)k

λ j
.

Here, we have used the series expansions for the geometric progression and the
exponential function, as well as the intensive applications of Fubini’s theorem
and Cauchy theorem on the product of series. Then we conclude that

μt
k,h =

(

1 − 1

λ

)m +∞∑

j=0

(m + j − 1

j

) (t + ( j + m/2)h)k

λ j
, k ∈ N0,

which finishes the proof in the case |λ| > 1.
Using a completely similar argumentation we prove the result for |λ|<1. 
�
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As it is easily verified we see that in the case λ > 1 or 0 < λ < 1, we have a
positive measure for the representation. In fact in [31], we proved the following
theorem.

Theorem 3.11

1◦ Suppose all zeros of the characteristic polynomial Q are real and larger
than 1. Then, the functionals

(
A h

t

)−1
admit a representation over a positive

measure supported on the real line.
2◦ Suppose all zeros of the characteristic polynomial Q are positive and

smaller than 1. Then, the functionals
(
A h

t

)−1
admit a representation over

a positive measure supported on the real line.

In the case when the characteristic polynomial is given by Q := Qm
λ (z),

we recognize that the linear functional is well-known linear functional of the
Meixner polynomials of the first kind (see [13, p. 176], [24, p. 45]).

For the case |λ| = 1, with λ �= 1, we have the following theorem.

Theorem 3.12 The linear functional
(
A h

t

)−1
, given with the characteristic

polynomial Q := Qm
λ (z), where λ = eiϕ , ϕ ∈ (−π, π ]\{0}, has a representation

given by

(
A h

t

)−1
p = (sin |ϕ|/2)m

∫

R

p(t + ix)wϕ(x) dx,

where wϕ is a positive function given by

wϕ(x) = e−(sgn(ϕ)π−ϕ)x/h

2πh

∫

R

e−ixu/h

coshm u/2
du,

i.e.,

wϕ(x) = e−(sgn(ϕ)π−ϕ)x/h

(m − 1)!h

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m−3)/2∏

k=0
(4(x/h)2 + (2k + 1)2)

cosh(πx/h)
, m ∈ 2N0 + 1,

2x
h

m/2−1∏

k=1
(4(x/h)2 + (2k)2)

sinh(πx/h)
, m ∈ 2N.

Proof The generating function for the moments is given by

f
(A h

t )
−1(u) = exp(u(t + mh/2))

Q(ehu)
,

so for t = 0, we have

f
(A h

0 )
−1(u) = exp(hum/2)

(
1 − eiϕ

ehu − eiϕ

)m

.
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It is easily checked that f
(A h

0 )
−1(u) is infinitely continuously-differentiable,

with all derivatives being integrable on the real line. Hence, we can apply
Lemma 3.3 to recover the weight function. We have

w(x) = 1

2π

∫

R

e−iux f
(A h

0 )
−1(u)du = (1 − λ)m

2π

∫

R

e−iuxehum/2

(ehu − eiϕ)m
du

= e−iϕm/2

2π

(
1 − λ

2

)m ∫

R

e−iux

sinhm(hu − iϕ)/2
du

= e−iϕm/2

2πh

(
1 − λ

2

)m ∫

C

e−i(z+iϕ)x/h

sinhm z/2
dz,

where the contour of integration is given by C = {z | �(z) = −ϕ}. The function
in the integrand is analytic except for the points zk = 2kπ , k ∈ Z. For ϕ > 0, we
can consider the integral over the contour γ R = γ R

1 ∪ γ R
2 ∪ γ R

3 ∪ γ R
4 , where

γ R
1 = {z | �(z) = −ϕ, |�(z)| ≤ R}, γ R

2 = {z | �(z) = −π, |�(z)| ≤ R},
γ R

3 = {z | �(z) = −R, − π < �(z) < −ϕ},
γ R

4 = {z | �(z) = R, − π < �(z) < −ϕ}.

Here, γ R is a closed contour free of singularities, so that, according to Cauchy
residue theorem,

∫
γ R = 0. Taking the limit as R → +∞, integrals over γ R

3 and
γ R

4 are vanish, and we are left with integrals over γ +∞
1 and γ +∞

2 and these are
the same. The limit of the integral over γ +∞

1 is equal to the integral over C. We
choose to express the result as an integral over γ +∞

2 , so that for w we have

w(y) = e−imϕ/2

2πh

(
1 − λ

−2i

)m

e−(π−ϕ)x/h
∫

R

e−iux/h

coshm u/2
du.

Similar result we get for ϕ < 0, in which case the integration should be applied
over the contour γ R = γ R

1 ∪ γ R
2 ∪ γ R

3 ∪ γ R
4 , where

γ R
1 = {z | �(z) = −ϕ, |�(z)| ≤ R}, γ R

2 = {z | �(z) = π, |�(z)| ≤ R},
γ R

3 = {z | �(z) = −R, − ϕ < �(z) < π},
γ R

4 = {z | �(z) = R, − ϕ < �(z) < π}.

In that case the result is

w(x) = e−imϕ/2

2πh

(
1 − λ

2i

)m

e(π+ϕ)x/h
∫

R

e−iux/h

coshm u/2
du.

Now, it is easy to identify wϕ from these two expressions.
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What is left to prove is to calculate the integral, using two integration by
parts, so that we have

∫

R

e−ixu/h

coshm+2 u/2
du = 4(x/h)2 + m2

m(m + 1)

∫

R

e−ixu/h

coshm u/2
du, m ≥ 1.

This gives a recurrence relation for the integrals, which reduces to our expres-
sion for the weight function wϕ . Thus, we need to calculate only integrals for
m = 1 and m = 2, and they are known to be (see [16])

∫

R

e−ixu/h

cosh u/2
du = 2π

cosh πx/h
,

∫

R

e−ixu/h

cosh2 u/2
du = 4πx/h

sinh πx/h
.


�

Remark 3.2 The weight functions from the previous theorem, for m = 1 and
m = 2 are known as Lindelöf and Abel weight function, respectively (see
[14–16, 37]).

The previous theorem gives us an opportunity to find the representation of
a general family of linear operators (2.5) in the form

(
A h

t

)−1 =
M∑

ν=1

mν∑

j=1

Q j
ν

(1 − λν) j
L

ν, j
t+(deg(Q)− j)h/2,h, (3.14)

where L
ν, j
t,h is a representational functional for the family with the characteristic

polynomial Q := Q j
λν

(z).
There are also some other special cases of the family (2.5), for which we can

find an analytic representation of the inverse family. We present those results
in the next two theorems.

Theorem 3.13 Let the family of linear operators be given by (2.5), with the
characteristic polynomial

Q(z) =
m∑

k=−m

(−1)k+mzk+m = zM + 1

z + 1
, M = 2m + 1.

The linear functional
(
A h

t

)−1
has the following representation

(
A h

t

)−1
p = 2 cos π

2M

Mh

∫

R

p(t + ix) cosh πx
Mh

cosh 2πx
Mh + cos π

M

dx. (3.15)

Proof Direct calculation. 
�

The measure which appears in this theorem can be connected to the dual
Hahn polynomials (see [13, p. 159], [24, p. 34]), although this connection is not
so evident. We are going to present that connection in the next subsection.
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Theorem 3.14 Let the family of linear operators be given by (2.5), with the
characteristic polynomial

Q(z) = 1

M

M−1∑

k=0

zk = 1

M
zM − 1

z − 1
.

The linear functional
(
A h

t

)−1
has the following representation

(
A h

t

)−1
p = sin π

M

h

∫

R

p(t + ix)

cosh 2πx
Mh + cos π

M

dx. (3.16)

Proof Direct calculation. 
�

The measure which appears in this theorem is a special case of the continu-
ous Hahn polynomials (see [24, p. 31]). We will give this connection in the next
subsection.

As it can be seen in the previous two theorems, the measure which appears
in the representation is positive. Actually we have the following result:

Theorem 3.15 Let the family of linear operators be given by (2.5), with a
characteristic polynomial Q with all zeros lying on the unit circle. Then the linear
functional

(
A h

t

)−1
has the representation in the form

(
A h

t

)−1
p =

∫

R

p(t + ix)wh(x) dx,

where the weight function wh is nonnegative on R.

Proof We are searching for the representation given by

A h
t p =

∫

R

p(t + ix)wh(x)dx.

Using Lemma 3.3, we known we can represent our weight function in the
following form

wh(x) = 1

2π

∫

R

e−ixuehu deg(Q)/2

Q(ehu)
du,

or, we can recast in the following form

wh(x) = 1

2π

∫

R

e−ixudu
M∏

ν=1

(
ehu/2

ehu − λν

)Mν

,

where |λν | = 1, λν �= 1, ν = 1, . . . , n.
Now, denote ŵh, a weight function associated with the characteristic poly-

nomial Q̂(z) = (1 − λM)Q(z)/(z − λM). Finally, denote by wh
1 a weight func-

tion associated with the characteristic polynomial Q1(z) = (z − λM)/(1 − λM),
which is already given explicitly in Theorem 3.12. According to the mentioned
theorem we know that wh

1 is positive everywhere on R.
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It is straightforward to see that Q = Q̂Q1, but then according to the con-
volution Theorem ([4, p. 6]), we have that the weight functions are connected
through the convolution, i.e.,

wh(x) =
∫

R

wh
1 (t)ŵh(x − t)dt.

Since wh
1 is positive, using an induction argument, we conclude that wh is

positive for any λν , ν = 1, . . . , n, which have modulus one, except λν = 1.
Thus, we have a representation for

(
A h

0

)−1. Using Theorem 3.6 we complete
the proof. 
�

3.3.3 Representation of the inverse family for (2.4)

For the family given by (2.4) we have the following representation theorem.

Theorem 3.16 Let the family of linear operators be given by

A h p = 1

2h

∫ x+h

x−h
p(u) du.

Then the inverse family has the following representation

(
A h

t

)−1
p = π

2h

∫

R

p(t + ix)
exp(−πx/h)

(1 + exp(−πx/h))2
dx.

Proof We are searching for the representation given by

(
A h

t

)−1 =
∫

R

p(t + ix)w(x) dx.

Using Lemma 3.3, the weight function w can be found as a Fourier transform
of the function f

(A h
0 )

−1 , i.e.,

w(x) = 1

2πh

∫

R

ue−ixu/h

sinh u
du = π

h
e−πx/h

(1 + e−πx/h)2
.


�

The weight function which appears in this theorem is the well-known logistic
weight function (see [18]). This result, for example, means that in order to
construct quadrature formula of the form

∫
p(x) dμ(x) =

n∑

k=1

wk

2h

∫ xk+h

xk−h
p(x) dx, p ∈ P2n−1,



Nonstandard Gaussian quadrature 467

we need the n-th polynomial in the sequence of polynomials orthogonal with
respect to the linear functional

Lh(p) = π

2h

∫
dμ(x)

∫

R

p(x + iy)
exp(−πy/h)

(1 + exp(−πy/h))2
dy, p ∈ P.

3.4 Polynomials orthogonal with respect to
(
A h

0

)−1

In the next section, concerned with the numerical construction, we need to
calculate integrals of polynomials with respect to the representation measures
from the previous subsection. In order to calculate integrals we are going to ap-
ply Gaussian quadrature rules, for whose construction we need polynomials or-
thogonal with respect to the families of linear functionals

(
A h

t

)−1. We give this
orthogonal polynomials in this subsection. We continue to examine the case of
the degree preserving, continuous families A h, satisfying the property (3.1).

We summarize some basic facts on Gaussian quadrature rules in the next
lemma.

Lemma 3.4 Let L : P �→ C be a regular linear functional and {πn}n∈N0 be
a sequence of monic polynomials orthogonal with respect to L. Then, the
polynomials πn satisfy the three-term recurrence relation

πn+1(x) = (x − αn)πn(x) − βnπn−1(x), n ∈ N0, (3.17)

with π0(x) = 1 and π−1(x) = 0. The zeros of πn are eigenvalues of the following
tridiagonal matrix

Jn(L) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0
√

β1 O
√

β1 α1
√

β2
√

β2 α2
. . .

. . .
. . .

√
βn−1

O
√

βn−1 αn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

known as Jacobi matrix. The sequence of monic numerator polynomials
{ρn}n∈N0 , associated to the sequence {πn}n∈N0 , satisfies the same three-term recur-
rence relation (3.17), but with the initial conditions ρ−1(x)=−1/β0 and ρ0(x)=0,
where β0 = L(1). Then, the linear functional Gn : P2n−1 �→ C, defined by

Gn(p) =
∫

C

β0ρn(z)

πn(z)
p(z) dz,

where C is a simple closed Jordan curve in C with all zeros of πn in its interior,
is known as the Gaussian quadrature rule for L, and it has the property

L(p) = Gn(p), p ∈ P2n−1.
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In the case all zeros of πn are simple, using Cauchy residue theorem, Gn can be
represented in the standard form

Gn(p(x)) =
n∑

k=1

ωk p(xk), p ∈ P2n−1,

where the weights ωk, k = 1, . . . , n, can be calculated as multiples by β0, of the
squared first components of the eigenvectors of Jn(L), normalized to have the
unit Euclidian norm, and where the nodes xk, k = 1, . . . , n, are zeros of πn.

Note that this lemma deals with the general case of regular functionals, i.e.,
the functional L need not be positive definite. Unlike the positive definite case
where all zeros of πn (nodes xk, k = 1, . . . , n, of Gn) are distinct, in the case of
general regular functionals this property is not guarantied. This is the reason
we choose to present the Gaussian quadrature rule using the contour integral.
An application of Cauchy residue theorem in the case of multiple zeros of
πn produces terms with derivatives of p. Finally, we mention that an efficient
construction of the Gaussian quadrature rule for a positive definite functional
L can be achieved using QR-algorithm (see [22]).

For a general family of linear functionals
(
A h

t

)−1, we cannot claim the
regularity, i.e., we cannot claim the existence of the sequence of orthogonal
polynomials. For example, for the family A h, given by (2.5), with the charac-
teristic polynomial

Q(z) = z2 + 4z + 1

6
,

when operators A h are basically Simpson quadrature rules, for the moments
of
(
A h

0

)−1, we get the following sequence of Hankel determinants

Δ1 = 1, Δ2 = −h2

3
, Δ3 = −2h2

27
, Δ4 = 0.

Hence, the linear functional
(
A h

0

)−1 is not regular.
We have the following simple result:

Lemma 3.5 A linear functional
(
A h

t

)−1
is regular if and only if

(
A h

0

)−1
is regu-

lar. Furthermore, if we denote the monic polynomials orthogonal with respect to
(
A h

t

)−1
and

(
A h

0

)−1
, with π t,h

n and π0,h
n , respectively, we have

π0,h
n (−t + x) = π t,h

n (x), n ∈ N0.

Proof Assume that
(
A h

0

)−1 is regular. According to Lemma 3.2, we have

(
A h

t

)−1
xk = (

A h
0

)−1
(t + x)k, k ∈ N0. (3.18)
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This can be considered also as a triangular system of equations for the mo-
ments

(
A h

0

)−1
xk, k ∈ N0. Since the corresponding determinant equals one, the

system has a unique solution given by
(
A h

t

)−1
(−t + x)k = (

A h
0

)
xk, k ∈ N0. (3.19)

Now assume
(
A h

0

)−1 is regular with the monic orthogonal polynomial se-
quence {π0,h

n }n∈N0 , according to (3.18) and [13, p. 25], we can obtain the monic
orthogonal polynomials with respect to

(
A h

t

)−1 by merely shifting the argu-
ments as given in the statement of theorem.

For the rest of the proof we use the same arguments with equation (3.19).
Now suppose n �= k. Then we have

(
A h

0

)−1
π0,h

n (x)π
0,h
k (x) = 0, but also

(
A h

t

)−1
π t,h

n (x)π
t,h
k (x) = (

A h
0

)−1
π t,h

n (t + x)π t,h
n (t + x)

= (
A h

0

)−1
π0,h

n (−t + t + x)π0,h
n (−t + t + x)

= (
A h

0

)−1
π0,h

n (x)π
0,h
k (x) = 0.


�

The order in which we present results about orthogonal polynomials, com-
pletely follows the previous subsection.

3.4.1 Calculation of
(
A h

t

)−1
for the family (2.6)

Using (3.13), it is enough to be able to calculate the values of the functionals
(
A h

t

)−1 for which the corresponding characteristic polynomial is given by Q :=
Qm

λ (z). A representation of such functionals is given in Theorem 3.7.

Theorem 3.17 Let xk, ωk, k = 1, . . . , n, be nodes and weights for the generalized
Gauss–Laguerre quadrature rule with respect to the measure xm−1e−xχR +
(x)dx. Then, for the linear functionals from Theorem 3.7, we have

(
A h

t

)−1
p = 1

Γ (m)
Gn

(

p
(

t + hx
λ

))

= 1

Γ (m)

n∑

k=1

ωk p
(

t + xkh
λ

)

, p ∈ P2n−1.

(3.20)

Proof Using nearly the same arguments as in the proof of representation
Theorem 3.7, we can prove that the linear functionals

(
A h

t

)−1 can be expressed
as

(
A h

t

)−1
p = 1

Γ (m)

∫

R+
p
(

t + xh
λ

)

xm−1e−x dx.

Since the well-known Gaussian quadrature rule with respect to the gener-
alized Laguerre measure xm−1e−xχR+(x)dx, with nodes xk and weights ωk,
k = 1, . . . , n, integrates exactly all polynomials of degree at most 2n − 1 (see
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[13, p. 31], [48, p. 47], [19, p. 22]), we find that the statement of this theorem
holds true. 
�

We remark that the three-term recurrence coefficients for the generalized
Laguerre polynomials are

αk = 2k + m, βk = k(k + m − 1),

with β0 = Γ (m) (cf. [19, p. 29]).
Since we can identify the monic polynomials orthogonal with respect to

(
A h

0

)−1 as

π0,h
n (x) =

(
h
λ

)n

Lm−1
n

(
λx
h

)

, n ∈ N0,

where Lm−1
n , n ∈ N0, are monic generalized Laguerre polynomials orthogonal

with respect to xm−1e−xχR+(x)dx, the previous consideration also grants the
regularity of

(
A h

t

)−1.

3.4.2 Calculation of
(
A h

t

)−1
for the family (2.5)

Again using (3.14), it is enough to know the way how to calculate
(
A h

0

)−1

for the characteristic polynomial Q := Qm
λ (z). The representation of such

functionals is given in Theorems 3.12 and 3.10.

Theorem 3.18 Let a family of operators (2.5) be given by the characteristic
polynomial Q := Qm

λ (z), λ �= 0. Then the linear functionals
(
A h

t

)−1
are regular

and the monic polynomials {π0,h
n }n∈N0 orthogonal with respect to

(
A h

0

)−1
satisfy

the following three-term recurrence relation

π
0,h
n+1(x) =

(

x − λ + 1

λ − 1

(

n + 1

2
m
)

h
)

π0,h
n (x)

− λ

(λ − 1)2
n(n + m − 1)h2π

0,h
n−1(x), n ∈ N0. (3.21)

In the case λ > 1 or 0 < λ < 1, the linear functional
(
A h

t

)−1
can be expressed

in the following form

(
A h

t

)−1
p = Gn(p(t + xh)) =

n∑

k=0

ωk p(t + xkh), p ∈ P2n−1. (3.22)

The nodes xk and weights ωk, k = 1, . . . , n, in the Gaussian quadrature rule are
constructed for the three-term recurrence coefficients

αn = λ + 1

λ − 1

(

n + 1

2
m
)

, βn = λ

(λ − 1)2
n(n + m − 1),

with β0 = 1.
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In the case λ = eiϕ , λ �= 1,
(
A h

t

)−1
can be calculated using the following

quadrature rule

(
A h

t

)−1
p = Gn(p(t + ixh)) =

n∑

k=1

ωk p(t + ixkh), (3.23)

where the nodes xk and the weights ωk, k = 1, . . . , n, are determined for the
Gaussian quadrature rule for three-term recurrence coefficients

αn = n + m/2

tan ϕ/2
, βn = n(n + m − 1)

4 sin2 ϕ/2
,

with β0 = 1.

Proof This result can be found in parts in the various references. For example,
the special case |λ| = 1 is connected with Meixner–Pollaczek polynomials or
Meixner polynomials of the second kind (see [24, p. 37], [13, p. 179]). The case
|λ| �= 1 is treated originally by Meixner and related polynomials are known as
the Meixner polynomials of the first kind (see [24, p. 45], [13, p. 175]). For
λ = −1, the result for three-term recurrence coefficients has been proved by
Stieltjes (see [50, p. 53,93], [16]). Especially, the case for |λ| > 1 and m = 1 has
been considered by Carlitz (see [13, p. 177]).

The second part of this theorem connected with calculations is obvious in
the cases λ > 1 and 0 < λ < 1. It needs some comment only for λ = eiϕ , λ �= 1.
If we put λ = eiϕ into the recurrence relation, we get

αn = −i
n + m/2

tan ϕ/2
, βn = −n(n + m − 1)

4 sin2 ϕ/2
.

If we substitute x := −ix into the three-term recurrence relation we obtain
what is stated. 
�

If we allow usage of the generalized Gaussian quadrature rules for the
general regular linear functionals, we can state further.

Theorem 3.19 Suppose |λ| > 1 or 0 < |λ| < 1, then we calculate
(
A h

t

)−1
in the

following form
(
A h

t

)
p = Gn(p(t + xh)), p ∈ P2n−1, (3.24)

where Gn acts on x and is constructed for the three-term recurrence coefficients

αn = λ + 1

λ − 1

(

n + 1

2
m
)

, βn = λ

(λ − 1)2
n(n + m − 1),

with β0 = 1.

For the special cases of families given in Theorems 3.13 and 3.14, we present
results in the next two theorems.



472 G.V. Milovanović, A.S. Cvetković

Theorem 3.20 Let the family (2.5) be given by the characteristic polynomial

Q(z) =
m∑

k=−m

(−1)k+mzk = zM + 1

z + 1
.

Then, the linear functionals
(
A h

t

)−1
are regular. The monic polynomials

{π0,h
n }n∈N0 orthogonal with respect to the

(
A h

0

)−1
satisfy the following three-term

recurrence relation

π
0,h
n+1(−ix) = −ixπ0,h

n (−ix) − h2βnπ
0,h
n−1(−ix),

where

β0 = 1, βn =

⎧
⎪⎪⎨

⎪⎪⎩

1

4
(M2n2 − 1), n (odd ) ≥ 1,

1

4
M2n2, n (even ) ≥ 2.

(3.25)

If xk and ωk, k = 1, . . . , n, are Gaussian nodes and weights, respectively,
constructed for three-term recurrence coefficients (3.25), then

(
A h

t

)−1
p = Gn(p(t + ixh)) =

n∑

k=1

ωk p(t + ixkh), p ∈ P2n−1.

Proof This is a special case connected with continuous dual Hahn polynomials,
but this connection is not quite obvious. Denote the weight in the representa-
tion integral (3.15) by w. At first, note that the measure which appears in the
representation integral is symmetric. Hence, we can construct two sequences of
orthogonal polynomials by the well-known process explained, for example, in
[13, pp. 45–47]. Denote the monic polynomials orthogonal with respect to the
representation measure by πn, n ∈ N0, then by the symmetry argument (see
[13, pp. 45–47]), we can choose

qn(t) = π2n(
√

t),
√

t rn(t) = π2n+1(
√

t), n ∈ N0,

to be two polynomial sequences orthogonal with respect to the weights
w(

√
t)/

√
t and

√
t w(

√
t) on R

+, respectively. The corresponding recurrences
for these polynomials are

qn+1(x) = (x − β2n+1 − β2n)qn(x) − β2nβ2n−1qn−1(x),

rn+1(x) = (x − β2n+2 − β2n+1)rn(x) − β2n+1β2nrn−1(x).

It is known that the continuous dual Hahn polynomials have three-term
recurrence coefficients given by

αk = 2k2 + k(2a + 2b + 2c − 1) + ab + ac + bc,

βk = k(k + a + b − 1)(k + a + c − 1)(k + b + c − 1).
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Choosing

a = 1

2

(

1 − 1

M

)

, b = 1

2

(

1 + 1

M

)

, c = 0,

and substituting t := t/(Mh), we get the q-sequence. For r-sequence, we make
a normalization again with t := t/(Mh) and we choose

a = 1

2

(

1 − 1

M

)

, b = 1

2

(

1 + 1

M

)

, c = 1.

The orthogonality relation for continuous dual Hahn polynomials is given by
(see [24, p. 29])

∫

R+

∣
∣
∣
∣
Γ (a + ix)Γ (b + ix)Γ (c + ix)

Γ (2ix)

∣
∣
∣
∣

2

pn(x2)pm(x2) dx = δm,n,

for the choices we made for a, b , and c, we get our weight functions w(
√

t)/
√

t
and

√
t w(

√
t), respectively.

The last statement in this theorem holds due to the general theory of
orthogonal polynomials (see [13, p. 31], [19, p. 22], [48, p. 47]). 
�

Theorem 3.21 Let the family (2.5) be given by the characteristic polynomial

Q(z) = 1

M

M−1∑

k=0

zk = zM − 1

z − 1
.

Then, the linear functionals
(
A h

t

)−1
are regular. The monic polynomials

{π0,h
n }n∈N0 orthogonal with respect to

(
A h

0

)−1
satisfy the following three-term re-

currence relation

π
0,h
n+1(−ix) = −ixπ0,h

n (−ix) − βnh2π
0,h
n−1(−ix), n ∈ N0,

where

βn = n2(M2n2 − 1)

4(4n2 − 1)
, n ∈ N0, β0 = 1. (3.26)

If xk and ωk, k = 1, . . . , n, are Gaussian nodes and weights, respectively,
constructed for three-term recurrence coefficients (3.26), then

(
A h

t

)−1
p = Gn(p(t + ixh)) =

n∑

k=1

ωk p(t + ixkh), p ∈ P2n−1.
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Proof This is a special case of the continuous Hahn polynomials, which satisfy
the following orthogonality relation (see [24, p. 31])

∫

R

Γ (a + ix)Γ (b + ix)Γ (c − ix)Γ (d − ix)pn(x)pm(x) dx = δn,m.

Choosing

a = d = 1

2

(

1 + 1

M

)

and b = c = 1

2

(

1 − 1

M

)

,

and substituting x := x/(Mh), we get the statement.
The last statement in this theorem holds due to the general theory of

orthogonal polynomials (see [13, p. 31], [19, p. 22], [48, p. 47]). 
�

3.4.3 Calculation of the
(
A h

t

)−1
for the family (2.4)

In this case the problem of the calculation can be reduced into one simple
statement.

Theorem 3.22 Let xk and ωk, k=1, . . . , n, be nodes and weights of the Gaussian
quadrature rule for the logistic measure π exp(−πx)/(1 + exp(−πx))2dx, and let
the family A h be given by (2.4). Then, we have

(
A h

t

)−1
p = Gn(p(t + ixh)) =

n∑

k=1

ωk p(t + ixkh), p ∈ P2n−1.

The three-term recurrence coefficients for the monic polynomials orthogo-
nal with respect to the logistic weight function are (cf. [14–16, 37])

αk = 0, βk = k4π2

4k2 − 1
, k ∈ N,

with β0 = 1.
Also it is obvious that the functionals

(
A h

t

)−1 are regular.

4 Numerical construction

In this section we consider the numerical construction of the quadrature rule
(2.3). As it is proven in Theorem 2.3, in order to find the nodes for the
quadrature rule

∫
p(x) dμ(x) =

n∑

k=1

wk(A
h p)(xk), p ∈ P2n−1, (4.1)
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we need to construct n-th polynomial orthogonal with respect to the linear
functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P. (4.2)

In the rest of this paper we denote by {ph
k}k∈N0 the sequence of monic

polynomials orthogonal with respect to Lh and we assume they satisfy the
following three-term recurrence relation

ph
k+1(x) = (

x − αh
k

)
ph

k(x) − βh
k ph

k−1(x), ph
0(x) = 1, ph

−1(x) = 0. (4.3)

Although βh
0 can be arbitrary, since it multiples ph

−1(x) = 0, it is convenient for
later purposes to put βh

0 = Lh(1).
The next theorem, which is quite similar to the well-known theorem of

Golub and Welsch [22], shows that what we really need for the construction
of the quadrature rule (2.3) are three-term recurrence coefficients αh

k , βh
k ,

k = 0, 1, . . . , n − 1.

Theorem 4.1 The nodes xk, k = 1, . . . , n, of the quadrature rule (2.3) are
eigenvalues of the three-diagonal Jacobi matrix

Jh
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αh
0

√
βh

1 O
√

βh
1 αh

1

√
βh

2
√

βh
2 αh

2

. . .

. . .
. . .

√
βh

n−1

O
√

βh
n−1 αh

n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let vk, k = 1, . . . , n, be the eigenvectors of the matrix Jh
n, with the Euclidian

norm one, corresponding to the eigenvalues xk, k = 1, . . . , n. Then for weights
we have wk = βh

0 v2
k,1, k = 1, . . . , n, where vk,1 is the first components of the

vector vk, k = 1, . . . , n.

Proof According to Lemma 3.4, the statement for nodes is correct. Using the
same lemma we know that expressions ŵk = βh

0 v2
k,1, k = 1, . . . , n, represent the

weights for the Gaussian quadrature rule constructed for the linear functional
Lh, defined by (4.2). What we need to prove only is that weights for the
quadrature rule for the linear functional Lh are the same as for our quadrature
rule (2.3).
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In the quadrature rule (2.3), we choose f = p, where p is a polynomial such
that

p(t) = (
A h

t

)−1 ph
n(x)

(x − x	)(ph
n)

′(x	)

ph
n(x)

(x − xν)(ph
n)

′(xν)
∈ P2n−1.

Then we obtain easily

wν =
∫ (

(
A h

t

)−1
(

ph
n(x)

(x − xν)(ph
n)

′(xν)

)2
)

dμ(t), ν = 1, . . . , n,

or we can recast it in the following form

wν = Lh
(

ph
n(·)

(· − xν)(ph
n)

′(xν)

)2

, ν = 1, . . . , n.

This means that our weights wk, k = 1, . . . , n, are the same as the weights in
the Gaussian quadrature rule for the linear functional Lh. 
�

In [39], it was proven that if we choose μ to be the Legendre measure and
A h to be the following family

A h p = 1

2h

∫ x+h

x−h
p(u) du, p ∈ P,

then the sequence of monic polynomials orthogonal with respect to the linear
functional Lh, defined in (4.2), satisfies the following three-term recurrence
relation

ph
k+1(x) = xph

k(x) −
(
1 − h2k2

)
k2

4k2 − 1
ph

k−1(x), k ∈ N0, ph
0(x) = 1, ph

−1(x) = 0.

This result completely solves the question of the construction of the quadrature
rule of the form

∫ 1

−1
p(x) dx =

n∑

k=1

wk

2h

∫ xk+h

xk−h
p(u) du, p ∈ P2n−1.

However, for a general combination of a measure μ and a family A h in
(4.2), we do not know three-term recurrence coefficients for the sequence of
orthogonal polynomials, but we present few more partial results in the next
subsection. Furthermore, there exists a general numerical procedure based on
an old Stieltjes’ idea from 1884.

Using the orthogonality of the sequence {ph
k}k∈N0 , from (4.3) we can get the

recursion coefficients αh
k and βh

k in the following (Darboux’s) form

αh
k = Lh

(
x
(

ph
k

)2)

Lh
((

ph
k

)2) , βh
k = Lh

((
ph

k

)2)

Lh
((

ph
k−1

)2) . (4.4)

The Stieltjes procedure is a combination of Darboux’s formulae (4.4) with
the basic three-term recurrence relation (4.3). Thus, assuming we are able to
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calculate the values of the functional Lh on P2n−1, we can apply Darboux’s
formulae (4.4) in tandem with the basic linear relation (4.3) in order to
construct the recursion coefficients αh

k and βh
k for k ≤ n − 1.

Since ph
0(x) = 1, we can compute αh

0 from (4.4) for k = 0, and βh
0 = Lh(1).

Having obtained αh
0 , we then use (4.3) with k = 0 to compute ph

1(x). Now, we
reapply Darboux’s formulae (4.4), with k = 1, in order to obtain αh

1 and βh
1 .

With these coefficients, using (4.3) for k = 1, we calculate ph
2(x). Thus, in this

way, alternating between Darboux’s formulae and the three-term recurrence
relation (4.3), we can determine all desired coefficients αh

k , βh
k , k ≤ n − 1.

A crucial assumption is that we are able to compute the values of the linear
functional Lh defined by (4.2). This task can be accomplished provided a
computation of the inverse operators (A h)−1 or equivalently a computation
of the associated linear functionals

(
A h

t

)−1, can be done using appropriate
quadrature rules. In that cases we call such a procedure as the Stieltjes–
Gautschi procedure (see [18], [19, p. 95]).

For the special families (2.6), (2.5) and (2.4), we discussed the computation
question of the linear functionals

(
A h

t

)−1 in Subsection 3.4. This allows us to
formulate the following results:

Theorem 4.2 Let A h be the family of linear operators (2.6), given by the char-
acteristic polynomial Q, with mutually distinct zeros λν of the corresponding
multiplicities mν , ν = 1, . . . , M. Let the measure μ be given and let Gμ

n be
a Gaussian quadrature rule for the measure μ. Finally, let L

ν, j
t,h be the linear

functional with the characteristic polynomial Q := Q j
λν

(z). Then, for the linear
functional

Lh(p) =
∫
(
(A h)−1 p

)
(x)dμ(x), p ∈ P,

with (3.13), we have

Lh(p) =
M∑

ν=1

mν∑

j=1

(−1) jQ j
ν

λ
j
ν

Gμ
n

(
L

ν, j
0,h(p(x + t))

)
, p ∈ P2n−1,

where Gμ
n is assumed to act on x and L

ν, j
0,h acts on t. The computation of the

linear functionals L
ν, j
0,h on P2n−1 can be done using quadrature rules given in

(3.20). Applying the n-point Gaussian quadrature rules for the measure μ and
linear functionals L

ν, j
0,h, j = 1, . . . , mν , ν = 1, . . . , M, using the Stieltjes–Gautschi

procedure we calculate exactly the coefficients αh
k, βh

k , k = 0, 1, . . . , n − 1.

Proof It is just enough to note that in (4.4), we need to compute the value of
the functional Lh for a polynomial with the highest degree 2n − 1 in order to
calculate mentioned three-term recurrence coefficients. 
�

A similar result with the same argumentation can be stated for the other
family of operators.
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Theorem 4.3 Let A h be the family of linear operators (2.5), given by the char-
acteristic polynomial Q, with mutually distinct zeros are λν of the corresponding
multiplicities mν , ν = 1, . . . , M. Let the measure μ be given and let Gμ

n be
the Gaussian quadrature rule for the measure μ. Finally, let L

ν, j
t,h be the linear

functional with characteristic polynomial Q := Q j
λν

(z). Then, for the linear
functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P,

with (3.14), we have

Lh(p) =
M∑

ν=1

mν∑

j=1

Q j
ν

(1 − λν) j
Gμ

n

(
L

ν, j
0,h(p(x + t + (deg(Q) − j)h/2))

)
, p ∈ P2n−1,

(4.5)
where Gn is assumed to act on x and L

ν, j
0,h acts on t. The computation of the

linear functionals L
ν, j
0,h on P2n−1 can be done using quadrature rules given in

(3.22) for 0 < λν < 1 and λν > 1, in (3.23) for |λν | = 1, λν �= 1, or in (3.24) for
the general complex |λν | �= 1. Applying the n-point Gaussian quadrature rules
for the measure μ and the linear functionals L

ν, j
0,h, j = 1, . . . , mν , ν = 1, . . . , M,

using the Stieltjes–Gautschi procedure we calculate exactly the coefficients αh
k,

βh
k , k = 0, 1, . . . , n − 1.

Finally, the Stieltjes–Gautschi procedure for the linear operators (2.4) has a
more explicit form.

Theorem 4.4 Let the measure μ be given and Gμ
n be a Gaussian quadrature rule

for the measure μ. Let a family of linear operators A h be given by (2.4) and let
Gn be the Gaussian quadrature rule from Theorem 3.7. Then

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x) = Gμ

n (Gn(p(t + ixh)), p ∈ P2n−1,

where Gμ
n acts on t and Gn on x. Using the last expression for Lh, with the

Stieltjes–Gautschi algorithm (4.4), we calculate exactly the coefficients αh
k, βh

k ,
k = 0, 1, . . . , n − 1.

We illustrate a numerical construction of (2.3) in the following example.

Example 4.1 We are going to construct a Gaussian quadrature of the following
form

∫ 1

−1
p(x)

dx√
1 − x2

=
n∑

k=1

wk

(
1

3
p(xk − h) − 2p(xk) + 8

3
p(xk + h)

)

, (4.6)

which is exact for each p ∈ P2n−1.
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At first, we recognize the family of the linear functionals to be

(A h p)(x) = 1

3
p(x − h) − 2p(x) + 8

3
p(x + h), p ∈ P. (4.7)

According to Definition 3.1, the characteristic polynomial is given by

Q(z) = 1

3
− 2z + 8

3
z2.

As it can easily be seen we have Q(1) = 1, so that, according to Theorem 3.4,
our family is a family of continuous isomorphisms.

In order to be able to apply the Stieltjes–Gautschi procedure we need a
representation of the inverse family (A h)−1. Since

Q(z) = 8

3
(z − 1/2)(z − 1/4),

we have

1

Q(z)
= 3

2

1

z − 1/2
− 3

2

1

z − 1/4
.

According to Theorem 3.10 and relation (3.14), we find the representation

(
A h

0

)−1
p = 3

2

∑

j∈N0

(
1

2 j
− 1

4 j

)

p(− jh), p ∈ P,

which means we have to construct orthogonal polynomials with respect to

Lh(p) = 3

2

∫ 1

−1

dx√
1 − x2

∑

j∈N0

(
1

2 j
− 1

4 j

)

p(x − jh), p ∈ P. (4.8)

According to Theorem 3.11 (and we can check also directly), we even know
that the functional

(
A h

0

)−1 is positive definite. It gives the positive definiteness
of Lh, h ∈ R

+, which means that for every h ∈ R
+, the orthogonal polynomial

sequence with respect to Lh exists. Thus, for every h ∈ R
+, our quadrature rule

exists with real nodes and positive weights, except that we have to expect that
for some h, sufficiently large, the nodes of our quadrature rule will not be inside
(−1, 1).

An application of Theorem 4.3 gives us a possibility for the construction of
the term recurrence coefficients for polynomials orthogonal with respect to Lh.
In relation (4.5) the quadrature rule Gμ

n is simply a Gaussian quadrature rule
constructed for the Chebyshev measure of the first kind, while L

1,1
0,h and L

2,1
0,h

can be calculated using quadrature rules given in Theorem 3.18, with λ1 = 1/2,
m1 = 1, and λ2 = 1/4, m2 = 1, respectively.
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Table 1 Three term
recurrence coefficients for
polynomials orthogonal with
respect to Lh, given by (4.8),
where h = 10−3

k αh
k βh

k

0 −0.2333333333333333(−2) 3.1415926535897932
1 −0.2333346814748906(−2) 0.5000024444444444
2 −0.2333522068061735(−2) 0.2500085555928885
3 −0.2334263463378997(−2) 0.2500232229374217
4 −0.2336244631775208(−2) 0.2500452273213437
5 −0.2340407535576782(−2) 0.2500745779815562
6 −0.2347960262858544(−2) 0.2501112958475398
7 −0.2360372635016554(−2) 0.2501554207696042
8 −0.2379368438009344(−2) 0.2502070202245272
9 −0.2406912783912424(−2) 0.2502661990701115
10 −0.2445192763647380(−2) 0.2503331096336867
11 −0.2496589147931819(−2) 0.2504079610384240
12 −0.2563636423862751(−2) 0.2504910261996318
13 −0.2648967934907220(−2) 0.2505826443826311
14 −0.2755242385414072(−2) 0.2506832166526108
15 −0.2885047619168657(−2) 0.2507931910511669
16 −0.3040777642745741(−2) 0.2509130340413305
17 −0.3224479742663954(−2) 0.2510431848731469
18 −0.3437670795589471(−2) 0.2511839903032346
19 −0.3681126143692742(−2) 0.2513356188744236
20 −0.3954651291094443(−2) 0.2514979570449739
21 −0.4256856397685117(−2) 0.2516704940572230
22 −0.4584965517489564(−2) 0.2518522084595881
23 −0.4934704835976961(−2) 0.2520414760042613
24 −0.5300323198099807(−2) 0.2522360248127240
25 −0.5674798852007299(−2) 0.2524329669477871
26 −0.6050273014464188(−2) 0.2526289330027622
27 −0.6418719885855738(−2) 0.2528203254485985
28 −0.6772815181787746(−2) 0.2530036863619178
29 −0.7106909253558416(−2) 0.2531761480017368

The first 30 three-term recurrence coefficients for polynomials orthogonal
with respect to Lh, h = 10−3, given by (4.8), are presented in Table 1. Numbers
in parentheses denote decimal exponents.

Using the recursion coefficients we find that the nodes (x1, . . . , xn) and the
weights (w1, . . . , xn) in the quadrature formula (4.1), for n = 20 and h = 10−3,
are given in Table 2. We report that the corresponding Gaussian quadrature
rule with 21 nodes already has one zero smaller than −1.

4.1 Special cases

In this subsection we consider some special families of linear functionals Lh,
for which the three-term recurrence coefficients can be given analytically.

Theorem 4.5 Let dμ(x) = (1/B(α + 1, β + 1))xβ(1 − x)αχ[0,1](x) dx, with
β > −1, α > 0, and let the family of operators be given by

(A h p)(x) = x1/h

h

∫ x

0
t1/h−1 p(t) dt, p ∈ P. (4.9)
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Table 2 Nodes and weights
in the quadrature rule (2.3),
with n = 20 and h = 10−3,
constructed for the
Chebyshev measure and
family given by (4.7)

Nodes Weights

1 −0.9997235124159081 0.1501087585925222
2 −0.9758866812785312 0.1600973512659813
3 −0.9274358917353179 0.1583801394204367
4 −0.8561506841653389 0.1577962521579559
5 −0.7638340946313748 0.1575409750131710
6 −0.6527693506885036 0.1574093617304991
7 −0.5256944123315116 0.1573341428262217
8 −0.3857395525554556 0.1572885026329246
9 −0.2363515157019908 0.1572602665560158
10 −0.8120904146661547(−1) 0.1572434875215256
11 0.7586756781300102(−1) 0.1572353005158831
12 0.2310104499642163 0.1572347047834823
13 0.3803993892023086 0.1572422585606669
14 0.5203558607335555 0.1572605066682948
15 0.6474335852647777 0.1572956196643657
16 0.7585033443483269 0.1573622581569451
17 0.8508299058641808 0.1574998698561811
18 0.9221388582992601 0.1578447054103358
19 0.9706693255745008 0.1591870532247374
20 0.9949019873401245 0.1529711390316471

Then the monic polynomials, orthogonal with respect to the linear functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P,

have the three-term recurrence coefficients given by

αh
n = y − Pα−1,β

n (2y − 1)

2Pα−1,β

n+1 (2y − 1)
β J

n+1 − Pα−1,β

n+1 (2y − 1)

2Pα−1,β
n (2y − 1)

, n ∈ N0,

βh
0 = 1, βh

n = Pα−1,β

n+1 (2y − 1)Pα−1,β

n−1 (2y − 1)

(2Pα−1,β
n (2y − 1))2

β J
n , n ∈ N,

where y = [h(1 + β) − 1]/[h(1 + α + β) − 1] and Pα−1,β
n , n ∈ N0, are monic

Jacobi polynomials with parameters α − 1 and β, and α J
n and β J

n , n ∈ N, are
the three-term recurrence coefficients for the monic Jacobi polynomials Pα−1,β

n .
The functional Lh is positive definite provided h < 1/(1 + α + β).

Proof According to Theorem 2.4, we know that

Lh(p) =
∫

(p(x) + xhDp(x))dμ(x).



482 G.V. Milovanović, A.S. Cvetković

If we apply an integration by parts we get

Lh(p) =
∫

p(x)dμ(x) + h
B(α + 1, β + 1)

×
(

p(x)xβ+1(1 − x)α
∣
∣
∣
1

0
−
∫ 1

0
p(x)xβ(1 − x)α−1

×[1 + β − x(1 + α + β))
]
dx
)

= 1 − h(1 + α + β)

B(α + 1, β + 1)

∫ 1

0
p(x)xβ(1 − x)α−1

(
1 − h(1 + β)

1 − h(1 + α + β)
− x

)

dx,

we recognize that our functional Lh is an integration with respect to the Jacobi
measure, which is modified by a linear factor. Such a modification is known
also as the Christoffel modification (see [19, pp. 124–125]). Our functional is
positive definite in the case

1 − h(1 + β)

1 − h(1 + α + β)
≥ 1 and 1 − h(1 + α + β) > 0,

i.e., if h < 1/(1 + α + β).
The formulae for three-term recurrence coefficients are known theoretically

for the linear Christofell modification and they can be obtained by a simple
substitution (see [19, pp. 124–125]). 
�

This theorem completely solves the problem of the construction of nodes in
the following quadrature rule

∫
xα(1 − x)β p(x)dx =

n∑

k=1

wk
x1/h−1

k

h

∫ xk

0
x1/h−1 p(x)dx, p ∈ P2n−1.

A similar theorem with the same argumentation can be given when the
measure μ is a generalized Laguerre measure. We state it without proof.

Theorem 4.6 Let dμ(x) = xαe−xχR+(x) dx, α > −1, and let the family of linear
functionals be given by (4.9). Then the monic polynomials orthogonal with
respect to

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P,

have the three-term recurrence coefficients given by

αh
n = y − Lα

n(y)

Lα
n+1(y)

βL
n − Lα

n+1(y)

Lα
n(y)

, βh
n = Lα

n+1(y)Lα
n−1(y)

(
Lα

n(y)
)2 βL

n ,

where y = −[1 − (1 + α)h]/h and Lα
n, n ∈ N0, are monic generalized Laguerre

polynomials with parameter α, and with the three-term recurrence coefficients
αL

n and βL
n , n ∈ N0. The functional Lh is positive definite provided h ≤ 1/(1 + α).
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Especially interesting case appears for h = 1/(1 + α), i.e., when y = 0.
Namely, using an integration by parts, we can represent Lh as

Lh(p) = [1 − (1 + α)h]
∫

R+
p(x)xαe−xdx + h

∫

R+
p(x)xα+1e−xdx, p ∈ P.,

If h = 1/(1 + α), we see that Lh is an integration with respect to the generalized
Laguerre measure with the parameter 1 + α. Of course, in this case, we have
αh

n = 2 + α + 2n, n ∈ N0, and βh
n = n(1 + α + n), n ∈ N.

Theorem 4.7 Let dμ(x) = (1/	)x1/	−1χ[0,1](x) dx and let the family be given by
(4.9). Then polynomials, orthogonal with respect to the linear functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x), p ∈ P,

have the three-term recurrence coefficients given by

αh
k = 1

2
+ α2β2 + β Ah

k(α) + Bh
k(α)

Ch
k(α, β)

, k ≥ 0,

βh
0 = 1, βh

k = k2(k + α)2
[
(k − 1)2 + (k − 2)α + β

][
(k + 1)2 + kα + β

]

(2k − 1 + α)(2k + α)2(2k + 1 + α)
[
k2 + (k − 1)α + β

]2 , k ≥ 1,

where α = 1/	 − 1, β = 1/h − 1, and

Ah
k(α) = 4k(k + 1) + 2(2k + 1)α + (

2k2 + 2k + 3
)
α2 + (2k − 1)α3,

Bh
k(α) = k(k − 1)α4 + (

2k3 + k2 − k − 3
)
α3 + [

(k2 − 4)(k + 1)2 + 2
]
α2

− 4k(k + 1)2(k + 2α),

Ch
k(α, β) = 2(2k + α)

[
2(k + 1) + α

][
k2 + (k − 1)α + β

][
(k + 1)2 + kα + β

]
.

Proof First we note that, according to Theorem 2.4, we need to construct
polynomials orthogonal with respect to the linear functional

Lh(p) =
∫

(p(x) + xhDp(x)) dμ(x), p ∈ P.

Using an integration by parts, we get

Lh(p) =
(

1 − h
	

)∫ 1

0
x1/	−1 p(x)dx + hp(1),

and our linear functional is given as a sum of a special case of the Jacobi
measure and a punctual measure supported at one with the mass h. For this
measure the three-term recurrence coefficients are known explicitly (see [36]).


�
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This result, according to Theorem 2.4, completely solves the construction of
a quadrature rule of the form

1

	

∫ 1

0
x1/	−1 p(x) dx =

n∑

k=1

wk
x1/h

k

h

∫ xk

0
x1/h−1 p(x) dx

=
n∑

k=1

w′
k

∫ xk

xk−1

x1/h−1 p(x) dx, p ∈ P2n−1,

where x0 = 0 and w′
k = h−1∑k

i=1 wn−i+1x1/h
n−i+1. Actually, since the three-term

recurrence coefficients are given explicitly, it can be checked that βh
n > 0,

whenever βh
1 > 0. From the expression for βh

1 it can be checked that βh
1 > 0

is equivalent with β < α or h < 	.
Finally, we mention an interesting result for which we believe that it is true.

Conjecture 4.1 Suppose the measure μ is purely atomic measure, with
μ(2hk) = 1, k = −M, . . . , M, and we are given family

(A h p)(x) = 1

2
(p(x − h) + p(x + h)) , p ∈ P.

Then polynomials orthogonal with respect to the linear functional

Lh(p) =
∫
(
(A h)−1 p

)
(x) dμ(x) =

M∑

k=−M

(
(A h)−1 p

)
(2hk), p ∈ P,

have the three-term recurrence coefficients given by

αh
k = 0, βh

k = (2M + 1)2 − 4k2

4k2 − 1
k2h2, k ∈ N,

with αh
0 = 0 and βh

0 = 2M + 1.
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37. Milovanović, G.V., Spalević, M.M., Cvetković, A.S.: Calculation of Gaussian type quadratures
with multiple nodes. Math. Comput. Model. 39, 325–347 (2004)

38. Motornyi, V.P.: On the best quadrature formulae in the class of functions with bounded r-th
derivative. East J. Approx. 4, 459–478 (1998)

39. Omladič, M.: Average quadrature formulas of Gauss type. IMA J. Numer. Anal. 12, 189–199
(1992)
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