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Abstract. The boundary element method (BEM) and the finite element adetREM) are
very popular in many computational applications in engimee These methods very often
require the numerical evaluation of one dimensional or ipleltintegrals with singular or
near singular integrands. Such problems appear in mangasbpf mechanics (fracture
mechanics, damage mechanics, etc.), as well as in otharitatliields. In this paper we
give some improvements of quadrature rules for FEM and BEdsid& of general notions on
Gaussian quadratures, we give a construction of weightetsstan quadratures for integrals
with logarithmic and/or algebraic singularities. Also, e@nsider generalized quadratures of
high degree of precision for Miintz systems. Numerical eXxamare included.

1. Introduction

The boundary element method (BEM) and the finite elementodsREM) are very popular
in many computational applications in engineering, forregke, in fracture mechanics,
damage mechanics, electromagnetic diffraction, etc. \dtgn in such applications we
need accurate numerical evaluation of one dimensional dtipteuintegrals with singular
kernels and/or singular basis functions. Two kinds of slagties are typical: algebraic
and logarithmic. Miintz and Mintz-logarithmic polynomial® typical functions with such
properties. Also, an accurate evaluation of nearly simgari@ and multidimensional integrals
is very important. For some additional details see, for eplani1], [9], [7], [8], [10], [11],
[17], [18].

In this paper we propose a method for constructing the weth®aussian quadrature
rules for integrals with algebraic and/or logarithmic sitagities. This method gives Gaussian
guadratures with a maximal algebraic degree of precisioriso,Awe mention another
approach which enables us to obtain Gaussian quadraturdaifatz systems (for details
see Milovanow [13] and Milovanovt and Cvetkow [15]).

Beside of general notions on quadratures of high algebragre® of precision, we
consider a stable and efficient construction of the weigadssian quadratures for integrals
of functions with end-point singularities. Such a condtiartis based on an application of
theMathematica packag@rthogonalPolynomials, recently developed by Cvetk@and
Milovanovic [2]. Numerical examples are included.



2. Quadrature Formulas for Integrals With Logarithmic Weig ht Functions

In numerical implementation of the BEM (see [9, Chapters 4]% uadrature formulas
play a very important role, especially for higher order edets. For calculating integrals of
the corresponding influence coefficients (for off-diagaglaments and diagonal elements),
guadratures of Gaussian type are very appropriate. Focisuffiy smooth functions on a
finite interval[a,b] a linear transformation to the standard interjval, 1] can be used and
then an application of Gauss-Legendre quadrature formagiges numerical integration
with a satisfactory accuracy. However, for integrals witbgaritmic singularity and/or some
kind of algebraic singularities the convergence of the egponding quadrature process is
very slow, so that certain weighted quadratures are recardete In such cases, the weight
functions of the corresponding weighted Gaussian quadiainclude these “difficult parts
(with singularities)” of the integrand. In this section, wensider a few cases of such
quadratures on the standard interf@all]. However, we first give some general notions on
Gaussian quadratures.

2.1. General notions of Gaussian quadratures

Let 2y, be a set of all algebraic polynomials of degree at nrmastVe consider the-point
weighted quadrature formula

[ toomtax="3 A+ Re(1). )
a k=1

where the weight functiom(x) is such one that all its momengg = f;’ka(x)dx < 00,
k=0,1,..., ando > 0. Quadrature rule (1) is known &gerpolatoryif it is exact for all
polynomials of degree at least- 1, i.e., if the remainder terR,(f) = 0 for eachf € &7,_1.

However, if the nodesg and the weight#y in (1) are selected so th&,(f) = 0 for
eachf € 5,1, the rule (1) is theGaussianquadrature formula. In that case, the nodes
X are zeros of the monic orthogonal polynonmig{w; x) and the corresponding weighg
(Christoffel numbers) can be expressed by the so-calledstoffel function Ap(w;x) (cf.
[12, Chapters 2 & 5]) in the formdy = An(w;x¢) > 0, k= 1,...,n. Positivity of Christoffel
numbers is very important for the convergence of the quadedbrmulas. In the special
casew(x) = 1 on[—1,1], the nodes are zeros of the Legendre polynomil(x). It was
originally discovered by Gauss in 1814, of course, withbebty of orthogonality.

As we know [12, Chapters 2], the (monic) polynomiai$w; x) orthogonal with respect
to the weight functiom(x) on [a, b] satisfy the three-term recurrence equation

Th1(t) = (t— o) 1&(t) — BTk (1), k=0,1,2,..., 2)
m(t) =0, m(t)=0,
where (ax) = (ax(w)) and (Bx) = (Bx(w)) are sequences of recursion coefficients. The
coefficient By which is multiplied by 1(x) = 0 in the recurrence relation (2) may be
arbitrary, but it is convenient to define it iy = o = ffw(x) dx
For generating Gaussian quadrature rules there are nuaheniethods, which are

computationally much better than a computation of nodesbygNewton’s method and then
a direct application of the classical Christoffel’s exiess for the weights (see e.g. Davis



and Rabinowitz [3]). The characterization of the Gaussiaadgatures via an eigenvalue
problem for the Jacobi matrix

ao\/ﬁ (e}
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has become the basis of current methods for generating gu@skzatures. The most popular
of them is one due to Golub and Welsch [6]. Their method is dase determining the
eigenvalues and the first components of the eigenvectorswpifnanetric tridiagonal Jacobi
matrix (3), wherea, and 3,, v =0,1,...,n— 1, are the coefficients in the three-term
recurrence relatiof?) for the monic orthogonal polynomiais, (w; - ). Namely,the nodes i

in the Gaussian quadrature rulgl), with respect to the weight function(xy on [a,b], are
the eigenvalues of the n-th order Jacobi mafi®}. The weights Aare given by

Ak:BOV%,la k:]-a"'ana

whereflo = Up = j:’w(x) dx and y 1 is the first component of the normalized eigenvegtor
corresponding to the eigenvalug x

In(W)Vi = XV, Vivk=1, k=1,...,n

Simplifying QR algorithm so that only the first componentstioé eigenvectors are
computed, Golub and Welsch [6] gave an efficient proceduredastructing the Gaussian
qguadrature rules. This procedure was implemented in depeogramming packages
including our packagBrthogonalPolynomials realized inMathematica[2].

Thus, we need the recursion coefficiemtsandfx, k < N — 1, for the monic polynomials
T, (w; - ), in order to construct the-point Gauss-Christofell quadrature formula, with redpec
to the weightew(x), for eachn < N. These coefficients are known explicitly for the
classical orthogonal polynomials (see [12, Chapters B]pther cases we need an additional
numerical construction of recursion coefficients, using thethod of moments or the so-
called discretized Stieltjes procedure (see [12, § 2.4.8])

2.2. Gaussian formulas for the weightwy = (1 —x)*x?log(1/x)

We consider th@-point quadrature formula
1 1 n
[ 100 =x8 og  dx= 3 Act (30 + Rl 1) @
k=1

with parametersr, 8 > —1 in the weight functionw(x) = (1 —x)9xflog(1/x). Piessens
and Branders [19] considered cases whes 0 andf3 = 0,+1/2,+1/3,—1/4,—1/5 (see
also Gautschi [4] and [5]). Quadrature parametersnfgr 8 was given in Katsikadelis [9,
pp. 297—-298] in the case = 3 = 0.

Using symbolic integration we find the momempis= p(a, 8) in terms of the gamma
function and harmonic numbers,
1

w(a,B) = ./0 Xw(x) dx = ./(;l(l—x)“xk+’3 Iog%dx
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Ma+1)r(+k+1)
= H(a+B+k+1)—H(B+k)]. 5
Flaipiiiz @Bk D-HEB+K). O
For example, foo = 3 = 0 it reduces tq(0,0) = 1/(k+1)%, k> 0.
The standard meaning of tiketh harmonic numbeldy is the sum of the reciprocals of
the firstk natural numbers, i.e.,

K 1
Hyx=H(k) = -,
vzlv

and its representation is given by Euler in the form
11—tk K

H (k) = dt=y (fl)vfli(k).

o 1-t Nl VAN

Taking a fractional argument between 0 and 1, the harmonic numltéfx) is defined
by the previous integral, whefleis simply replaced by. Then it can be generated by
H(X) =H(x—1)+x *or

H(1 H t 1 !

(1—x) (X) = rrcot(mx) x+1—x'
More generally, for every > 0 (integer or not), the harmonic number is determined by
© o

H(X) - XkZ]_ k(X+ k) - U’(X‘f' 1) + Va
wherey(x) =T"(x) /T (x) is the so-calledigamm&unction, i.e., the logarithmic derivative of
the gamma functiofi (x) andy = 0.577215664901532. is the Euler-Mascheroni constant.

Using theMathematica packageOrthogonalPolynomials [2] and the first N
momentsuy, k=0,1,...,2N — 1, given by (5), we get the firdtl coefficientsay and S,
k=0,1,...,N—1, inthe recurrence relation (2). It enables us to obtaimcptare parameters
in (4) for anyn < N.

Remark. In order to overcome the severe ill-conditioning in obtagnthe recursion
coefficients with a satisfactory accuracy, a multi-presisarithmetic can be used. For
example, in the simplest case= 8 = 0, taking 55-decimal-digit arithmetic we get the first
N = 50 recursion coefficients to about 20 decimal digits.

The following code in theMathematica packageOrthogonalPolynomials [2]
generates recursion coefficients foK 2N — 1 = 99 and quadrature parameters (nodes and
weights) to 20 decimal digits far= 10(10)50:

= << orthogonalPolynomials®

me= W[t ,a ,b_ ]:=(1-t)*at"blLog [1/1]
n@= moms= Integrate  [t"kw [t,0,0 1, {t,0,1 }]; moments = Table [mom, {k, 0,99 1}1;
4= {alpha, beta } = aChebyshevAlgorithm [moments, WorkingPrecision - 557;

= param = Table [aGaussianNodesWeights  [n, alpha, beta,
Precision - 20, WorkingPrecision - 20], {n, 10,50, 10 1}7;

For example, the obtained nodes and weightsifer10 are given in the following list:



)= param [[1]]

oufsl= {{0.0090426309621996506369, 0.053971266222500629504,

. 13531182463925077487, 0.24705241628715982422, 0.38021253960933233397,
. 52379231797184320116, 0. 66577520551642459722, 0. 79419041601196621736,
.89816109121900353817, 0.96884798871863353939},

.12095513195457051499, 0. 18636354256407187033, 0. 19566087327775998271,
.17357714218290692084, 0.13569567299548420167, 0. 093646758538110525987,
. 055787727351415874076, 0.027159810899233331146,

. 0095151826028485149993, 0. 0016381576335982632549} }

Hﬂ
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Example 1.Consider

Y (1-x) Y2 2l0g(1/x)
| = /O — dx, (6)

which value is known (cf. [5])

2
| — —Vgnr (%) — 4.118718374926872014366740

By the linear transformation@- 1 =t, this integral reduces to

I—/l 2 o 2 dt
)V 3t gl+t\/17t2'

An application of the standard Gauss-Legendre quadraiues @ very slow convergence.
Realtive errors,(GL) for n = 10(10)100 are presented in Table 1. Numbers in parentheses
denote decimal exponents. Slightly better results can bsradd by using Gauss-Chebyshev
quadratures with respect to the weight functisfi) = (1—t%)~¥/2. The corresponding
relative errors,(GC) are also displayed in the same table.

However, we can directly apply the quadrature formula (4iptegral (6). Let

QP S Adf(4) and P = QP — ).
k=1

Taking the quadrature formula with the logarithmic weighfx) = log(1/x), the
corresponding function in (6) i§(x) = 1/1/X(1— x2). The convergence of this rule is again
very slow. Relative errors(qo’m are given in Table 1.

But, if we include also algebraic singularities in the weijgte., if we takew(x) =
(1—x)"Y2x"1/210g(1/x) (a = B = —1/2), the convergence becomes very fast. Gaussian
approximationsQEfl/z’fl/z) and relative errors are given in the second part of Table 1 for
small values of < 10. Incorrect decimal digits are underlined. As we can s@egxact
decimal digits are obtained using Gaussian rule with ordy10 digits.

The same method enables us to include also a logarithmiulsirity atx = 0. Thus, we
can consider the weight function

w(x) = wWOP) (x) = (1—x)9%P log a,B> -1

L

(1=x)
In Fig. 1 we present this weight function far = 0 and three selected values of the
parametef3.



Table 1. Relative errors of quadrature sums for 10(10)100 and Gaussian approximations
with respect to logarithmic weight and the correspondirigtire errors fom = 1(1)10

n rm(GL) rn(GC) rﬁo’o) n Qﬁfl 2-1/2) r,(fl 2-1/2)
10 184(—1) 529(—2) 142(-1) || 1 40801983843688532 9.35(—3)
20 108(—1) 264—-2) 869—2) || 2 41179039770237825 1.98(—4)
30 780(—2) 176(—2) 6.41(—2) || 3 41186986430715864 4.79(—6)
40 617(—2) 1.32(-2) 514-2) || 4 41187178694526636 1.23(—7)
50 617(—2) 106(—2) 431(—2) | 5 4.1187183615750484 3.24(—9)
60 514(—2) 881(—3) 373(—2) || 6 41187183745672496 8.73(—11)
70 441(-2) 755-3) 330(—2) || 7 4.1187183749170540 2.38(—12)
80 388(—2) 6.61(—3) 296(—2) || 8 4.1187183749266013 6.57(—14)
90 347(—2) 587(—3) 269—2) || 9 41187183749268644 1.83(—15)
100 287(—2) 529(—3) 247(—2) || 10 41187183749268718 5.10(—17)
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Figure 1. Graphs of the weight functions(x) for o = 0 andf = —1/2 (solid line),3 =0
(dashed line) an@@ = 1/2 (dotted line).

Similarly as before we find the corresponding moments

1
H(a,B) = /O (1—x) %P log dx

1
X(1—x)

_ M@+ )r(+k+1)

Example 2.Fora = —1/4 and3 = —1/2 compute

1
I = / WP 0dx~ QP (), k=1.2
wherefy(t) = sin(107x) and f,(t) = sin(20mx?).

As before, by using thélathematica packageOrthogonalPolynomials [2] we
obtain recursion coefficients and parameters of the Gaussias with respect to the weight
w(-¥/4=1/2)(x), and then we apply them to given integrals.

In the first case we get results presented in Table 2, inojuithie corresponding relative
errors. Incorrect decimal digits are underlined.



Table 2. Gaussian quadrature surﬁ!&*l/“‘*l/z)(fk), with corresponding relative errors
fn(fo), k=1,2

n QM) rn(f1) Q (f2) rn(f2)
10 05022466846173798 5.53(—2)
20 05316431444014815 3.32(—13)
30 05316431444016578 .(729) 0.44665240303668106222 6.99(75)

40 0.44662120169680683776 3.43(—11)
50 0.44662120168147791272 1.14(—19)
60 0.44662120168147791267 .0B(—29)

Grapfs of the second functiof(x) and the integranéi;(x) = fo(x)w(~1/4-1/2)(x) are
displayed in Fig. 2. Because of oscillatory integrand wedmeere nodes in integration and
therefore we start with = 30 points. Results are given in the same table.
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Figure 2. Graphs of functionsf>(x) = sin(20m¢) (left) and Fa(x) = fo(x)wi-1/4-1/2)(x)
(right).

111 .

3. Some Remarks on Gaussian Quadrature Rules for Miintz Systes

Gaussian integration can be extended in a natural way tgoomomial functions, taking a
system of linearly independent functions

{Po(X),Pl(X),Pz(X),...} (XE [aa b])? (7)

usually chosen to be complete in some suitable space ofifunsct If w(x) is a given
nonnegative weight ofa, b] and the quadrature rule

[ toomtqdx='3 At + Ral) ®)
a k=1

is such that it integrates exactly the first f2inctions in (7), we call the rule (8) &aussian
with respect to the syste(i). The existence and uniqueness of a Gaussian quadratere r
(8) with respect to the system (7), or shortegeneralized Gaussian formylas always
guaranteed if the firstrRfunctions of this system constitute a Chebyshev systerfad.
Then, all the weight#\, ..., A, in (8) are positive.



The generalized Gaussian quadratures for Miintz systensshgm to Stieltjes [20] in
1884. TakingP(x) = x* on [a,b] = [0, 1], where 0< A9 < A1 < ---, Stieltjes showed the
existence of Gaussian formulae.

A numerical algorithm for constructing the generalized &an quadratures was
investigated by Ma, Rokhlin and Wandzura [11], but theiraiihm is ill conditioned (see
[11, Remark 6.2]). In [15], Milovanogiand Cvetkowt presented an alternatively numerical
method for constructing the generalized Gaussian quadrg®) for Mintz polynomials,
which is exact for eact € Ma,_1(A) = spar{x*o,x}1, ... x*-1} . The method is rather
stable and simpler than the previous one, since it is basedoastruction and stable
computation of orthogonal Miintz systems, previously dgwetl in [13]. The method
performs calculations in double precision arithmeticsrithen to get double precision results.
For details see [15]. An application in numerical inversafrthe Laplace transform was
given in [16].

Some transformation methods for integrals with Miintz polyirls can be found in
[14] and [10].

4. Conclusion

In this paper we propose a method for construction weighteds&ian quadrature rules for
integrals with algebraic and/or logarithmic singulastigvhich appear in many applications
of BEM and FEM in computational problems in engineering.oAlge give some remarks on
generalized Gaussian formulas for Miintz systems.
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