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NEW INTEGRAL FORMS OF GENERALIZED

MATHIEU SERIES AND RELATED APPLICATIONS

Gradimir V. Milovanović and Tibor K. Pogány

The main object of this article is to present a systematic study of integral

representations for generalized Mathieu series and its alternating variant,

and to derive a new integral expression for these special functions by contour

integration using rectangular integration path. By virtue of newly established

integral form of generalized Mathieu series, we obtain a new integral expres-

sion for the Bessel function of the first kind of half integer order, solving

a related Fredholm integral equation of the first kind with nondegenerate

kernel.

1. INTRODUCTION AND PRELIMINARIES

The series

(1.1) S(r) =
∑

n≥1

2n

(n2 + r2)2
, r ∈ R+,

was introduced and studied by Émile Leonard Mathieu (1835–1890) in his book
[9] devoted to the elasticity of solid bodies. We call S(r) Mathieu series. The
alternative version of S(r) is

S̃(r) =
∑

n≥1

(−1)n−1 2n

(n2 + r2)2
, r ∈ R+,
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which was introduced by Pogány et al. in [14]. Integral forms of S(r), S̃(r) are
given by Emersleben [7] and by Pogány et al. [14] respectively as

S(r) =
1

r

∫ ∞

0

t sin(rt)

et − 1
dt,(1.2)

S̃(r) =
1

r

∫ ∞

0

t sin(rt)

et + 1
dt .

Several interesting problems and solutions dealing with integral representations
and bounds for the following modest generalization of the Mathieu series with a
fractional power

Sµ(r) =
∑

n≥1

2n

(n2 + r2)µ+1
, r ∈ R+; µ > 0,

can be found in the recent works by Diananda [5], Tomovski and Trenčevski

[18] and Cerone and Lenard who studied the integral expression [3, Theorem
2.1]

(1.3) Sµ(r) =

√
π

(2r)µ−
1
2Γ(µ+ 1)

∫ ∞

0

xµ+ 1
2

ex − 1
Jµ− 1

2
(rx) dx µ > 0 ,

where Jν stands for the familiar Bessel function of the first kind of order ν. The au-
thors gave two proofs for this result, where the second one uses the Gegenbauer’s

formula form 1875 (in fact the Laplace–Mellin transform of the Bessel function
Jν) [19]:

(1.4)

∫ ∞

0

e−pxxν+1 Jν(qx) dx =
2ν+1p qν Γ

(
ν + 3

2

)
√
π (q2 + p2)ν+

3
2

,

where ℜ{ν} > −1,ℜ{p} > |ℑ{q}|.
The generalized alternating Mathieu series was introduced by Pogány et

al. [14] in the form

S̃µ(r) =
∑

n≥1

(−1)n−1 2n

(n2 + r2)µ+1
, r ∈ R+; 2µ > −1,

which can be also expressed in the integral form

(1.5) S̃µ(r) =

√
π

(2r)µ−
1
2Γ(µ+ 1)

∫ ∞

0

xµ+ 1
2

ex + 1
Jµ− 1

2
(rx) dx 2µ+ 1, r > 0,

say. We can derive (1.5) by the Gegenbauer formula (1.4), putting n 7→ p, r 7→
q, ν 7→ µ− 1

2 , and multiplying it by (−1)n−1 and summing up both sides for n ∈ N.
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Motivated essentially by the work of Cerone and Lenard [3], a family of
so–called Mathieu a–series was introduced by Pogány et al. in [14]:

(1.6) Sµ,α(r;a) =
∑

n≥1

an
(aαn + r2)µ

, r, α, µ ∈ R+, β ≥ 0,

where it is tacitly assumed that the monotone increasing, divergent sequence of
positive real numbers

a = (an)n≥1, lim
n→∞

an = +∞ ,

is so chosen that series (1.6) converges, that is, the auxiliary series
∑

n≥1 a
−µα
n is

convergent. Comparing the definitions (1.1), (1.3) and (1.6), we see that S2(r) =
S(r) and Sµ(r) = Sµ+1,2(r;N). Related integral expression reads as follows [13, 14]

(1.7) Sµ,α(r;a) = µ

∫ ∞

aα
1

∫ [a−1(t1/α)]

0

a(u) + a′(u){u}
(t+ r2)µ+1

dtdu, r, α, µ,a > 0 .

For a assume ax = a(x) ∈ C1[0,∞), a′(x) > 0 and a−1 denotes the inverse of a.
Here [z] and {z} stand for the integer and fractional part of z ∈ R.

Similar integral expressions of another kind (derived not only for Sµ,α(r;a)

but for its alternating variant S̃µ,α(r;a) as well) are discussed in detail in [14].

Pogány [13] considered, as a further generalization, the so-called Mathieu

(a,λ)–series defined by

(1.8) Sµ(̺;a,λ) =
∑

n≥0

an
(λ(n) + ̺)µ

µ, r > 0 .

Here the series (λ(n))n∈N monotonously diverges, that is

0 ≤ λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞ .

The related integral expression, derived by the Dirichlet–series technique can be
found in [13, Theorem 1]:

Sµ(̺;a,λ) =
a0
̺µ

+ µ

∫ ∞

0

∫ [λ−1(t)]

0

a(u) + a′(u){u}
(̺+ t)µ+1

dtdu,

where a ∈ C1(R+), a|N = (an)n∈N; (1.8) completely solves the Open problem on
the integral form of Sα

µ (r;a) posed by Feng Qi.

Finally, let us recall in short thatDraščić and Pogány [6] established a first
kind Fredholm integral equation with non–degenerated kernel which connects two
types of integral representations of generalized Mathieu series Sµ(r). The benefit
was a new integral representation for the Bessel function of the first kind with
general positive order ν > 0 [6, Theorem 1, Eq. (15)]. However, we point out that
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integral representations for Sµ,α(r;a) and Sµ(̺;a,λ) are of highly complicated
structure, so there was a need to simplify the associated Fredholm type integral
equation to obtain an easily handlable formula for the Bessel function of the first
kind Jν .

Consequently, our main goal is twofold: (i) to establish another type of in-
tegral formula for the generalized Mathieu series by virtue of contour integration
on a suitable rectangular integration path, and (ii) to apply the derived integral
expression in getting new integral expression for the Bessel function Jm− 1

2
,m ∈ N

being a particular solution of the related first kind Fredholm type integral equa-
tion.

2. INTEGRAL FORMULAE FOR Sm(r) AND S̃m(r)

In this section we discuss the generalizedMathieu possessing positive integer
parameter µ = m ∈ N, that is

(2.1) Sm(r) =
∑

n≥1

2n

(n2 + r2)m+1
m ∈ N, r > 0 ,

and its alternating variant

S̃m(r) =
∑

n≥1

(−1)n−1 2n

(n2 + r2)m+1
,

having the same parameter space. To derive integral form of these special functions
we use contour integration technique on a suitable rectangular contour. The whole
integration procedure is explained in detail by Milovanović [11, Section 2.2] (see
also [10] and [12, Section 6.4.1]), so we only recall it in short during our first main
result’s proving procedure.

Theorem 2.1. The following integral representation formulae hold true

(2.2) Sm(r) =
π

m

∫ ∞

0

[m2 ]∑
j=0

(−1)j
(
m

2j

)(
r2 − x2 + 1

4

)m−2j
x2j

[(
x2 − r2 + 1

4

)2
+ r2

]m · dx

cosh2 πx
,

S̃m(r) =
π

m

∫ ∞

0

[m−1

2 ]∑
j=0

(−1)j
(

m

2j + 1

)(
r2 − x2 + 1

4

)m−2j−1
x2j+1

[(
x2 − r2 + 1

4

)2
+ r2

]m · sinhπxdx
cosh2 πx

.

Proof. The general contour integration procedure reads as follows. Let the function
f be analytic in ∆(β) = {z ∈ C : ℜ{z} > β, β ∈ (k − 1, k)}. Actually, we consider
the series

Ak =
∑

n≥k

f(n), Ãk =
∑

n≥k

(−1)nf(n) .
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Applying contour integration over a rectangle ∂∆(β, γ, δ) where

∆(β, γ, δ) =

{
z ∈ C : β ≤ ℜ{z} ≤ γ, |ℑ{z}| ≤ δ

π

}
⊆ ∆(β,∞,∞) ≡ ∆(β).

and β ∈ (k − 1, k), γ ∈ (ℓ, ℓ + 1), k, ℓ ∈ Z, k ≤ ℓ. By the Cauchy residue

theorem series Ak, Ãk are expressed via appropriate Bromwich–Wagner type
contour integrals along the line z = β + iy, y ∈ R:

Ak = − 1

2πi

∫ β+i∞

β−i∞

( π

sinπz

)2

F (z)dz,

Ãk = − 1

2πi

∫ β+i∞

β−i∞

( π

sinπz

)2

cosπz F (z)dz,

which can be reduced to real integrals, that is, to Gaussian quadrature rules on R+

with respect to the hyperbolic weights [11, Section 2.2]

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
,

say, respectively. Precisely, let F be the indefinite integral of f which satisfies the
conditions [12, Teorema 3]:

(C1) F is holomorphic in ∆(β);

(C2) lim
|t|→∞

e−c|t|F
(
x+ i

t

π

)
= 0, uniformly in x ≥ β;

(C3) lim
x→∞

∫

R

e−c|t|
∣∣∣F

(
x+ i

t

π

)∣∣∣dt = 0, choosing c = 2 or c = 1, when we consider

Ak, Ãk, respectively.

The associated integration constant we calculate by (C3). Having such f, F , we
deduce [11, Eqs. (2.14-15)]

Ak =

∫ ∞

0

w1(t)Φ
(
k − 1

2
,
t

π

)
dt, Ãk =

∫ ∞

0

w2(t)Ψ
(
k − 1

2
,
t

π

)
dt ,

where

Φ(x, y) = −1

2

(
F (x+ iy) + F (x− iy)

)
= −ℜ{F (z)},

Ψ(x, y) =
(−1)k

2i

(
F (x+ iy)− F (x− iy)

)
= (−1)kℑ{F (z)} .

Now, we are looking for the integral forms of A1 and Ã1, because of

(2.3) Sm(r) = A1 = π

∫ ∞

0

w1(πx)Φ(1/2, x) dx
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and

(2.4) S̃m(r) = −Ã1 = −π

∫ ∞

0

w2(πx)Ψ(1/2, x) dx.

So, f(z) = 2z(z2 + r2)−m−1, and F (z) = −m−1(z2 + r2)−m and the integration
constant vanishes on account of (C3). For z = ξ + iη we have

[
ξ2 − η2 + r2 + i2ξη

]m
F (ξ + iη) = − 1

m
.

Putting ξ = 1/2, η = x, and k = 1, it reduces to
(
r2 − x2 +

1

4
+ ix

)m

(Φ(1/2, x) + iΨ(1/2, x)) =
1

m
.

Since (
r2 − x2 +

1

4
+ ix

)m

= Um(r;x) + iVm(r;x),

where

Um(r;x) =

[m2 ]∑

j=0

(−1)j
(
m

2j

)(
r2 − x2 +

1

4

)m−2j

x2j ,

Vm(r;x) =

[m−1

2 ]∑

j=0

(−1)j
(

m

2j + 1

)(
r2 − x2 +

1

4

)m−2j−1

x2j+1,

and

Um(r;x)2 + Vm(r;x)2 =

[(
r2 − x2 +

1

4

)2

+ x2

]m

=

[(
x2 − r2 +

1

4

)2

+ r2

]m

,

we obtain

Φ(1/2, x) + iΨ(1/2, x) =
1

m
· Um(r;x) − iVm(r;x)[(

x2 − r2 + 1
4

)2
+ r2

]m .

Substituting these expressions for Φ(1/2, x) and Ψ(1/2, x) in (2.3) and (2.4), re-
spectively, we get the assertion of this theorem.

The adequate formulae for theMathieu series S(r) = S1(r) and S̃(r) = S̃1(r)
we present in the following

Corollary 2.2. We have

S(r) = π

∫ ∞

0

r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

· dx

cosh2 πx
,(2.5)

S̃(r) = π

∫ ∞

0

x
(
x2 − r2 + 1

4

)2
+ r2

· sinhπxdx
cosh2 πx

.
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Using integral representations from Theorem 2.1 and Gaussian quadratures
developed in [10] we are able to calculate the functions Sm(r) and S̃m(r) with a

very high precision. Plots of Sm(r) and S̃m(r) for m = 1, 2, 3, 4 are presented in
Figure 1.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 1: Plots of Sm(r) (left) and S̃m(r) (right) for m = 1 (solid line), 2 (dash-dot
line), 3 (dashed line), 4 (dotted line) in both cases

3. FREDHOLM TYPE INTEGRAL EQUATION FOR Jm−1/2

The generalized Mathieu series Sµ,α(r) has several closed form representa-
tions involving definite integrals. The recent ones are listed in the Introduction
section of this paper, consult the ones by Cerone and Lenard (1.5), by Pogány

(1.7) (suitable for α = 2,a = N, see [13]) and the here obtained formula (2.2). So,
the heart of the matter are integral expressions of the same subject, of the gener-
alized Mathieu series Sµ,2(r). Since its complicated structure integral form (1.7)
is hard to use, we concentrate on the Cerone and Lenard integral (1.5), which
contains Bessel function of the first kind J and the newly established formula
(2.2).

We say that functions h1 and h2 are orthogonal a.e. with respect to the

ordinary Lebesgue measure λ(x) = x on the set of positive reals when
∫

R+

h1(x)h2(x)dx = 0,

in notation h1 ⊥ h2.

Theorem 3.1. The first kind Fredholm type convolutional integral equation

(3.1)

∫ ∞

0

xm+ 1
2

ex − 1
f(rx) dx =

(2r)m− 1
2 m!√

π
· Sm(r), r ∈ R+

has a particular solution f(x) = Jm− 1
2
(x) + hm(x), where

hm(x) ⊥ xm+ 1
2

ex − 1
m ∈ N, x ∈ R+ .
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Here Sm(r) stands for the generalized Mathieu series of positive integer order,

expressed by (2.1).

The proof of (3.1) is obvious, therefore it is omitted.

Draščić and Pogány constructed a function h valid for the case, when the
right–hand–side integral expression is built by Sµ,α(r;N), consult [6, Example].
This example does work in our situation as well putting α = 2 and ν = m + 1

2 .
So, assuming that a positive r.v. ζm, defined on a fixed standard probability space
(Ω,F,P) has a probability density function (PDF)

gm(x) =





2m+1xm+ 1
2

√
π (2m+ 1)!! ζ(m+ 3

2 )(e
x − 1)

x > 0,

0 x ≤ 0,

where ζ(·) denotes the Riemann Zeta function. Now, there exists the median x0.5,
i.e. the solution of the equation

P{ξν,α ≤ x0.5} =

∫ x0.5

0

gm(x)dx =
1

2
.

Then

h(x) = χ[0,x0.5)(x) − χ[x0.5,∞)(x) .

is the solution of the homogeneous variant of the equation (3.1). Let us remark
that ζm has the so–called Planck distribution.

Corollary 3.2. The first kind Fredholm type integral equation associated with

the Mathieu series S(r), r > 0 reads

∫ ∞

0

x
3
2

ex − 1
f(rx) dx =

√
2

rπ

∫ ∞

0

x sin(rx)

ex − 1
dx

=
√
2rπ

∫ ∞

0

r2 − x2 + 1
4

(x2 − r2 + 1
4 )

2 + r2
· dx

cosh2 πx
.

In both cases there exists the same particular solution f(x) = J 1
2
(x)+h 1

2
(x), where

h 1
2
(x) is not necessarily the same in above equations.

Remark 3.3. It is interesting to remark that Emersleben’s formula (1.2) is equiv-
alent to Cerone–Lenard formula (1.3) for µ = 1, see [3, Remark 2.2].

4. SOLVING INTEGRAL EQUATION (3.1) IN Jm−1/2(x) VIA
MELLIN TRANSFORM
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The Mellin transform pair of a suitable function f one defines as

Mp[f ] :=

∫ ∞

0

rp−1f(r)dr, M−1
r [f ] :=

1

2πi

∫ γ+i∞

γ−i∞

r−pMp[f ]dp .

Here the real γ belongs to the so–called fundamental strip u1 < ℜ{p} < u2 of the
inverse Mellin transform M−1 (see [4, 17]).

Making use of integral representation (2.2), we transform the integral equa-
tion (3.1) into

(4.1)

∫ ∞

0

xm+ 1
2

ex − 1
Jm− 1

2
(rx)dx = (2r)m− 1

2 (m− 1)!
√
π

∫ ∞

0

Rm(x; r2)
dx

cosh2 πx

with the rational function in the integrand

Rm(x; r2) =

[m2 ]∑
j=0

(−1)j
(
m

2j

)(
r2 − x2 + 1

4

)m−2j
x2j

[(
x2 − r2 + 1

4

)2
+ r2

]m ,

which consists of a polynomial of degree m in numerator, and of a polynomial of
degree 2m in denominator, both in variable r2. By applying Mellin transform to
the convolutional equation (4.1) as given in [6], we conclude

X(p) =
2m− 1

2 (m− 1)!
√
π

Γ(m− p+ 3
2 )ζ(m− p+ 3

2 )
Mp

[
rm− 1

2

∫ ∞

0

Rm(x; r2)

cosh2 πx
dx

]

=
2m− 1

2 (m− 1)!
√
π

Γ(m− p+ 3
2 )ζ(m− p+ 3

2 )

∫ ∞

0

Mp+m− 1
2

[
Rm(x; r2)

]

cosh2 πx
dx .(4.2)

where X(p) is the Mellin transform of the Bessel function Jm− 1
2
(x). To express

theBessel function explicitly, first we have to calculateMp+m− 1
2

[
Rm(x; r2)

]
which

requires integration of an irrational function in the general case (ℜ{p} ∈ (u1, u2)\Q)
and then to apply the inverse Mellin transform operator M−1 to (4.2). Finally,
we arrive at

Jm− 1
2
(r) =

2m−1 (m− 1)!√
2π i

∫ γ+i∞

γ−i∞

r−p

∫ ∞

0

Mp+m− 1
2

[
Rm(x; r2)

]

cosh2 πx
dx

Γ(m− p+ 3
2 )ζ(m − p+ 3

2 )
dp,

where γ ∈ (u1, u2), and for

φ(r) = rm− 1
2

∫ ∞

0

Rm(x; r2)

cosh2 πx
dx =

m

π
rm− 1

2Sm(r)

we have to obtain

(4.3) φ(r) ∼




O
(
rm− 1

2

)
r → 0+,

O
(
r−m− 1

2

)
r → ∞.
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Indeed, since Sm(0) = 2ζ(2m+ 1), in the case r → 0+ it is true, while, for r → ∞
we have

φ(r) ∼ rm− 1
2

r2m

∫ ∞

0

dx

cosh2 πx
=

1

π
r−m− 1

2 ,

hence (u1, u2) ⊇
(
−m+ 1

2 ,m+ 1
2

)
, m ∈ N, and so we deduce (4.3). Therefore we

can clearly choose the value γ = 0 for the Bromwich–Wagner type integration
contour in deriving the inverse Mellin transform.

Theorem 4.1. For all m ∈ N we have

Jm− 1
2
(r) =

2m−1 (m− 1)!√
2π i

∫ i∞

−i∞

r−p

∫ ∞

0

Mp+m− 1
2

[
Rm(x; r2)

] dx

cosh2 πx
Γ(m− p+ 3

2 )ζ(m− p+ 3
2 )

dp .

Putting m = 1 in this theorem we get the following, not so obvious formula.

Corollary 4.2.

sin r =
1

2i

∫ i∞

−i∞

r−p+ 1
2

∫ ∞

0

Mp+ 1
2

[
r2 − x2 + 1

4

(x2 − r2 + 1
4 )

2 + r2

]
dx

cosh2 πx

Γ(52 − p)ζ(52 − p)
dp .

5. NEW SIMPLE UPPER BOUND FOR S(r)

The bounds for Mathieu series S(x) attracted many mathematicians like
Schröder [16], Emersleben [7], Berg [2], Makai [8] and Diananda [5]. More
recently we have the works by Alzer, Guo, Lampret, Mortici, Pogány, Qi,

Srivastava, Tomovski and coauthors (consult the exhaustive exposition con-
cerning this question in [15, Section 2] and the adequate references therein), while
Mathieu himself conjectured [9, Ch. X, pp. 256–258] only the upper bound
S(r) < r−2, r > 0, proved first by Berg [2]. The bilateral bounding inequality of
the same type like Berg’s:

1

r2 + 1
2

< S(r) <
1

r2 + 1
6

,

has been given by Makai [8] who proved it in a highly elegant manner (compared
to (5.1)). A result by Alzer et al. [1] states that

(5.1)
1

r2 + 1
2ζ(3)

< S(r) <
1

r2 + 1
6

=: A(r) r > 0 ,

where the constants 1/(2ζ(3)) and 1/6 are sharp. Here ζ(3) ≈ 1.2020569 stands
for the Apèry’s constant. The main advantage of Alzer’s bound is its simple
structure.

Here we establish a composite upper bound of simple structure such that is
superior to (5.1) in interval [0, 1.18772). Our main tool will be the formula (2.5).
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Theorem 5.1. For all positive r > 0 there holds true

(5.2) S(r) ≤ B(r) =






1

r2 + 1
4

0 ≤ r ≤
√
3

2
,

1√
1 + 4r2 − 1

r >

√
3

2
.

Proof. Considering the integrand of (2.5) it is not hard to obtain the global maxi-
mum of its rational term R1(x; r

2):

B(r) := max
x>0

r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

=






4

1 + 4r2
0 ≤ r ≤

√
3

2
,

√
1 + 4r2 + 1

4r2
r >

√
3

2
.

Thus, we get

S(r) ≤ πB(r)
∫ ∞

0

dx

cosh2 πx
= B(r).

The proof is complete.

Comparing now Alzer’s bound with our bound (5.2) it is not hard to see
that the newly established bound is superior to Alzer’s in the following manner:

B(r) < A(r), 0 < r ≤ r1 =

√
1

6
(5 + 2

√
3) ≈ 1.18772 .

However, for greater r–values Alzer’s upper bound remains the better one.

Open Problem. Let µ > 0 be a fixed number. Determine the best possible values

C(µ) and D(µ) such that the two–sided inequality

1

r2 + C(µ) < Sµ(r) <
1

r2 +D(µ)

is valid for all r > 0.
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