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a b s t r a c t

In this paper, we consider the evaluation of two kinds of oscillatory integrals with a Hankel

function as kernel. We first rewrite these integrals as the integrals of Fourier-type. By analytic

continuation, these Fourier-type integrals can be transformed into the integrals on [0, +�),

the integrands of which are not oscillatory, and decay exponentially fast. Consequently, the

transformed integrals can be efficiently computed by using the generalized Gauss–Laguerre

quadrature rule. Moreover, the error analysis for the presented methods is given. The efficiency

and accuracy of the methods have been demonstrated by both numerical experiments and

theoretical results.
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1. Introduction

In this paper, we are concerned with the numerical approximation of the integrals with a highly oscillatory Hankel kernel of

the form

I1[ f ] =
∫ b

a

f (x)H(1)
ν (ωx)dx and I2[ f ] =

∫ +∞

a

f (x)H(1)
ν (ωx)dx, (1.1)

where H(1)
ν (x) = Jν(x)+ iYν(x) is Hankel function of the first kind of order ν , ω � 1 and b > a > 0. The integrals (1.1) play an

important role in many areas of science and engineering, such as astronomy, optics, quantum mechanics, seismology image

processing, electromagnetic scattering, such as [3,4,11,17].

For large values of ω, the integrands become highly oscillatory, and the efficient and reliable numerical evaluation of the

integrals is problematic. Moreover, a prohibitively number of quadrature nodes are needed to obtain satisfied accuracy if one uses

classical numerical methods like Simpson rule, Gaussian quadrature, etc. In the last few years, many efficient methods have been

devised for the integral
∫ b

a f (x)H(1)
ν (ωx)dx, such as Levin method [20,21], Levin-type method [25], modified Clenshaw–Curtis

method [26], generalized quadrature rule [12,13], Filon-type method [30], Clenshaw–Curtis–Filon-type method [31], Gauss–

Laguerre quadrature [5,6]. However, only a few methods to evaluate the integral
∫ ∞

a f (x)H(1)
ν (ωx)dx have been proposed. For the

latest references, we refer the readers to [7,8] for a more general review.

All above-mentioned methods share the property that the larger the ω, the higher the accuracy. The goal of this paper

is to explore efficient and high order methods for the integrals (1.1) based on the idea of complex integration method (see
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Milovanović [23], Huybrechs and Vandewalle [16] and Chen [5,6]), which can also be applied to the computation of highly

oscillatory Cauchy principal value integrals and highly oscillatory integrals with algebraic singularities [18,19,27,28,32].

An outline of this paper is as follows. In Section 2, we present the details of the proposed methods for computing the integrals

(1.1). Meanwhile, error analysis for the presented methods is discussed. In Section 3, several numerical examples are given to

show the efficiency and accuracy of presented methods.

2. Numerical schemes for the integrals

Thanks to the identity [15, p. 915]

H(1)
ν (ωx) =

√
2

πωx

ei(ωx− π
2 ν− π

4 )

�(ν + 1
2
)

∫ +∞

0

(
1 + it

2ωx

)ν− 1
2

tν− 1
2 e−tdt, x > 0, (2.1)

we can rewrite the integrals (1.1) in the following form

I1[ f ] =
√

2

πω

e−iπ(2ν+1)/4

�(ν + 1
2
)

∫ b

a

f (x)x− 1
2 eiωx

[ ∫ +∞

0

(
1 + it

2ωx

)ν− 1
2

tν− 1
2 e−tdt

]
dx

=
√

2

πω

e−iπ(2ν+1)/4

�(ν + 1
2
)

∫ b

a

f (x)x− 1
2 g(x)eiωxdx, (2.2)

and

I2[ f ] =
√

2

πω

e−iπ(2ν+1)/4

�(ν + 1
2
)

∫ +∞

a

f (x)x− 1
2 eiωx

[ ∫ +∞

0

(
1 + it

2ωx

)ν− 1
2

tν− 1
2 e−tdt

]
dx

=
√

2

πω

e−iπ(2ν+1)/4

�(ν + 1
2
)

∫ +∞

a

f (x)x− 1
2 g(x)eiωxdx, (2.3)

where

g(x) =
∫ +∞

0

(
1 + it

2ωx

)ν− 1
2

tν− 1
2 e−tdt. (2.4)

From Eqs. (2.2) and (2.3), we can see that the integrals (1.1) are transformed into the integrals of Fourier form, which can

be evaluated by complex integration method and quadrature rules of Gaussian type. In what follows, we will focus on the fast

computation of the integrals (1.1) and error analysis for the presented methods.

2.1. The evaluation of the integral I1[f]

For the calculation of the integral I1[ f], we first assume that f is an analytic function in the half-strip of the complex plane,

a ≤ Re(z) ≤ b, Im(z) ≥ 0, and there exists two constants C and ω0, such that |f (x + iR)| ≤ Ceω0R, a � x � b, with 0 < ω0 < ω.

Following the ideas of [5,16,23], consider the contour as shown in Fig. 1 for the integral (2.2), and let D denote the region

D = {z ∈ C | a ≤ Re(z) ≤ b, 0 ≤ Im(z) ≤ R}.
Since the integrand

F(z) = f (z)z− 1
2 g(z) (2.5)

is analytic in the region D, by the Cauchy Residue Theorem [1], we have∫
�1∪�2∪�3∪�4

F(z)eiωzdz = 0, (2.6)

with all the contours taken in the counterclockwise direction.

For the integral over the contour �2, we have∫
�2

F(z)eiωzdz = i

∫ R

0

F(b + ip)eiω(b+ip)dp

= ieiωb

∫ R

0

F(b + ip)e−ωpdp

= ieiωb

ω

∫ ωR

0

F
(

b + ip

ω

)
e−pdp. (2.7)
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Fig. 1. The integration paths for the integral (2.2).
Similarly, for the integral over the contour �4, there holds∫
�4

F(z)eiωzdz = i

∫ 0

R

F(a + ip)eiω(a+ip)dp

= ieiωa

∫ 0

R

F(a + ip)e−ωpdp

= − ieiωa

ω

∫ ωR

0

F
(

a + ip

ω

)
e−pdp. (2.8)

For the integral over the contour �3, we evaluate
∫
�3

F(z)eiωzdz by letting z = x + iR, x � [a, b], then it yields that∫
�3

F(z)eiωzdz =
∫ a

b

F(x + iR)eiω(x+iR)dx

= e−ωR

∫ a

b

F(x + iR)eiωxdx. (2.9)

It follows from the analytic continuation of (2.4) to D, there exists some constant M, such that |z− 1
2 g(z)| ≤ M, so that for z � �3,

|F(z)eiωz| = |f (z)| · |z−1/2g(z)| · |eiωz| ≤ |f (x + iR)| · M · e−ωR ≤ CMe−(ω−ω0)R.

Thus, from (2.9) it follows∣∣∣∣ ∫
�3

F(z)eiωzdz

∣∣∣∣≤ ∫
�3

|F(z)eiωz| · |dz| ≤ CMe−(ω−ω0)R(b − a).

Since ω0 < ω, we conclude that∫
�3

F(z)eiωzdz → 0 as R → +∞. (2.10)

Now, according to (2.6), we have

I1[ f ] =
∫ b

a

f (x)H(1)
ν (ωx)dx =

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) ∫
�1

F(z)eiωzdz

= −
√

2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) ∫
�2∪�3∪�4

F(z)eiωzdz.

Taking R → +� and using (2.7), (2.8), and (2.9), the previous equality reduces to

I1[ f ] = i

ω

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

) (G(a)− G(b)), (2.11)
2
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where

G(c) = eiωc

∫ +∞

0

F
(

c + i

ω
t
)

e−tdt.

According to (2.4) and using (2.5), we get

G(c) = eiωc

∫ +∞

0

∫ +∞

0

f
(
c + i

ω t
)(

c + i
ω t

)1/2

(
1 + is

2ω
(
c + i

ω t
))ν−1/2

sν−1/2e−t−sdsdt,

i.e.,

G(c) = eiωc

∫ +∞

0

∫ +∞

0

f
(
c + i

ω t
)(

c + i
ω t

)ν (
c + i

ω
t + i

2ω
s

)ν−1/2

sν−1/2e−t−sdsdt. (2.12)

In order to calculate G(c) (for c = a and c = b), we can apply two Gaussian quadratures∫ b�

a�

h(x)w�(x)dx =
n∑

k=1

A(�)
n,k

h
(
x(�)

n,k

) + R(�)
n [h], � = 1, 2, (2.13)

where x(�)
n,k

and A(�)
n,k

, k = 1, . . . , n, are the nodes and the Christoffel numbers, respectively.

It is known that the nodes x(�)
n,k

are eigenvalues of the following symmetric tridiagonal Jacobi matrix

Jn(w�) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(�)
0

√
β(�)

1 O√
β(�)

1 α(�)
1

√
β(�)

2√
β(�)

2 α(�)
2

. . .

. . .
. . .

√
β(�)

n−1

O
√

β(�)
n−1 α(�)

n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.14)

and the weight coefficients A(�)
n,k

are given by

A(�)
n,k

= β(�)
0 v2

k,1, k = 1, . . . , n,

where vk, 1 is the first component of the eigenvector vk ( = [vk, 1 . . . vk, n]T) corresponding to the eigenvalue x(�)
n,k

and normalized

such that vT
k
vk = 1 (cf. [22, p. 100]). Here, α(�)

k
and β(�)

k
are recursive coefficients in the three-term recurrence relation for monic

orthogonal polynomials with respect to the weight function w� on (a�, b�),

π(�)
k+1

(x) = (
x − α(�)

k

)
π(�)

k
(x)− β(�)

k
π(�)

k−1
(x), k = 0, 1, . . . , (2.15)

with π(�)
0 (x) = 1, π(�)

−1(x) = 0, and the coefficient β(�)
0 is taken so that β(�)

0 ≡ ∫ b�

a�
w�(x)dx. The most popular method for solving

the eigenvalue problem for (2.14) is the Golub–Welsch procedure, obtained by a simplification of QR algorithm [14]. Thus, when

recursive coefficients in (2.15) are known, then the construction of a Gaussian formula is a very easy task.

The quadrature formulas (2.13), with respect to the weight functions w�, � = 1, 2, provide an approximation Qn, m[u] for double

integrals of the form∫ b1

a1

∫ b2

a2

u(x, y)w1(x)w2(y)dxdy ≈ Qn1,n2
[u] =

n1∑
k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

u
(
x(1)

n1,k
, x(2)

n2,j

)
. (2.16)

For calculating (2.12), we can take a1 = a2 = 0, b1 = b2 = +�, w1(t) = e−t (Laguerre weight), and w2(s) = sν − 1/2e−s (generalized

Laguerre weights), with the recursion coefficients

α(1)
k

= 2k + 1, β(1)
0 = 1, β(1)

k
= k2;

α(2)
k

= 2k + ν + 1

2
, β(2)

0 = �

(
ν + 1

2

)
, β(2)

k
= k

(
k + ν − 1

2

)
.

According to (2.12), we can introduce the function ϕ(·, ·; c) by

ϕ(t, s; c) = eiωc
f
(
c + i

ω t
)(

c + i
ω t

)ν (
c + i

ω
t + i

2ω
s

)ν−1/2

, (2.17)

then the numerical method for the evaluation of the integral (2.2) can be denoted by

Qn1,n2
[ f ] = i

ω

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) n1∑
k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

(
ϕ

(
x(1)

n1,k
, x(2)

n2,j
; a

) − ϕ
(
x(1)

n1,k
, x(2)

n2,j
; b

))
, (2.18)
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where x(1)
n1,k

and A(1)
n1,k

denote the nodes and weights of the n1-point Gauss–Laguerre quadrature rule, and x(2)
n2,j

and A(2)
n2,j

denote

the nodes and weights of the n2-point generalized Gauss–Laguerre quadrature rule with the weight function w2(s) = sν − 1/2e−s.

Theorem 2.1. Suppose that f is an analytic function in the half-strip of the complex plane, a ≤ Re(z) ≤ b, Im(z) ≥ 0, and there exist

two constants C and ω0, such that |f (x + iR)| ≤ Ceω0R, a � x � b, with 0 < ω0 < ω. Then the error bound of the method (2.18) for the

integral (2.2) is given by

I1[ f ] − Qn1,n2
[ f ] = O(ω− 3

2 −2τ ), ω � 1, (2.19)

where τ = min {n1, n2}.

Proof. The error of the n-point generalized Gauss–Laguerre quadrature rule applied to the integral
∫ +∞

0 h(x)xαe−xdx, α > −1 is

given by the following formula (cf. [10, p. 223])

En[h] = n!�(n + α + 1)

(2n)!
h(2n)(ξ), 0 < ξ < +∞.

According to this formula, we have

G(a)−
n1∑

k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

ϕ
(
x(1)

n1,k
, x(2)

n2,j
; a

)
=

∫ +∞

0

∫ +∞

0

ϕ(t, s; a)sν−1/2e−t−sdsdt −
n1∑

k=1

A(1)
n1,k

∫ +∞

0

ϕ
(
x(1)

n1,k
, s; a

)
sν−1/2e−sds

+
⎛⎝ n1∑

k=1

A(1)
n1,k

∫ +∞

0

ϕ
(
x(1)

n1,k
, s; a

)
sν−1/2e−sds −

n1∑
k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

ϕ
(
x(1)

n1,k
, x(2)

n2,j
; a

)⎞⎠
= (n1!)2

(2n1)!

d2n1

dtn1

{∫ +∞

0

ϕ(t, s; a)sν−1/2e−sds

} ∣∣∣∣
t=ξ1

+
n1∑

k=1

A(1)
n1,k

(n2!)�
(
n2 + ν + 1

2

)
(2n2)!

d2n2

dsn2
{ϕ(

x(1)
n1,k

, s; a
)}∣∣∣∣

s=ξ2

= (n1!)2

(2n1)!
O(ω−2n1)+ n2!�

(
n2 + ν + 1

2

)
(2n2)!

n1∑
k=1

A(1)
n1,k

O(ω−2n2)

= O(ω−2τ ), (2.20)

where τ = min {n1, n2} and ξ 1, ξ 2 � (0, +�).

By the same argument, we can easily get

G(b)−
n1∑

k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

ϕ
(
x(1)

n1,k
, x(2)

n2,j
; a

) = O(ω−2τ ). (2.21)

A combination of Eqs. (2.11), (2.18), (2.20), (2.21) leads to desired result. �

Remark 1. An alternative expression for G(c) can be done by a transformation of the first quadrant of the (t, s)-plane to the

half-strip

S = {(τ , σ ) : 0 ≤ τ ≤ 1, 0 ≤ σ < +∞}, (2.22)

by taking t = στ , s = σ (1 − τ ), i.e.,

τ = t

t + s
, σ = t + s.

The corresponding Jacobian determinant is D(t, s)/D(τ , σ ) = σ , so that

G(c) = eiωc

∫ +∞

0

∫ 1

0

f
(
c + i

ωστ
)(

c + i
ωστ

)ν (
c + i

2ω
σ(1 + τ)

)ν−1/2

σ ν+1/2e−σ (1 − τ)ν−1/2dτdσ . (2.23)

Similarly, by introduce the function

ϕ(σ , τ ; c) = eiωc
f
(
c + i

ωστ
)(

c + i
ωστ

)ν (
c + i

2ω
σ(1 + τ)

)ν−1/2

, (2.24)

we present another method for the integral (2.2) by the following formula

Q̂n1,n2
[ f ] = i

ω

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) n1∑
k=1

n2∑
j=1

A(3)
n1,k

A(4)
n2,j

(
ϕ

(
x(3)

n1,k
, x(4)

n2,j
; a

) − ϕ
(
x(3)

n1,k
, x(4)

n2,j
; b

))
, (2.25)



Z. Xu et al. / Applied Mathematics and Computation 261 (2015) 312–322 317

Fig. 2. The integration paths for the integral (2.3).
where x(3)
n1,k

and A(3)
n1,k

denote the nodes and weights of the n1-point generalized Gauss–Laguerre quadrature rule with the weight

function σν + 1/2e−σ on (0, +�), and x(4)
n2,j

and A(4)
n2,j

denote the nodes and weights of the n2-point Gaussian quadrature rule with

shifted Jacobi weight, (1 − τ )ν − 1/2 on (0, 1). The corresponding recursion coefficients are

α(3)
k

= 2k + ν + 3

2
, β(3)

0 = �

(
ν + 3

2

)
, β(3)

k
= k

(
k + ν + 1

2

)
;

α(4)
k

= 2[4k2 + 2(2ν + 1)k + 2ν − 1]

(4k + 2ν − 1)(4k + 2ν + 3)
, β(4)

0 = 2

2ν + 1
, β(4)

k
= 4k2(2k + 2ν − 1)2

(4k + 2ν − 3)(4k + 2ν − 1)2(4k + 2ν + 1)
.

2.2. The evaluation of the integral I2[f].

In this section, we suppose that f is an analytic function in the complex plane {0 ≤ arg(z) ≤ π
2 }, and there exists some constant

C1, such that |f(z)| � C1 as |z| → +�.

According to the idea of [23], we adopt the integration paths as shown in Fig. 2 to derive the desired result. Noting that

F(z) = f (z)z− 1
2 g(z) is analytic in the complex plane {0 ≤ arg(z) ≤ π

2 }, from Cauchy Residue Theorem [1], we have∫
�1∪�2∪�3

F(z)eiωzdz = 0, (2.26)

For the integral over the contour �3, it is easy to show that∫
�3

f (z)z− 1
2 g(z)eiωzdz = − ieiωa

ω

∫ ωR

0

F

(
a + ip

ω

)
e−pdp. (2.27)

For the integral over the contour �2, setting

z − a = Reiθ , 0 ≤ θ ≤ π

2
,

derives∫
�2

F(z)eiωzdz = iR

∫ π/2

0

eiθ F(a + Reiθ )eiω(a+Reiθ )dθ . (2.28)

Using the well-known inequality [1]

2θ

π
≤ sin(θ), 0 ≤ θ ≤ π

2
,

and the fact that |f(z)| � C1, |g(z)| � C2 for some constat C2, yields∣∣∣∣ ∫
�

F(z)eiωzdz

∣∣∣∣ ≤ RC1C2

|R − a|1/2

∫ π/2

0

e−(2/π)ωRθ dθ = πC1C2

2ω|R − a|1/2
(1 − e−ωR) → 0, (2.29)
2
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when R → +�. By means of Eqs. (2.26)–(2.27) and (2.29), when R → +�, we obtain∫ +∞

a

f (x)H(1)
ν (ωx)dx =

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) lim
R→+∞

∫
�1

F(z)eiωzdz

= −
√

2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) lim
R→+∞

∫
�2∪�3

F(z)eiωzdz

= i

ω

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) G(a), (2.30)

where G(a) is denoted by (2.12).

Then, the numerical method for the evaluation of the integral (2.3) can be denoted by

Qn1,n2
[ f ] = i

ω

√
2

πω

e−iπ(2ν+1)/4

�
(
ν + 1

2

) n1∑
k=1

n2∑
j=1

A(1)
n1,k

A(2)
n2,j

ϕ
(
x(1)

n1,k
, x(2)

n2,j
; a

)
. (2.31)

where x(1)
n1,k

and A(1)
n1,k

denote the nodes and weights of the n1-point Gauss–Laguerre quadrature rule, and x(2)
n2,j

, A(2)
n2,j

denote the

nodes and weights of the n2-point generalized Gauss–Laguerre quadrature rule with the weight function sν − 1/2e−s.

Theorem 2.2. Suppose that f is an analytic function in the complex plane {0 ≤ arg(z) ≤ π
2 }, and there exists some constant C1, such

that |f(z)| � C1 as |z| → +�. Then the error bound of the method (2.31) for the integral (2.3) is given by

I2[ f ] − Qn1,n2
[ f ] = O(ω− 3

2 −2τ ), ω � 1, (2.32)

where τ = min {n1, n2}.

Proof. The proof of this result is quite similar to Theorem 2.1 and so is omitted. �

Remark 2. We can also obtain (2.30) by letting b → +� in I1[f]. In order to do it, we use the expression for G(b) given

by (2.23) and a simple crude estimate of (2.24) on the half-strip S, defined by (2.22). Under conditions for a function f given in

Theorem 2.1, we note that |f (b + i(στ/ω)| ≤ Ce(ω0/ω)σ , with 0 < ω0 < ω. Then

|ϕ(σ , τ ; b)| = |f (b + i στ
ω

)|√
b

·
(
1 + ( σ(1+τ)

2ωb

)2)(2ν−1)/4(
1 + (

στ
ωb

)2)ν/2
<

Ce(ω0/ω)σ

√
b

(
1 +

( σ

ωb

)2
)m

,

where m is a nonnegative number which depends on ν . For example, for ν > 1/2 we can take m = [(2ν − 1)/4] + 1 ([x] denotes

the integer part of x), and m = 0 for 0 < ν � 1/2.

Since

|G(b)| ≤
∫ +∞

0

∫ 1

0

|ϕ(σ , τ ; b)|σ ν+1/2e−σ (1 − τ)ν−1/2dτdσ

<
2C

(2ν + 1)
√

b

∫ +∞

0

(
1 +

( σ

ωb

)2
)m

σ ν+1/2e−(ω−ω0)σ /ωdσ

= 2C

(2ν + 1)
√

b

(
ω

ω − ω0

)ν+3/2 m∑
k=0

(
m

k

)�
(

2k + ν + 3
2

)
(ω − ω0)2kb2k

→ 0,

when b → +�, we conclude that (2.30) holds.

Remark 3. In [29], Xiang considered the convergence rate of Gauss–Laguerre-type quadrature for the integral I[ f ] =∫ +∞
0 xαe−xf (x)dx, α > −1. Suppose that f, f′, . . . , f(k − 1) are absolutely continuous in [0, +�) and satisfy for j = 0, 1, . . . , k

for some k � 1 that

lim
x→+∞ ex/2x1+j+α f (j)(x) = 0, and V =

(∫ +∞

0

x1+k+αe−x[ f (k+1)(x)]2dx

)1/2

< +∞,

then the convergence rate of Gauss–Laguerre-type quadrature satisfies

I[ f ] − QGL
N [ f ] = O(N−(k−1−|α|)/2).

From this formula, we can see that the presented methods in this paper are uniformly convergent in n1 and n2 for fixed ω.

Remark 4. Based on the asymptotic series of Whittaker functions [2], Chen [6] presented two methods for the evaluation of

the integrals (1.1) by using the complex integration method. For convenience, let n1 denote the number of the nodes of Gauss–

Laguerre quadrature rule, and n2 denote the number of terms truncated of the series in Whittaker functions. Then the method for

the first integral in [6] can be denoted by QS

n ,n ,H
(1)[ f ], and method for the second integral in (1.1) can be denoted by Q

S

n1,n2,H
(1)
ν

[ f ].

1 2 ν
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Table 1

Relative errors for the integral (3.3) by the presented method Qn1 ,n2
[ f ] and the method

Q
S

n1 ,n2 ,H(1)
ν

[ f ] in [6] with n1 = n2 = 1, 2, 3, 4 for different ω.

ω = 25 ω = 50 ω = 100 ω = 200 ω = 400

Q1,1[ f ] 3.22 (−3) 8.06 (−4) 2.02 (−4) 5.04 (−5) 1.26 (−5)

Q
S

1,1,H(1)
ν

[ f ] 1.23 (−2) 3.90 (−3) 7.75 (−4) 1.94 (−4) 4.85 (−5)

Q2,2[ f ] 6.35 (−6) 3.26 (−7) 1.90 (−8) 1.16 (−8) 7.24 (−11)

Q
S

2,2,H(1)
ν

[ f ] 2.08 (−4) 2.68 (−5) 3.37 (−6) 4.23 (−7) 5.29 (−8)

Q3,3[ f ] 9.29 (−8) 1.05 (−9) 1.27 (−11) 2.05 (−13) 3.88 (−15)

Q
S

3,3,H(1)
ν

[ f ] 3.48 (−6) 2.19 (−7) 1.37 (−8) 8.59 (−10) 5.37 (−11)

Q4,4[ f ] 2.32 (−9) 6.31 (−12) 1.46 (−12) 4.10 (−15) 2.77 (−16)

Q
S

4,4,H(1)
ν

[ f ] 1.52 (−7) 4.89 (−9) 1.54 (−10) 4.83 (−12) 1.51 (−13)

Table 2

Relative errors for the integral (3.4) by the presented method Qn1 ,n2
[ f ] and the method

QS

n1 ,n2 ,H(1)
ν

[ f ] in [6] with n1 = n2 = 1, 2, 3, 4 for different ω.

ω = 25 ω = 50 ω = 100 ω = 200 ω = 400

Q1, 1[f] 9.29 (−4) 4.13 (−4) 4.41 (−5) 1.45 (−5) 4.85 (−6)

QS

1,1,H(1)
ν

[ f ] 2.78 (−4) 2.64 (−4) 2.10 (−5) 9.21 (−6) 3.29 (−6)

Q2, 2[f] 2.63 (−6) 1.87 (−7) 6.11 (−9) 3.54 (−10) 2.58 (−11)

QS

2,2,H(1)
ν

[ f ] 1.47 (−5) 4.10 (−6) 1.85 (−7) 3.48 (−8) 6.11 (−9)

Q3, 3[f] 5.03 (−9) 8.99 (−11) 7.24 (−13) 3.19 (−13) 6.60 (−16)

QS

3,3,H(1)
ν

[ f ] 9.94 (−8) 1.59 (−8) 3.79 (−10) 3.59 (−11) 3.11 (−12)

Q4, 4[f] 7.67 (−12) 4.13 (−14) 8.84 (−14) 3.19 (−13) 5.49 (−16)

QS

4,4,H(1)
ν

[ f ] 2.31 (−9) 1.79 (−10) 2.15 (−12) 3.19 (−13) 4.29 (−15)
Both methods have the same error bound O(ω− 3
2

−min{2n1,n2+1}). For more details, one can refer to [6]. From Theorems 2.1–2.2,

we can see that the presented methods in this paper are of higher order error bounds than the methods in [6]. In Section 3,

we also present two examples to show that the methods in this paper are more efficient than the methods in [6] (see Tables 1

and 2).

3. Numerical examples

In what follows, we will test several examples to illustrate the qualities of the approximation provided by (2.18) and (2.31).

All computations were performed in Mathematica, Ver. 10.0.1, on MacBook Pro Retina, OS X 10.9.5, and alternatively using the

R2012a version of the Matlab system on a 2.50 GHz PC with 4 GB of RAM. In construction of Gaussian quadrature rules with

high precision, we use the Mathematica package OrthogonalPolynomials (cf. [9] and [24]), which is freely downloadable from

the web site http://www.mi.sanu.ac.rs/~gvm/.

In order to conduct the experiments, we require knowledge on the exact values of all the considered integrals I[f] (precisely,

I1[f] and I2[f]). The values that we assumed to be exact are computed in the Mathematica using the high precision arithmetic. In

order to show the asymptotic order on ω for the presented method, in some experiments we consider the scaled absolute errors

ω
3
2 +2 min{n1,n2}|I[ f ] − Qn1,n2

[ f ]|.
Example 3.1. Let us consider the integrals∫ 10

1

cos(x)H(1)
1 (ωx)dx and

∫ 2

1

1

1 + x2
H(1)

2 (ωx)dx (3.1)

by the method Qn1,n2
[ f ] with ω from 5 to 200.

The scaled absolute errors for the first integral in (3.1) are displayed in Fig. 3 (left) for certain selected number of nodes

(n1, n2) = (1, 2) (solid line), (2, 3) (dotted line), and (3, 4) (dashed line). Scaled absolute errors for inverted number of nodes

(n1, n2) = (2, 1), (3, 2), and (4, 3) are given in the same figure (right).

The corresponding graphics for the second integral in (3.1) are displayed in Fig. 4.

Example 3.2. Let us consider the integrals over (1, +�),∫ +∞

1

1

1 + x2
H(1)

3 (ωx)dx and

∫ +∞

1

cos x

x4
H(1)

2 (ωx)dx (3.2)

by the method Qn1,n2
[ f ] with ω from 5 to 200, Figs. 5–6 show the asymptotic order on ω for the presented method.

http://www.mi.sanu.ac.rs/~gvm/
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Fig. 3. Scaled absolute errors for the first integral in (3.1), obtained with (n1, n2) = (1, 2), (2, 3), (3, 4) (left) and with (n1, n2) = (2, 1), (3, 2), (4, 3) (right), when ω

runs over [5, 200].

Fig. 4. Scaled absolute errors for the second integral in (3.1), obtained with (n1, n2) = (1, 2), (2, 3), (3, 4) (left) and with (n1, n2) = (2, 1), (3, 2), (4, 3) (right), when

ω runs over [5, 200].

Fig. 5. Scaled absolute errors for the first integral in (3.2), obtained with (n1, n2) = (1, 3), (2, 3), (3, 4) (left) and with (n1, n2) = (3, 1), (3, 2), (4, 3) (right), when ω

runs over [5, 200].
Example 3.3. Let us consider the integral∫ +∞

1

e−x(x2 + 1)H(1)
3 (ωx)dx (3.3)

by the presented method Qn1,n2
[ f ] and the method Q

S

n1,n2,H
(1)
ν

[ f ] in [6] with n1 = n2 = 1, 2, 3, 4 (Table 1, numbers in parentheses

indicate decimal exponents).
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Fig. 6. Scaled absolute errors for the second integral in (3.2), obtained with (n1, n2) = (1, 2), (2, 3), (3, 4) (left) and with (n1, n2) = (2, 1), (3, 2), (4, 3) (right), when

ω runs over [5, 200].

Fig. 7. Real part (left) and imaginary part (right) of the integrand in (3.4) for ω = 50.

Table 3

Relative errors in calculating I(ω) for ω = 50, 100, 1000.

ω = 50 ω = 100 ω = 1000

n (2.18) (2.25) (2.18) (2.25) (2.18) (2.25)

1 4.13 (−4) 4.13 (−4) 4.41 (−5) 4.41 (−5) 1.16 (−6) 1.16 (−6)

2 1.87 (−7) 1.28 (−7) 6.11 (−9) 3.47 (−9) 4.78 (−13) 5.86 (−13)

3 8.99 (−11) 1.17 (−10) 6.82 (−13) 8.69 (−13) 5.39 (−19) 1.96 (−18)

4 7.18 (−14) 1.04 (−13) 3.88 (−17) 1.45 (−16) 3.09 (−24) 5.45 (−24)

5 1.46 (−16) 1.61 (−16) 5.91 (−20) 6.16 (−20) 1.72 (−29) 2.03 (−29)

6 8.19 (−19) 3.19 (−19) 8.35 (−23) 3.20 (−23) 2.89 (−34) 1.10 (−34)

7 6.87 (−21) 9.83 (−22) 1.82 (−25) 2.71 (−26) 6.33 (−39) 9.56 (−40)

8 7.59 (−23) 5.86 (−24) 5.24 (−28) 4.40 (−29)

9 1.05 (−24) 6.63 (−26) 1.90 (−30) 1.30 (−31)

10 1.75 (−26) 1.05 (−27) 8.42 (−33) 5.45 (−34)

11 3.43 (−28) 2.04 (−29) 4.43 (−35) 2.85 (−36)

12 7.76 (−30) 4.56 (−31) 2.72 (−37) 1.75 (−38)

13 2.00 (−31) 1.16 (−32) 1.92 (−39) 1.24 (−40)

14 5.79 (−33) 3.34 (−34)
Example 3.4. Let us consider the integral

I(ω) =
∫ 12

2

(
ex

1 + 100(x − 1/2)2
+ 6 cos(2x)

)
H(1)

3 (ωx)dx (3.4)

by the presented method Qn1,n2
[ f ] and the method QS

n1,n2,H
(1)
ν

[ f ] in [6] with n1 = n2 = 1, 2, 3, 4 (Table 2).

From Figs. 3–6 and Tables 1–2, we can see that the presented methods (2.18) and (2.31) are efficient for the evaluation of the

integrals (1.1) and the error bounds for both methods are attainable. Particularly, Tables 1–2 also show that the methods (2.18)
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and (2.31) are more efficient than the methods presented in [6]. In addition, more accurate approximations can be obtained as

ω increases for fixed n1, n2. For fixed ω, adding additional quadrature nodes can also result in more accurate approximations.
In the following we also consider the efficiency of the method (2.25) in calculating the integral I(ω) given by (3.4). For

ω = 50, 100, 1000, the exact value of this integral (rounded to 41 decimal digits) are

(−5.2606540619478132888162873836227788326071 + i0.8714309117651169287615634081029444029520)× 10−3,

(1.6334254404141130052256106886480207660342 − i4.6946054645754247713765147952435215400185)× 10−3,

(1.7173769379846547903397290523767095071656 − i4.4010850898305029428016414358209690900748)× 10−5,

respectively. Real and imaginary parts of the integrand in (3.4) are presented in Fig. 7.

In numerical calculation of I(50) we apply the methods (2.18) and (2.25), taking n1 = n2 = n = 1, . . . , 14. The corresponding

relative errors are given in Table 3. Numbers in parentheses indicate decimal exponents. The convergence in both methods is

very fast. Precisely, it is slightly faster for the second method. In the same table we also present results for ω = 100 and ω = 1000.

4. Concluding remarks

In this paper, we present efficient methods for the integrals in (1.1). By transforming these integrals into the Fourier-type, we

evaluate the integrals using complex integration method and Gauss–Laguerre quadrature rules. Error analysis for the presented

methods is given, and the presented methods are uniformly convergent in n1 and n2 for fixed ω. In addition, the method can be

extended to the computation of integral
∫ b

a f (x)(x − a)α(b − x)βH(1)
ν (ωx)dx, α, β > −1, b > a > 0. Theoretical results and numerical

examples show that the methods are very efficient in obtaining very high precision approximations if ω is sufficiently large.
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[24] G.V. Milovanović, A.S. Cvetković, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica. 26 (2012)

169–184.
[25] S. Olver, Numerical approximation of vector–valued highly oscillatory integrals, BIT Numer. Math. 47 (2007) 637–655.

[26] R. Piessens, M. Branders, Modified Clenshaw—Curtis method for the computation of bessel function integrals, BIT Numer. Math. 23 (1983) 370–381.

[27] H. Wang, S. Xiang, On the evaluation of Cauchy principal value integrals of oscillatory functions, J. Comput. Appl. Math. 234 (2010) 95–100.
[28] H. Wang, L. Zhang, D. Huybrechs, Asymptotic expansions and fast computation of oscillatory Hilbert transforms, Numer. Math. 123 (2013) 709–743.

[29] S. Xiang, Asymptotic on Laguerre or Hermite polynomial expansion and their applications in gauss quadrature, J. Math. Anal. Appl. 393 (2012) 434–444.
[30] S. Xiang, H. Wang, Fast integration of highly oscillatory integrals with exotic oscillators, Math. Comput. 79 (2010) 829–844.

[31] S. Xiang, Y. Cho, H. Wang, H. Brunner, Clenshaw–Curtis–Filon–type methods for highly oscillatory bessel transforms and applications, IMA J. Numer. Anal.
31 (2011) 1281–1314.

[32] Z. Xu, S. Xiang, G. He, Efficient evaluation of oscillatory bessel Hilbert transforms, J. Comput. Appl. Math. 258 (2014) 57–66.

http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0001
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0001
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0001
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0002
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0002
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0002
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0003
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0003
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0005
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0005
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0006
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0006
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0008
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0008
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0011
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0011
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0011
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0012
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0012
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0012
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0013
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0013
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0013
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0014
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0014
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0014
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0015
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0015
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0015
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0016
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0016
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0016
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0017
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0017
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0017
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0018
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0018
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0018
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0019
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0019
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0019
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0020
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0020
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0020
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0021
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0021
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0022
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0022
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0022
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0023
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0023
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0024
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0024
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0024
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0025
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0025
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0026
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0026
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0026
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0027
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0027
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0027
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0028
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0028
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0028
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0028
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0029
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0029
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0030
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0030
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0030
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0031
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0031
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0031
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0031
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0031
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0032
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0032
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0032
http://refhub.elsevier.com/S0096-3003(15)00457-9/sbref0032

	Efficient computation of highly oscillatory integrals with Hankel kernel
	1 Introduction
	2 Numerical schemes for the integrals
	2.1 The evaluation of the integral I1[f]
	2.2 The evaluation of the integral I2[f].

	3 Numerical examples
	4 Concluding remarks
	 Acknowledgments
	 References


