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Abstract

Motivated by the role which hypergeometric functions have in the numerical and symbolic
calculation, especially in the fields of applied mathematics and mathematical physics, in this
paper we derive a general summation identity for the special type of hypergeometric function,
i.e., for the so-called Kummer confluent hypergeometric function 1F1(a; b; z). Special cases
are also considered.
Keywords: Summation identities, Kummer confluent hypergeometric function, Gegenbauer
polynomial, Legendre duplication formula, orthogonal polynomials

1. Introduction

The generalized hypergeometric function pFq is defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞󰁛

ν=0

(a1)ν · · · (ap)ν
(b1)ν · · · (bq)ν

zν

ν!
,

where the Pochhammer symbol (λ)ν is given by

(λ)ν = λ(λ+ 1) · · · (λ+ ν − 1) =
Γ(λ+ ν)

Γ(λ)
,

and Γ(λ) is familiar Euler’s gamma function

Γ(λ) =

󰁝 ∞

0

tλ−1e−t dt for Re(λ) > 0.

In Wolfram’s MATHEMATICA, the function pFq is implemented as HypergeometricPFQ
and it is suitable for both symbolic and numerical calculation (Wolfram, 2003). For p = q + 1,
it has a branch cut discontinuity in the complex z plane running from 1 to ∞. When p ≤ q



this series converges for each z ∈ C. For some recent results on this subject, especially on
transformations, summations and other applications see (Milovanović et al., 2018; Milovanović
& Rathie, 2019).

In the case p = q = 1 the function 1F1(a; b; z) is known as the Kummer confluent hy-
pergeometric function and it has the following integral representation (Olver et al., 2010, p.
326)

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

󰁝 1

0

ta−1(1− t)b−a−1ezt dt, Re(b) > Re(a) > 0. (1)

In this note we obtain a general summation identitity for the Kummer confluent hypergeo-
metric function 1F1(a; b; z). The idea for this investigation comes from the theory of general-
ized Gauss-Rys quadrature formulas developed recently in (Milovanović, 2018; Milovanović &
Vasović, 2022). In the next section we prove this general summation identity and consider sev-
eral special cases, giving a corollary as a simplest case of the general result. Some conclusions
and possible applications of the obtained results are mentioned at the end of this short note.

2. The main results: Summation identities

For a general sum of the form

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν+λ+s+ε)k−s

󰀓
ν+

1

2
+ε

󰀔

s−1
1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖
, (2)

where ε is 0 or 1, λ > −1/2 and s, k ∈ N, in this note we prove explicit expression in terms of
the hypergeometric function 2F2.

Theorem 1 Let λ > −1/2, k, s ∈ N and 1 ≤ s ≤ k. Then we have

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ s+ ε)k−s

󰀓
ν +

1

2
+ ε

󰀔

s−1
1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖

=
(−1)s−1k!

󰀃
λ+ 1

2

󰀄
k
xk−s+1

(k − s+ 1)!(λ+ k + ε)k+1
2F2

󰀕
k +

1 + ε

2
, k +

ε

2
+ 1; k − s+ 2, 2k + ε+ λ+ 1;−x

󰀖
,

where ε is equal to 0 or 1.

Proof. We start from the formula for Gegenbauer polynomials (Prudnikov et al., 1986,
p. 529, Eq. 10)

󰁝 a

0

zα−1(a2 − z2)λ−1/2e−xz2Cλ
2k+ε

󰀓z
a

󰀔
dz =

(−1)kaα+2λ−1

2(2k + ε)!
(2λ)2k+ε

󰀓1 + ε− α

2

󰀔

k

×
Γ(λ+ 1

2
)Γ(α+ε

2
)

Γ(1+α+ε
2

+ λ+ k)
2F2

󰀓α
2
,
α + 1

2
;
1 + α− ε

2
− k,

1 + α + ε

2
+ λ+ k;−a2x

󰀔
, (3)

which holds for ε = 0 or 1, a > 0, λ > −1/2 and Re (α) > −ε.
Let s ∈ N and 1 ≤ s ≤ k. First, we consider the right-hand side in (3) for a = 1. For these

values of s we put

α =

󰀫
2(s+ γ)− 1, ε = 0,

2(s+ γ), ε = 1,
(4)



where 0 < |γ| ≪ 1. Since

α

2
= s− 1

2
(1− ε) + γ,

α + 1

2
= s+

1

2
ε+ γ,

α + ε

2
= s− 1

2
+ ε+ γ,

1 + α− ε

2
= s+ γ,

1 + α + ε

2
= s+ ε+ γ

and 󰀓1 + ε− α

2

󰀔

k
= (−1)k

󰀓1 + α− ε

2
− k

󰀔

k
= (−1)k(s− k + γ)k,

we split now the right-hand side of (3) into two parts, replacing there the previous values for α,

R
(1)
k (α,λ, ε) =

(−1)k(2λ)2k+ε

2(2k + ε)!

Γ(λ+ 1
2
)Γ(α+ε

2
)

Γ(1+α+ε
2

+ λ+ k)

=
(−1)k(2λ)2k+ε

2(2k + ε)!

Γ(λ+ 1
2
)Γ(s− 1

2
+ ε+ γ)

Γ(s+ ε+ λ+ k + γ)

and

R
(2)
k (α,λ, ε, x) =

󰀓1 + ε− α

2

󰀔

k
2F2

󰀓α
2
,
α + 1

2
;
1 + α− ε

2
− k,

1 + α + ε

2
+ λ+ k;−x

󰀔

= (−1)k(s− k + γ)k

× 2F2

󰀓
s− 1

2
(1− ε) + γ, s+

1

2
ε+ γ; s− k + γ, s+ ε+ λ+ k + γ;−x

󰀔
.

We note that

󰁥R(1)
k (2s− 1 + ε,λ, ε) = lim

γ→0
R

(1)
k (α,λ, ε) =

(−1)k(2λ)2k+ε

2(2k + ε)!

Γ(λ+ 1
2
)Γ(s− 1

2
+ ε)

Γ(s+ ε+ λ+ k)
. (5)

To find the corresponding value 󰁥R(2)
k (2s − 1 + ε,λ, ε, x) = limγ→0 R

(2)
k (α,λ, ε, x), we

consider the series

(−1)k(s− k + γ)k 2F2

󰀓
s− 1

2
(1− ε) + γ, s+

1

2
ε+ γ; s− k + γ, s+ ε+ λ+ k + γ;−x

󰀔

= (−1)k(s− k + γ)k

∞󰁛

ν=0

󰀃
s− 1

2
(1− ε) + γ

󰀄
ν

󰀃
s+ 1

2
ε+ γ

󰀄
ν

(s− k + γ)ν(s+ ε+ λ+ k + γ)ν
· (−x)ν

ν!
.

Because of

lim
γ→0

(s− k + γ)k
(s− k + γ)ν

=

󰀻
󰁁󰀿

󰁁󰀽

0, for 0 ≤ ν ≤ k − s,

(s− 1)!

(s− k + ν − 1)!
, for k − s+ 1 ≤ ν ≤ k,

we conclude that the first k − s + 1 terms (for ν = 0, 1, . . . , k − s) of this series, in the limit
case, vanish, so that we consider the corresponding series with terms starting from the index
ν = m = k − s+ 1, i.e.,

(−1)k(s− k + γ)k

∞󰁛

ν=k−s+1

󰀃
s− 1

2
(1− ε) + γ

󰀄
ν

󰀃
s+ 1

2
ε+ γ

󰀄
ν

(s− k + γ)ν(s+ ε+ λ+ k + γ)ν
· (−x)ν

ν!

= (−1)k(s− k + γ)k

∞󰁛

ν=0

󰀃
s− 1

2
(1− ε) + γ

󰀄
ν+m

󰀃
s+ 1

2
ε+ γ

󰀄
ν+m

(s− k + γ)ν+m(s+ ε+ λ+ k + γ)ν+m

· (−x)ν+m

(ν +m)!
.



Using the elementary identity (p)ν+m = (p+m)ν(p)m and letting γ → 0, we get

󰁥R(2)
k (2s− 1 + ε,λ, ε, x)

= (−1)s−1
(s− 1)!

󰀃
s− 1−ε

2

󰀄
m

󰀃
s+ ε

2

󰀄
m

(s+ ε+ λ+ k)m
xm

∞󰁛

ν=0

󰀃
k + 1+ε

2

󰀄
ν

󰀃
k + 1 + ε

2

󰀄
ν

(2k + λ+ 1 + ε)ν(ν +m)!
· (−x)ν

ν!

= (−1)s−1
(s− 1)!

󰀃
s− 1−ε

2

󰀄
k−s+1

󰀃
s+ ε

2

󰀄
k−s+1

(s+ ε+ λ+ k)k−s+1(k − s+ 1)!
xk−s+1

× 2F2

󰀕
k +

ε

2
+

1

2
, k +

ε

2
+ 1; k − s+ 2, 2k + ε+ λ+ 1;−x

󰀖
.

Now, we obtain the right-hand side of (3), under the assumed conditions, as a product of
󰁥R(1)
k (2s− 1 + ε,λ, ε) and 󰁥R(2)

k (2s− 1 + ε,λ, ε, x):

RHS =
(−1)k+s−1(2λ)2k+ε

2(2k + ε)!

Γ(λ+ 1
2
)Γ(s− 1

2
+ ε)(s− 1)!

󰀃
s− 1−ε

2

󰀄
k−s+1

󰀃
s+ ε

2

󰀄
k−s+1

Γ(2k + ε+ λ+ 1)(k − s+ 1)!

× xk−s+1
2F2

󰀕
k +

ε

2
+

1

2
, k +

ε

2
+ 1; k − s+ 2, 2k + ε+ λ+ 1;−x

󰀖
. (6)

On the other side, for a = 1 and z =
√
t, the integral in (3) reduces to

1

2

󰁝 1

0

tα/2−1(1− t)λ−1/2e−xtCλ
2k+ε(

√
t) dt,

which, after using the polynomial representation of the Gegenbauer polynomials

Cλ
n(x) =

[n/2]󰁛

ν=0

(−1)ν(λ)n−ν

ν!(n− 2ν)!
(2x)n−2ν ,

and taking α = 2s − 1 + ε (as before in (4), with γ = 0), we get the following expression for
the left-hand side of (3)

LHS =
1

2

k󰁛

ν=0

(−1)ν(λ)2k−ν+ε2
2(k−ν)+ε

ν!(2k − 2ν + ε)!

󰁝 1

0

ts−
3
2
+ε+k−ν(1− t)λ−1/2e−xt dt

=
(−1)k

2

k󰁛

ν=0

(−1)ν(λ)k+ν+ε2
2ν+ε

(k − ν)!(2ν + ε)!

󰁝 1

0

ts−
3
2
+ε+ν(1− t)λ−1/2e−xt dt.

However, it can be expressed in terms of the Kummer confluent hypergeometric function (1) by
taking a = s− 1

2
+ ε+ ν, b = s+ ν + λ+ ε, z = −x, so that

LHS =
(−1)k

2

k󰁛

ν=0

(−1)ν(λ)k+ν+ε2
2ν+ε

(k − ν)!(2ν + ε)!

Γ
󰀃
λ+ 1

2

󰀄
Γ
󰀃
ν + s− 1

2
+ ε

󰀄

Γ (ν + λ+ s+ ε)

× 1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖
,



i.e.,

LHS =
(−1)k

2

√
π Γ

󰀃
λ+ 1

2

󰀄

k!Γ(λ)

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ s+ ε)k−s

󰀓
ν +

1

2
+ ε

󰀔

s−1

× 1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖
, (7)

Finally, comparing (7) and (6) we obtain

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ s+ ε)k−s

󰀓
ν +

1

2
+ ε

󰀔

s−1
1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖

=
(−1)k2k!Γ(λ)
√
π Γ

󰀃
λ+ 1

2

󰀄
(−1)k+s−1(2λ)2k+εΓ(λ+ 1

2
)Γ(s− 1

2
+ ε)Γ(s)

󰀃
s− 1−ε

2

󰀄
k−s+1

󰀃
s+ ε

2

󰀄
k−s+1

2Γ(2k + ε+ 1)Γ(2k + ε+ λ+ 1)(k − s+ 1)!

× xk−s+1
2F2

󰀕
k +

ε

2
+

1

2
, k +

ε

2
+ 1; k − s+ 2, 2k + ε+ λ+ 1;−x

󰀖

=
(−1)s−1k!

󰀃
λ+ 1

2

󰀄
k
xk−s+1

(k − s+ 1)!(λ+ k + ε)k+1
2F2

󰀕
k +

ε

2
+

1

2
, k +

ε

2
+ 1; k − s+ 2, 2k + ε+ λ+ 1;−x

󰀖
,

which had to be proved.
Theorem 1 for ε = 0 and ε = 1 gives the following sums:

Corollary 1 For λ > −1/2, k, s ∈ N and 1 ≤ s ≤ k, we have

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ s)k−s

󰀓
ν +

1

2

󰀔

s−1
1F1

󰀕
ν + s− 1

2
; ν + λ+ s;−x

󰀖

=
(−1)s−1k!

󰀃
λ+ 1

2

󰀄
k
xk−s+1

(k − s+ 1)!(λ+ k)k+1
2F2

󰀕
k +

1

2
, k + 1; k − s+ 2, 2k + λ+ 1;−x

󰀖
(8)

and

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ s+ 1)k−s

󰀓
ν +

3

2

󰀔

s−1
1F1

󰀕
ν + s+

1

2
; ν + λ+ s+ 1;−x

󰀖

=
(−1)s−1k!

󰀃
λ+ 1

2

󰀄
k
xk−s+1

(k − s+ 1)!(λ+ k + 1)k+1
2F2

󰀕
k + 1, k +

3

2
; k − s+ 2, 2k + λ+ 2;−x

󰀖
. (9)

In the case s = 1 the function 2F2 reduces to 1F1, because k − s + 2 = k + 1, so that
Theorem 1 gives the following result:

Corollary 2 Let λ > −1/2 and k ∈ N. Then we have

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ 1)k−1 1F1

󰀓
ν +

1

2
; ν + λ+ 1;−x

󰀔

=
(λ+ 1

2
)k

(k + λ)k+1

xk
1F1

󰀓
k +

1

2
; 2k + λ+ 1;−x

󰀔



and

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
(ν + λ+ 2)k−1 1F1

󰀓
ν +

3

2
; ν + λ+ 2;−x

󰀔

=
(λ+ 1

2
)k

(k + λ+ 1)k+1

xk
1F1

󰀓
k +

3

2
; 2k + λ+ 2;−x

󰀔
.

The sums from Corollary 1 are displayed in Figure 1 as function in x, in the case k = 4 and
λ = 1/2 and s = 1, 2, 3, 4.
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(a) k=4, =1/2
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Fig. 1. The sums (8) (left) and (9) (right) for x ∈ [−1, 1], when λ = 1/2, k = 4 and s =
1, 2, 3, 4.

Remark 1 The case s > k is obvious. The general sum (2) should be written in the form

k󰁛

ν=0

(−1)ν
󰀕
k

ν

󰀖
󰀓
ν + 1

2
+ ε

󰀔

s−1

(ν + λ+ k + ε)s−k
1F1

󰀕
ν + s− 1

2
+ ε; ν + λ+ s+ ε;−x

󰀖
,

󰁥R(1)
k (2s− 1 + ε,λ, ε) is given by (5), and 󰁥R(2)

k (2s− 1 + ε,λ, ε, x) is given directly by

(−1)k(s− k)k 2F2

󰀓
s− 1

2
(1− ε), s+

1

2
ε; s− k, s+ ε+ λ+ k;−x

󰀔
.

3. Conclusion

In this paper, new summation identities for the Kummer confluent hypergeometric function have
been obtained. As possible applications of given summation identities, we mention applications
in representing results from the theory of orthogonal polynomials, theory of special functions,
integral equations, etc. (Mastroianni & Milovanović, 2008; Asanov et al., 2017; Mastroianni &
Milovanović, 2009).
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Milovanović, G. V. (2018). An efficient computation of parameters in the Rys quadrature for-
mula. Bull. Cl. Sci. Math. Nat. Sci. Math. 43, 39–64.
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