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Abstract Using S.L. Sobolev’s method, we construct the interpolation splines mini-

mizing the semi-norm in K2(P2), where K2(P2) is the space of functions φ such that

φ′ is absolutely continuous, φ′′ belongs to L2(0, 1) and
∫ 1
0

(ϕ′′(x) +ϕ(x))2dx <∞. Ex-

plicit formulas for coefficients of the interpolation splines are obtained. The resulting

interpolation spline is exact for the trigonometric functions sinx and cosx. Finally, in

a few numerical examples the qualities of the defined splines and D2-splines are com-

pared. Furthermore the relationship of the defined splines with an optimal quadrature

formula is shown.
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1 Introduction and Statement of the Problem

In order to find an approximate representation of a function ϕ by elements of a certain

finite dimensional space, it is possible to use values of this function at some points xβ ,

β = 0, 1, . . . , N . The corresponding problem is called the interpolation problem, and

the points xβ are interpolation nodes.
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Polynomial and spline interpolations are very wide subjects in approximation the-

ory (cf. DeVore and Lorentz [8], Mastroianni and Milovanović [22]), The theory of

splines as a relatively new area has undergone a rapid progress. Many books are de-

voted to the theory of splines, for example, Ahlberg et al [1], Arcangeli et al [2], At-

tea [3], Berlinet and Thomas-Agnan [4], Bojanov et al [5], de Boor [7], Eubank [10],

Green and Silverman [13], Ignatov and Pevniy [19], Korneichuk et al [20], Laurent [21],

Nürnberger [23], Schumaker [25], Stechkin and Subbotin [29], Vasilenko [30], Wahba

[32] and others.

If the exact values ϕ(xβ) of an unknown function ϕ(x) are known, it is usual to

approximate ϕ by minimizing ∫ b

a

(g(m)(x))2dx (1.1)

on the set of interpolating functions (i.e., g(xβ) = ϕ(xβ), β = 0, 1, . . . , N) of the

Sobolev space L
(m)
2 (a, b) of functions with a square integrable m-th generalized deriva-

tive. It turns out that the solution is the natural polynomial spline of degree 2m−1 with

knots x0, x1, . . . , xN . It is called the interpolating Dm-spline for the points (xβ , ϕ(xβ)).

In the non-periodic case this problem was first investigated by Holladay [18] for m = 2,

and the result of Holladay was generalized by de Boor [6] for any m. In the Sobolev

space L̃
(m)
2 of periodic functions the minimization problem of integrals of type (1.1) was

investigated by I.J. Schoenberg [24], M. Golomb [14], W. Freeden [11,12] and others.

We consider the Hilbert space

K2(P2) :=
{
ϕ : [0, 1]→ R

∣∣∣ ϕ′ is absolutely continuous and ϕ′′ ∈ L2(0, 1)
}
,

with the semi-norm

‖ϕ‖ :=

{∫ 1

0

(
P2

(
d

dx

)
ϕ(x)

)2

dx

}1/2

, (1.2)

where

P2

(
d

dx

)
:=

d2

dx2
+ 1 and

∫ 1

0

(
P2

(
d

dx

)
ϕ(x)

)2

dx <∞.

The equality (1.2) gives the semi-norm and ‖ϕ‖ = 0 if and only if ϕ(x) = c1 sinx +

c2 cosx.

It should be noted that for a linear differential operator of order n, L := Pn( d/ dx),

Ahlberg, Nilson, and Walsh in the book [1, Chapter 6] investigated the Hilbert spaces

in the context of generalized splines. Namely, with the inner product

〈ϕ,ψ〉 :=

∫ 1

0

Lϕ(x) · Lψ(x) dx,

K2(Pn) is a Hilbert space if we identify functions that differ by a solution of Lϕ = 0.

We consider the following interpolation problem:

Problem 1. Find the function S(x) ∈ K2(P2) which gives minimum to the semi-

norm (1.2) and satisfies the interpolation condition

S(xβ) = ϕ(xβ), β = 0, 1, . . . , N, (1.3)
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for any ϕ ∈ K2(P2), where xβ ∈ [0, 1] are the nodes of interpolation.

It is known (cf. [21, Chapter 4]) that the solution S(x) of Problem 1 is an inter-

polation spline function in the space K2(P2) and the spline S(x) uniquely exists when

N ≥ 1.

We give a definition of the interpolation spline function in the space K2(P2) fol-

lowing [21, Chapter 4, pp. 217–219].

Let ∆ : 0 = x0 < x1 < · · · < xN = 1 be a mesh on the interval [0, 1], then

the interpolation spline function with respect to ∆ is a function S(x) ∈ K2(P2) and

satisfies the following conditions:

(i) S(x) is a linear combination of functions sinx, cosx, x sinx and x cosx on each

open mesh interval (xβ , xβ+1), β = 0, 1, . . . , N − 1;

(ii) S(x) is a linear combination of functions sinx and cosx on intervals (−∞, 0)

and (1,∞);

(iii) S(α)(x−β ) = S(α)(x+β ), α = 0, 1, 2, β = 0, 1, . . . , N ;

(iv) S(xβ) = ϕ(xβ), β = 0, 1, . . . , N for any ϕ ∈ K2(P2).

We consider the fundamental solution

G(x) =
sign(x)

4
(sinx− x cosx) (1.4)

of the differential operator
d4

dx4
+ 2

d2

dx2
+ 1, i.e., the solution of the equation

G(4)(x) + 2G(2)(x) +G(x) = δ(x),

where δ(x) is Dirac’s delta function.

Remark 2. The following rule for finding a fundamental solution of a linear dif-

ferential operator

P

(
d

dx

)
:=

dm

dxm
+ a1

dm−1

dxm−1
+ · · ·+ am,

where aj are real numbers, is given in [31, pp. 88–89]: Replacing d
dx by p we get a

polynomial P (p). Then we expand the expression 1/P (p) to partial fractions

1

P (p)
=
∏
j

(p− λ)−kj =
∑
j

[
cj,kj (p− λj)−kj + · · ·+ cj,1(p− λj)−1

]

and to every partial fraction (p− λ)−k we correspond
xk−1signx

(k − 1)!
· eλx.

Using this rule, it is found the function G(x) which is the fundamental solution of

the operator
d4

dx4
+ 2

d2

dx2
+ 1 and has the form (1.4).

It is clear that the third derivative of the function

G(x− xγ) =
sign (x− xγ)

4

(
sin(x− xγ)− (x− xγ) cos(x− xγ)

)
has a discontinuity equal to 1 at the point xγ , and the first and the second derivatives

of G(x− xγ) are continuous. Suppose a function pγ(x) coincides with the spline S(x)
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on the interval (xγ , xγ+1), i.e., pγ(x) := pγ−1(x)+CγG(x−xγ), x ∈ (xγ , xγ+1), where

Cγ is the jump of the function S′′′(x) at xγ :

Cγ = S′′′(x+γ )− S′′′(x−γ ).

Then the spline S(x) can be written in the following form

S(x) =

N∑
γ=0

CγG(x− xγ) + p−1(x), (1.5)

where p−1(x) = d1 sinx+ d2 cosx, d1, d2 are real numbers.

Furthermore, the function S(x) satisfies the condition (ii) and therefore the function

1

4

N∑
γ=0

Cγ(sin(x− xγ)− (x− xγ) cos(x− xγ))

is a linear combination of the functions sinx and cosx. It leads to the following condi-

tions for Cγ ,
N∑
γ=0

Cγ sinxγ = 0,

N∑
γ=0

Cγ cosxγ = 0.

Taking into account the last two equations and the interpolation condition (iv) for

the coefficients Cγ , γ = 0, 1, 2, . . . , N , d1, d2 of the spline (1.5) we obtain the following

system of N + 3 linear equations,

N∑
γ=0

CγG(xβ − xγ) + d1 sinxβ + d2 cosxβ = ϕ(xβ), β = 0, 1, . . . , N, (1.6)

N∑
γ=0

Cγ sinxγ = 0, (1.7)

N∑
γ=0

Cγ cosxγ = 0, (1.8)

where ϕ ∈ K2(P2).

Note that the analytic representation (1.5) of the interpolation spline S(x) and

the system (1.6)–(1.8) for the coefficients can be also obtained from [30, pp. 45–47,

Theorem 2.2].

It should be noted that systems for coefficients of Dm-splines similar to the system

(1.6)–(1.8) were investigated, for example, in [2,9,19,21,30].

The main aim of this paper is to solve Problem 1, i.e., to solve the system of

equations (1.6)–(1.8) for equal spaced nodes xβ = hβ, β = 0, 1, . . . , N, h = 1/N ,

N = 1, 2, . . . and to find analytic formulas for coefficients Cγ , γ = 0, 1, . . . , N , d1 and

d2 of S(x).

The rest of the paper is organized as follows. In Section 2 we give an algorithm

for solving the system of equations (1.6)–(1.8) for equally-spaced nodes xβ . Using this

algorithm the coefficients of the interpolation spline S(x) are computed in Section 3.

Some numerical examples for comparing defined splines S(x) and D2-splines are given

in Section 4, as well as a relationship of such splines with the optimal quadrature

formulas derived recently in [17]. is shown.
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2 An algorithm for computing the coefficients of interpolation splines

In this section we give an algorithm for solving the system of equations (1.6)–(1.8),

when the nodes xβ are equally spaced. Here we use a similar method proposed by S.L.

Sobolev [28,26] for finding the coefficients of optimal quadrature formulas in the space

L
(m)
2 .

We use mainly the concept of discrete argument functions and operations on them.

The theory of discrete argument functions is given in [27,28]. For completeness we give

some definitions.

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h = 1/N , N = 1, 2, . . . .

Definition 3. The function ϕ(hβ) is a function of discrete argument if it is given on

some set of integer values of β.

Definition 4. The inner product of two discrete functions ϕ(hβ) and ψ(hβ) is given

by

[ϕ(hβ), ψ(hβ)] =

∞∑
β=−∞

ϕ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

Definition 5. The convolution of two functions ϕ(hβ) and ψ(hβ) is the inner product

ϕ(hβ) ∗ ψ(hβ) = [ϕ(hγ), ψ(hβ − hγ)] =

∞∑
γ=−∞

ϕ(hγ) · ψ(hβ − hγ).

Now we turn to our problem.

Suppose that Cβ = 0 when β < 0 and β > N . Using convolution, we write equalities

(1.6)–(1.8) as follows:

G(hβ) ∗ Cβ + d1 sin(hβ) + d2 cos(hβ) = ϕ(hβ), β = 0, 1, . . . , N, (2.1)

N∑
β=0

Cβ sin(hβ) = 0, (2.2)

N∑
β=0

Cβ cos(hβ) = 0, (2.3)

where G(hβ) is a function of discrete argument corresponding to the function G given

in (1.4).

Thus, we have the following problem.

Problem 6. Find the coefficients Cβ , β = 0, 1, . . . , N , and the constants d1, d2
which satisfy the system (2.1)–(2.3).

Further we investigate Problem 6 which is equivalent to Problem 1. Namely, instead

of Cβ we introduce the following functions

v(hβ) = G(hβ) ∗ Cβ , (2.4)

u(hβ) = v (hβ) + d1 sin(hβ) + d2 cos(hβ). (2.5)
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In such a statement it is necessary to express the coefficients Cβ by the function u(hβ).

For this we have to construct such an operator D(hβ) which satisfies the equality

D(hβ) ∗G(hβ) = δ(hβ),

where δ(hβ) is equal to 0 when β 6= 0 and is equal to 1 when β = 0, i.e., δ(hβ) is the

discrete delta-function.

The construction of the discrete analogue D(hβ) of the differential operator
d4

dx4
+

2
d2

dx2
+ 1is given in [16].

Following [16] we have:

Theorem 2.1 The discrete analogue of the differential operator
d4

dx4
+ 2

d2

dx2
+ 1 has

the form

D(hβ) = p


A1 λ

|β|−1
1 , |β| ≥ 2,

1 +A1, |β| = 1,

C +
A1

λ1
, β = 0,

(2.6)

where

p =
2

sinh− h cosh
, A1 =

4h2 sin4 hλ21
(λ21 − 1)(sinh− h cosh)2

, C =
2h cos 2h− sin 2h

sinh− h cosh
(2.7)

and

λ1 =
2h− sin 2h− 2 sinh

√
h2 − sin2 h

2(h cosh− sinh)
(2.8)

is a zero of the polynomial

Q2(λ) = λ2 +
2h− sin(2h)

sinh− h cosh
λ+ 1,

and |λ1| < 1 and h is a small parameter.

Theorem 2.2 The discrete analogue D(hβ) of the differential operator
d4

dx4
+2

d2

dx2
+1

satisfies the following equalities:

1) D(hβ) ∗ sin(hβ) = 0,

2) D(hβ) ∗ cos(hβ) = 0,

3) D(hβ) ∗ (hβ) sin(hβ) = 0,

4) D(hβ) ∗ (hβ) cos(hβ) = 0,

5) D(hβ) ∗G(hβ) = δ(hβ).

Then, taking into account (2.5) and Theorems 2.1, 2.2, for optimal coefficients we

have

Cβ = D(hβ) ∗ u(hβ). (2.9)

Thus, if we find the function u(hβ) then the coefficients Cβ can be obtained from

equality (2.9). In order to calculate the convolution (2.9) we need a representation
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of the function u(hβ) for all integer values of β. From equality (2.1) we get that

u(hβ) = ϕ(hβ) when hβ ∈ [0, 1]. Now we need to find a representation of the function

u(hβ) when β < 0 and β > N .

Since Cβ = 0 when hβ /∈ [0, 1] then Cβ = Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1]. We

calculate now the convolution v(hβ) = G(hβ) ∗ Cβ when β ≤ 0 and β ≥ N .

Supposing β ≤ 0 and taking into account equalities (1.4), (2.2), (2.3), we have

v(hβ) =

∞∑
γ=−∞

Cγ G(hβ − hγ)

=

N∑
γ=0

Cγ
sign(hβ − hγ)

4

(
sin(hβ − hγ)− (hβ − hγ) cos(hβ − hγ)

)

= −1

4

N∑
γ=0

Cγ

{
sin(hβ) cos(hγ)− cos(hβ) sin(hγ)− (hβ)

[
cos(hβ) cos(hγ)

+ sin(hβ) sin(hγ)

]
+ (hγ)

[
cos(hβ) cos(hγ) + sin(hβ) sin(hγ)

]}
= −1

4
cos(hβ)

N∑
γ=0

Cγ(hγ) cos(hγ)− 1

4
sin(hβ)

N∑
γ=0

Cγ(hγ) sin(hγ).

Denoting b1 = 1
4

∑N
γ=0 Cγ(hγ) sin(hγ) and b2 = 1

4

∑N
γ=0 Cγ(hγ) cos(hγ) we get for

β ≤ 0

v(hβ) = −b1 sin(hβ)− b2 cos(hβ).

and for β ≥ N
v(hβ) = b1 sin(hβ) + b2 cos(hβ).

Now, setting

d−1 = d1 − b1, d−2 = d2 − b2, d+1 = d1 + b1, d
+
2 = d2 + b2

we formulate the following problem:

Problem 7. Find the solution of the equation

D(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1], (2.10)

in the form:

u(hβ) =


d−1 sin(hβ) + d−2 cos(hβ), β ≤ 0,

ϕ(hβ), 0 ≤ β ≤ N,

d+1 sin(hβ) + d+2 cos(hβ), β ≥ N.

(2.11)

where d−1 , d−2 , d+1 , d+2 are unknown coefficients.

It is clear that

d1 =
1

2

(
d+1 + d−1

)
, d2 =

1

2

(
d+2 + d−2

)
, (2.12)

b1 =
1

2

(
d+1 − d

−
1

)
, b2 =

1

2

(
d+2 − d

−
2

)
.
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These unknowns d−1 , d−2 , d+1 , d+2 can be found from equation (2.10), using the

function D(hβ). Then the explicit form of the function u(hβ) and coefficients Cβ , d1,

d2 can be found. Thus, Problem 7 and respectively Problems 3 and 1 can be solved.

In the next section we realize this algorithm for computing the coefficients Cβ ,

β = 0, 1, . . . , N , d1 and d2 of the interpolation spline (1.5) for any N = 1, 2, . . . .

3 Computation of coefficients of the interpolation spline

In this section using the algorithm from the previous section we obtain explicit formulae

for coefficients of interpolation spline (1.5) which is the solution of Problem 1.

It should be noted that the interpolation spline (1.5), which is the solution of

Problem 1, is exact for the functions sin(x) and cos(x).

Theorem 3.1 Coefficients of interpolation spline (1.5) which minimizes the semi-

norm (1.2) with equally spaced nodes in the space K2(P2) have the following form:

C0 = Cpϕ(0) + p[ϕ(h)− d−1 sinh+ d−2 cosh] +
A1p

λ1

 N∑
γ=0

λγ1ϕ(hγ) +M1 + λN1 N1

 ,
Cβ = Cpϕ(hβ) + p[ϕ(h(β − 1)) + ϕ(h(β + 1))]

+
A1p

λ1

 N∑
γ=0

λ
|β−γ|
1 ϕ(hγ) + λβ1M1 + λN−β1 N1

 , β = 1, 2, . . . , N − 1,

CN = Cpϕ(1) + p[ϕ(h(N − 1)) + d+1 sin(1 + h) + d+2 cos(1 + h)]

+
A1p

λ1

 N∑
γ=0

λN−γ1 ϕ(hγ) + λN1 M1 +N1

 ,
d1 =

1

2
(d+1 + d−1 ), d2 =

1

2
(d+2 + d−2 ),

where p, A1, C and λ1 are defined by (2.7), (2.8),

M1 =
λ1[d−2 (cosh− λ1)− d−1 sinh]

λ21 − 2λ1 cosh+ 1
, (3.1)

N1 =
λ1[d+2 (cos(1 + h)− λ1 cos 1) + d+1 (sin(1 + h)− λ1 sin 1)]

λ21 − 2λ1 cosh+ 1
, (3.2)

and d+1 , d−1 , d+2 , d−2 are defined by (3.3) and (3.9).

Proof First we find the expressions for d−2 and d+2 . When β = 0 and β = N , from

(2.11) we get

d−2 = ϕ(0), d+2 =
ϕ(1)

cos 1
− d+1 tan 1. (3.3)

Now we have two unknowns d−1 and d+1 , which can be found from (2.10) when β = −1

and β = N + 1.
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Taking into account (2.11) and Definition 2.3 from (2.10) we have

−1∑
γ=−∞

D(hβ − hγ)[d−1 sin(hγ) + d−2 cos(hγ)] +

N∑
γ=0

D(hβ − hγ)ϕ(hγ)

+

∞∑
γ=N+1

D(hβ − hγ)[d+1 sin(hγ) + d+2 cos(hγ)] = 0,

where β < 0 and β > N .

Hence for β = −1 and β = N + 1 we get the following system of equations for

d−1 , d
+
1 , d

−
2 , d

+
2 :

−1∑
γ=−∞

D(hβ − hγ)[d−1 sin(hγ) + d−2 cos(hγ)] +

N∑
γ=0

D(hβ − hγ)ϕ(hγ)

+

∞∑
γ=N+1

D(hβ − hγ)[d+1 sin(hγ) + d+2 cos(hγ)] = 0,

where β < 0 and β > N .

Hence for β = −1 and β = N + 1 we get the following system of linear equations for

d−1 , d
+
1 , d

−
2 , d

+
2 :

−d−1
∞∑
γ=1

D(hγ − h) sin(hγ) + d−2

∞∑
γ=1

D(hγ − h) cos(hγ) (3.4)

+ d+1

∞∑
γ=1

D(h(N + γ) + h) sin(1 + hγ)

+ d+2

∞∑
γ=1

D(h(N + γ) + h) cos(1 + hγ)

= −
N∑
γ=0

D(hγ + h)ϕ(hγ),

−d−1
∞∑
γ=1

D(h(N + γ) + h) sin(hγ) + d−2

∞∑
γ=1

D(h(N + γ) + h) cos(hγ) (3.5)

+ d+1

∞∑
γ=1

D(hγ − h) sin(1 + hγ)

+ d+2

∞∑
γ=1

D(hγ − h) cos(1 + hγ)

= −
N∑
γ=0

D(h(N + 1)− hγ)ϕ(hγ).

Since |λ1| < 1, the series in the previous systemof equations are convergent.

Using (3.3) and taking into account (2.6), after some calculations and simplifica-

tions, from (3.4) and (3.5) we obtain

B11d
−
1 +B12d

+
1 = T1, B21d

−
1 +B22d

+
1 = T2,
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where

B11 = λ1 sinh, B12 = −
λN+1
1 sinh

cos 1
, B21 = λN+1

1 sinh, B22 = −λ1 sinh

cos 1
, (3.6)

T1 =
2hλ1 sin2 h

h cosh− sinh

N∑
γ=0

λγ1ϕ(hγ)

+(λ1 cosh− 1)ϕ(0) + λN+1
1 (cosh− λ1 − tan 1 sinh)ϕ(1), (3.7)

T2 =
2hλ1 sin2 h

h cosh− sinh

N∑
γ=0

λN−γ1 ϕ(hγ)

+λN+1
1 (cosh− λ1)ϕ(0) + (λ1 cosh− 1− λ1 tan 1 sinh)ϕ(1). (3.8)

Hence, we get

d−1 =
T1B22 − T2B12

B11B22 −B12B21
, d+1 =

T2B11 − T1B21

B11B22 −B12B21
. (3.9)

Combaining (2.12), (3.3) and (3.9) we obtain d1 and d2 wich are given in the statemant

of Theorem 3.1.

Now, we calculate the coefficients Cβ , β = 0, 1, . . . , N . Taking into account (2.11)

from (2.9) for Cβ we get

Cβ = D(hβ) ∗ u(hβ)

=

∞∑
γ=−∞

D(hβ − hγ)u(hγ)

=

∞∑
γ=1

D(hβ + hγ)[−d−1 sin(hγ) + d−2 cos(hγ)] +

N∑
γ=0

D(hβ − hγ)ϕ(hγ)

+

∞∑
γ=1

D(h(N + γ)− hβ)[d+1 sin(1 + hγ) + d+2 cos(1 + hγ)],

from which, using (2.6) and taking into account notations (3.1), (3.2), when β =

0, 1, . . . , N , for Cβ we obtain the expressions given in Theorem 3.1.

4 Numerical results

In this section, in numerical examples, we compare the interpolation spline (1.5) with

the natural cubic spline (D2-spline) in the same points. For these splines we use the

notations

S(x) ≡ SN (f ;x) and Scubic(x) ≡ Scubic
N (f ;x),

respectively, and we calculate the the corresponding absolute errors

eN (f ;x) := |f(x)− SN (f ;x)| and ecubicN (f ;x) := |f(x)− Scubic
N (f ;x)|.
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It is known (see, for instance, [2,6,9,18,19,21,30]) that the natural cubic spline

minimizes the integral
∫ 1
0

(ϕ′′(x))2dx in the Sobolev space L
(2)
2 (0, 1) of functions with a

square integrable 2nd generalized derivative. In numerical examples we use the standard

Maple function “spline(X,Y,x,cubic)” for calculating the natural cubic spline.

In our examples we apply the interpolation spline (1.5) and the natural cubic spline

to approximate the functions

f1(x) = tanx and f2(x) =
313x4 − 6900x2 + 15120

13x4 + 660x2 + 15120

on [0, 1].

Thus, using Theorem 3.1 and the standard Maple function “spline(X,Y,x,cubic)”,

with N = 5 and N = 10, we get the corresponding interpolation splines SN (fk;x), and

Scubic
N (fk;x), for f(x) = fk(x), k = 1, 2.

The corresponding absolute errors eN (fk;x) and ecubicN (fk;x) for these approxima-

tions are displayed in Figures 4.1 and 4.2 for functions f = f1 and f = f2, respectively.

Fig. 4.1 Graphs of absolute errors eN (f1;x) and ecubicN (f1;x) for N = 5 (top) and N = 10
(bottom)

In the first example (f = f1) the results are quite similar, but in the second

case the approximation by SN (f2;x) is much better than the approximation by the

corresponding cubic spline Scubic
N (f2;x), because f2(x) is a rational approximation for

the function cosx (cf. [15, p. 66]), and the interpolation spline SN (f2;x) is exact for

the trigonometric functions sinx and cosx.
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Fig. 4.2 Graphs of absolute errors eN (f2;x) and ecubicN (f2;x) for N = 5 (top) and N = 10
(bottom)

Finally, it should be noted that we used these functions f1(x) and f2(x) to test an

optimal quadrature formula in the sense of Sard in the space K2(P2),

I(ϕ) :=

∫ 1

0

ϕ(x) dx ∼=
N∑
ν=0

Cνϕ(xν) =: QN (ϕ), (4.1)

which have been constructed recently in our paper [17]. The weight coefficients in (4.1)

are

C0 = CN =
2 sinh− (h+ sinh) cosh

(h+ sinh) sinh
+

h− sinh

(h+ sinh) sinh(1 + λN1 )

(
λ1 + λN−11

)
and

Cν =
4(1− cosh)

h+ sinh
+

2h(h− sinh) sinh

(h+ sinh)(h cosh− sinh)(1 + λN1 )

(
λν1 + λN−ν1

)
,

for ν = 1, . . . , N − 1, where λ1 is given as in Theorem 2.1, with |λ1| < 1.

In [17] we have obtained quadrature sums QN (f) =
N∑
ν=0

Cνf(xν) as approximations

of the integral I(f), taking N = 10, 100, and 1000. These approximate values we can

also obtain if we integrate our interpolation splines SN (f ;x) over (0, 1), i.e., QN (f) =

I(SN (f ;x)).
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According to Theorem 3.1, we find the interpolation splines SN (f ;x), given by

(1.5). For example, for N = 1, 2, 3, we have:

Case N = 1:

S1(f ;x) = d1 sinx+ d2 cosx,

where

d1 = −0.6420926134 f(0) + 1.188395105 f(1)

d2 = f(0);

Case N = 2:

S2(f ;x) =

2∑
β=0

CβG(x− hβ) + d1 sinx+ d2 cosx,

where

C0 = 12.6159872 f(0)− 22.14314029 f(1/2) + 12.61598692 f(1),

C1 = −22.14314054 f(0) + 38.8648702 f(1/2)− 22.14314053 f(1),

C1 = 12.6159872 f(0)− 22.14314029 f(1/2) + 12.61598692 f(1),

d1 = −1.038130553f(0) + 0.6951119199 f(1/2) + 0.7923572208 f(1),

d2 = 0.2750574804 f(0) + 1.272393834 f(1/2)− 0.7249425490 f(1);

Case N = 3:

S3(f ;x) =

3∑
β=0

CβG(x− hβ) + d1 sinx+ d2 cosx,

where

C0 = 44.237493 f(0) − 94.7879290 f(1/3) + 65.37216114 f(2/3) − 11.18287316 f(1),

C1 = −94.7879264 f(0) + 244.513164 f(1/3) − 218.3356748 f(2/3) + 65.37216058 f(1),

C2 = 65.37216057 f(0) − 218.3356748 f(1/3) + 244.513164 f(2/3) − 94.7879264 f(1),

C4 = −11.18287317 f(0) + 65.37216115 f(1/3) − 94.7879286 f(2/3) + 44.237493 f(1),

d1 = = −1.913065961 f(0) + 2.741871157 f(1/3) − 1.913243332 f(2/3) + 1.528235894 f(1),

d2 = 0.5877825293 f(0) − 1.292209243 f(1) − 0.5131537868f(1/3) + 2.029946851 f(2/3).

Integrating these splines S1(f ;x), S2(f ;x), and S3(f ;x) we get the optimal quadra-

ture formulas of the form (4.1), with N = 1, 2, 3 respectively.
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