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Gradimir V. Milovanović ∗ and Marija Stanić ∗∗

Presented at Internat. Congress ”MASSEE’ 2003”, 4th Symposium ”TMSF”

In this paper we consider multiple orthogonal polynomials defined using orthogonality
conditions spread out over r different measures are considered. We study multiple orthogonal
polynomials on the real line, as well as on the semicircle (complex polynomials orthogonal
with respect to the complex-valued inner products (f, g)k =

R π
0
f(eiθ)g(eiθ)wk(e

iθ) dθ, for
k = 1, 2, . . . , r). For r = 1, in the real case we have the ordinary orthogonal polynomials,
and in complex case orthogonal polynomials on the semicircle, introduced by Gautschi and
Milovanović [7]. Multiple orthogonal polynomials satisfy a linear recurrence relation of the
order r+1. This is a generalization of the second order linear recurrence relation for ordinary
monic orthogonal polynomials (r = 1). Using the discretized Stieltjes-Gautschi procedure,
we compute recurrence coefficients and also zeros of multiple orthogonal polynomials, as well
as the weight coefficients for the corresponding quadrature formulas of Gaussian type. Some
numerical examples are also included.
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1. Introduction

Multiple orthogonal polynomials arise naturally in the theory of simulta-
neous rational approximation, in particular in Hermite-Padé approximation of a
system of r (Markov) functions. There are several papers by Nikishin, Sorokin,
de Bruin, Piñeiro, Aptekarev etc.

1The authors were supported in part by the Serbian Ministry of Science, Technology and
Development (Project #2002: Applied Orthogonal Systems, Constructive Approximation and
Numerical Methods).
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Historically, Hermite-Padé approximation was introduced by Hermite to
prove the transcendence of e. Multiple orthogonal polynomials can be used
to give a constructive proof of irrationality and transcendence of certain real
numbers (see [15]).

Starting with a problem that arise in the evaluation of computer graph-
ics illumination models, Borges [4] has examined the problem of numerically
evaluating a set of r definite integrals taken with respect to distinct weight
functions but related by a common integrand and interval of integration. It is
interesting that the nodes of an optimal set of such quadratures are the zeros of
type II multiple orthogonal polynomials. However, Borges has not used multi-
ple orthogonality. In order to construct Gaussian quadratures we consider the
multiple orthogonality.

Multiple orthogonal polynomials are a generalization of orthogonal poly-
nomials in the sense that they satisfy r ∈ N orthogonality conditions.

Let r ≥ 1 be an integer and let w1, w2, . . . , wr be r weight functions on
the real line so that the support of each wi is a subset of an interval Ei. Let
�n = (n1, n2, . . . , nr) be a vector of r nonnegative integers, which is called a
multi-index with length |�n| = n1 + n2 + · · ·+ nr.

There are two types of multiple orthogonal polynomials (see [17]):

1◦ Type I multiple orthogonal polynomials.
Here we want to find a vector of polynomials (A�n,1, A�n,2, . . . , A�n,r) such

that each A�n,i is polynomial of degree ni − 1 and the following orthogonality
conditions hold:

rX
j=1

Z
Ej

A�n,j x
kwj(x)dx = 0, k = 0, 1, 2, . . . , |�n|− 2.(1.1)

2◦ Type II multiple orthogonal polynomials.
Type II multiple orthogonal polynomial is monic polynomial P�n of degree

|�n| such that satisfies the following orthogonality conditions:Z
E1

P�n (x)x
kw1(x)dx = 0, k = 0, 1, . . . , n1 − 1,(1.2) Z

E2

P�n (x)x
kw2(x)dx = 0, k = 0, 1, . . . , n2 − 1,(1.3)

...Z
Er

P�n (x)x
kwr(x)dx = 0, k = 0, 1, . . . , nr − 1.(1.4)
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The conditions (1.2)—(1.4) give |�n| linear equations for the |�n| unknown

coefficients ak,�n of the polynomial P�n (x) =
|�n|P
k=0

ak,�n x
k, where a|�n|,�n = 1. But the

matrix of coefficients of this system can be singular and we need some additional
conditions on the r weight functions to provide the uniqueness of the multiple
orthogonal polynomial.

If the polynomial P�n (x) is unique, then we say that �n is normal index
and if all indices are normal then we have a complete system.

For r = 1 in both cases we have the ordinary orthogonal polynomials.
We will consider only the type II multiple orthogonal polynomials.

There are two distinct cases for which the type II multiple orthogonal
polynomials are given (see [17]).

1. Angelesco systems—For this systems the intervals Ei, on which the
weight functions are supported, are disjoint, i.e., Ei∩Ej = ∅ for 1 ≤ i 6= j ≤ r.

2. AT systems—AT systems are such that all weight functions are sup-
ported on the same interval E and we also require that the |�n| functions

w1(x), xw1(x), . . . , xn1−1w1(x), w2(x), xw2(x), . . . ,

xn2−1w2(x), . . . , wr(x), xwr(x), . . . , x
nr−1wr(x)

form a Chebyshev system on E for each multi-index �n.

The following two theorems have been proved in [17]:

Theorem 1.1. In an Angelesco system the type II multiple orthogo-

nal polynomial P�n (x) factors into r polynomials
rQ

j=1
qnj (x), where each qnj has

exactly nj zeros on Ej.

Theorem 1.2. In an AT system the type II multiple orthogonal poly-
nomial P�n (x) has exactly |�n| zeros on E. For the type I vector of multiple or-

thogonal polynomials, the linear combination
rP

j=1
A�n,j(x)wj(x) has exactly |�n|−1

zeros on E.

For each of the weight functions wk, k = 1, 2, . . . , r,

(f, g)k =

Z
Ek

f(x)g(x)wk(x)dx(1.5)

denotes the corresponding inner product of f and g.
In this paper in Section 2 we consider recurrence relations for some cases

of type II multiple orthogonal polynomials. Then in Section 3 we present a
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numerical procedure for construction of type II multiple orthogonal polynomials
based on the Stieltjes-Gautschi procedure [5]. An optimal set of quadrature
formulas with method for calculating the nodes and weight coefficients of such
quadratures are considered in Section 4. Finally, in Section 5 we transfer the
concept of multiple orthogonality on the unit semicircle in complex plane. We
introduce multiple orthogonal polynomials on the semicircle and corresponding
quadratures of Gaussian type. Also, some numerical examples are included.

2. Recurrence relations

Orthogonal polynomials on the real line always satisfy a three-term re-
currence relation. There is an interesting recurrence relation of order r + 1 for
the type II multiple orthogonal polynomials with nearly diagonal multi-index.

Let n ∈ N and write it as n = kr+j, with 0 ≤ j < r. The nearly diagonal
multi-index �s(n) corresponding to n is given by

�s(n) = (k + 1, k + 1, . . . , k + 1| {z }
j times

, k, k, . . . , k| {z }
r−j times

).

Denote the corresponding type II multiple orthogonal polynomials by
Pn(x) = P�s(n)(x).

The following recurrence relation

xPm(x) = Pm+1(x) +
rX

i=0

am,r−iPm−i(x) , m ≥ 1,(2.1)

holds with initial conditions P0(x) = 1 and Pi(x) = 0 for i = −1,−2, . . . ,−r
(see [16]).

Setting m = 0, 1, . . . , n− 1 in (2.1), we get

Hn

⎡⎢⎢⎢⎣
P0(x)
P1(x)
...

Pn−1(x)

⎤⎥⎥⎥⎦ = x

⎡⎢⎢⎢⎣
P0(x)
P1(x)
...

Pn−1(x)

⎤⎥⎥⎥⎦− Pn(x)

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ ,
i.e.,

HnPn(x) = xPn(x)− Pn(x)en,(2.2)

where

Pn(x) = [P0(x) P1(x) . . . Pn−1(x)]
T , en = [0 0 . . . 0 1]T ,
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and Hn is the following lower (banded) Hessenberg matrix of order n

Hn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,r 1

α1,r−1 α1,r 1

...
. . .

. . .
. . .

αr,0 · · · αr,r−1 αr,r 1

αr+1,0 · · · αr+1,r−1 αr+1,r 1

. . .
. . .

. . .
. . .

an−2,0 · · · αn−2,r−1 αn−2,r 1

αn−1,0 · · · αn−1,r−1 αn−1,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This kind of matrix was obtained also in construction of orthogonal poly-
nomials on the radial rays in the complex plane (see [9]).

Let xi ≡ x
(n)
i (i = 1, 2, . . . , n) be zeros of Pn(x). Then recurrence relation

(2.2) reduces to the eigenvalue problem

xiPn(xi) = HnPn(xi).

Thus, xi are eigenvalues of the matrix Hn and Pn(xi) are the corresponding
eigenvectors.

According to (2.2) one can obtain the following determinant representa-
tion of the monic polynomials

Pn(x) = det(xIn −Hn),

where In is the identity matrix of the order n.

For computing zeros of Pn(x) as the eigenvalues of the matrix Hn we use
the EISPACK routine COMQR [14, pp. 277—284]. Notice that this routine needs
an upper Hessenberg matrix, i.e., HT

n . Also, theMatlab orMathematica can
be used.

Our aim here is to compute the recurrence coefficients in (2.1), i.e., the
elements of the Hessenberg matrix Hn. Only for the simplest case of multiple
orthogonality, i.e., when r = 2 for some classical weight functions (Jacobi, La-
guerre, Hermite) one can find explicit formulas for the recurrence coefficients,
but these formulas are very complicated (see [15], [17], [3]). We calculate the
elements of Hn for arbitrary r numerically.
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3. Numerical construction of multiple orthogonal polynomials

In [13] we have obtained an effective numerical method for constructing
the Hessenberg matrix Hn. We use some kind of the Stieltjes procedure (cf. [5])
and call it as the discretized Stieltjes-Gautschi procedure. At first, we express
the elements of Hn in terms of the inner products (1.5) and then we use the
corresponding Gaussian formulas to discretize these inner products. Of course,
we suppose that the type II multiple orthogonal polynomials exist with respect
to the inner products ( · , · )k, k = 1, 2, . . . , r, given by (1.5).

Taking that for inner products ( · , · )j+cr = ( · , · )j (c ∈ Z), the following
result holds (see [13]):

Theorem 3.1. The type II multiple monic orthogonal polynomials
{Pn}, with nearly diagonal multi-index, satisfy the recurrence relation

Pn+1(x) = (x− an,r)Pn(x)−
r−1X
k=0

an,kPn−r+k(x), n ≥ 1,(3.1)

where

an,0 =

¡
xPn, P[(n−r)/r]

¢
ν+1¡

Pn−r, P[(n−r)/r]
¢
ν+1

and

an,k =

µ
xPn −

k−1P
i=0

an,iPn−r+i, P[(n−r+k)/r]

¶
ν+k+1¡

Pn−r+k, P[(n−r+k)/r]
¢
ν+k+1

, k = 1, 2, . . . , r.

Here, we put n = cr+ ν, where c = [n/r] and ν ∈ {0, 1, . . . , r− 1} ([t] is integer
part of t).

We use alternatively recurrence relation and given formulas for coeffi-
cients. Knowing P0 we compute a0,r, then knowing a0,r we compute P1, and
then again a1,r and a1,r−1, etc. Continuing in this manner, we can generate as
many polynomials, and therefore as many of the recurrence coefficients as are
desired.

All of the necessary inner products can be computed exactly, except for
rounding errors, by using the Gauss-Christoffel quadrature formulas with respect
to the corresponding weight function wi, i = 1, 2, . . . r.
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4. Quadrature formulae of Gaussian type

For the problem which has been examined by Borges [4], it is shown that
it is not efficient to use a set of r Gauss-Christoffel quadrature formulas because
valuable information is wasted.

Borges has introduced a performance ratio, defined as:

R =
Overall degree of precision + 1

Number of integrand evaluation
.

If we use the set of r Gauss-Christoffel quadrature formulas we have R = 2/r
and hence R < 1 for all r > 2. If we select a set of n distinct nodes, common for
all quadrature formulas, weight coefficients for each of r quadrature formulas
can be chosen in that way that a performance ratio is R = 1. Because the
selection of nodes is arbitrary, the quadrature formulas may not be the best
possible.

The aim is to find an optimal set of nodes, by mimicking the development
of the Gauss-Christoffel quadrature formulas.

Denote with W = {w1, w2, . . . , wr} an AT system.
We introduce the following definition:

Definition 4.1. Let W be an AT system (the weight functions wi,
i = 1, . . . , r are supported on the interval E), �n = (n1, n2, . . . , nr) be a multi-
index, and n = |�n|. Set of quadrature formulas of the form:Z

E
f(x)wm(x)dx ≈

nX
i=1

Am,if(xi), m = 1, 2, . . . , r(4.1)

will be called an optimal set with respect to (W,�n) if and only if the weight
coefficients, Am,i, and the nodes, xi, satisfy the following equations:

nX
i=1

Am,i =

Z
E
wm(x)dx

nX
i=1

Am,i xi =

Z
E
xwm(x)dx

...
nX
i=1

Am,i x
n+nm−1
i =

Z
E
xn+nm−1wm(x)dx

(4.2)

for m = 1, 2, . . . , r.
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The next generalization of fundamental theorem of Gauss-Christoffel
quadrature formulas holds (for proof see [13]).

Theorem 4.1. Let W be an AT system, �n = (n1, n2, . . . , nr), n = |�n|.
Consider the quadrature formulas:Z

E
f(x)wm(x)dx ≈

nX
i=1

Am,if(xi)(4.3)

where m = 1, 2, . . . , r.
These formulas form an optimal set with respect to (W,�n) if and only if:
1◦ They are exact for all polynomials of degree ≤ n− 1.
2◦ The polynomial q(x) =

nQ
i=1
(x − xi) is the type II multiple orthogonal

polynomial P�n with respect to W .

Notice that all zeros of the type II multiple orthogonal polynomial P�n
are distinct and located in the interval E (Theorem 1.2).

For r = 1 in Definition 4.1 we have the Gauss-Christoffel quadrature
formulas.

For the case of the nearly diagonal multi-indices �s(n) we can compute the
nodes xi, i = 1, 2, . . . , n, of the Gaussian type quadrature formulas as eigenvalues
of the corresponding banded Hessenberg matrix Hn. Then from corresponding
recurrence relation it follows that the eigenvector associated with xi is given
by Pn(xi). We can use this fact to compute the weight coefficients Am,i by
requiring that each rule correctly generate the first n modified moments.

Denote by
Vn = [Pn(x1) Pn(x2) . . . Pn(xn)]

the matrix of the eigenvectors ofHn, each normalized so that the first component
is equal to 1. Then, the weight coefficients Am,i can be found by solving systems
of linear equations

Vn ·

⎡⎢⎢⎢⎣
Am,1

Am,2
...

Am,n

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

μ
∗(m)
0

μ
∗(m)
1
...

μ
∗(m)
n−1

⎤⎥⎥⎥⎥⎦ , m = 1, 2, . . . , r ,

where

μ
∗(m)
i =

Z
E
Pi(x)wm(x)dx, m = 1, 2, . . . , r, i = 0, 1, . . . , n− 1,
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are modified moments, Pi = P�s(i).

All of modified moments can be computed exactly, except for rounding
errors, by using the Gauss-Christoffel quadrature formulas with respect to the
corresponding weight function wm, m = 1, 2, . . . r.

5. Multiple orthogonal polynomials on the semicircle

Polynomials orthogonal on the semicircle were introduced by Gautschi
and Milovanović [7].

Let w be a weight function which is positive and integrable on the open
interval (−1, 1), though possibly singular at the endpoints, and which can be
extended to a function w(z) holomorphic in the half disc

D+ = {z ∈ C : |z| < 1, Im z > 0}.

Consider the following inner product

[f, g] =

Z
Γ
f(z)g(z)w(z)(iz)−1 dz =

Z π

0
f(eiθ)g(eiθ)w(eiθ) dθ,(5.1)

where Γ is the circular part of ∂D+ and all integrals are assumed to exist (pos-
sibly) as appropriately defined improper integrals.

This inner product (5.1) is not Hermitian and the existence of the corre-
sponding orthogonal polynomials, therefore, is not guaranteed.

We call a system of complex polynomials {πk} orthogonal on the semi-
circle if

[πk, πl]

½
= 0 if k 6= l,
6= 0 if k = l,

k, l = 0, 1, 2, . . . ;(5.2)

we assume πk monic of degree k.

Gautschi, Landau and Milovanović [6] have established the existence of
orthogonal polynomials {πk} assuming only that

Re [1, 1] = Re

Z π

0
w(eiθ) dθ 6= 0.(5.3)

They have represented πn as a linear (complex) combination of pn and
pn−1 ({pk} is corresponding ordinary orthogonal polynomials sequence (real)
with respect to the same weight function w):

πn(z) = pn(z)− iθn−1pn−1(z), n = 0, 1, 2, . . . .
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Polynomials orthogonal on the semicircle also satisfy the tree-term re-
currence relation:

πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, 2, . . . ,

with initial conditions π−1(z) = 0, π0(z) = 1 .
Under certain conditions zeros of polynomials orthogonal on the semicir-

cle are in D+ (see [7], [6], [11], [12]).

Multiple orthogonal polynomials on the semicircle are a generalization of
orthogonal polynomials on the semicircle in the sense that they satisfy r ∈ N
orthogonality conditions.

Let r ≥ 1 be an integer and let w1, w2, . . . , wr be r admissible weight
functions. Let �n = (n1, n2, . . . , nr) be the multi-index with length |�n| = n1+n2+
· · ·+nr. Multiple orthogonal polynomial on the semicircle is monic polynomial
Π�n(z) of degree |�n| such that satisfies the following orthogonality conditions:Z

Γ
Π�n (z) z

k w1(z)(iz)
−1 dz = 0, k = 0, 1, . . . , n1 − 1,(5.4) Z

Γ
Π�n (z) z

k w2(z)(iz)
−1 dz = 0, k = 0, 1, . . . , n2 − 1,(5.5)

...Z
Γ
Π�n (z) z

k wr(z)(iz)
−1 dz = 0, k = 0, 1, . . . , nr − 1.(5.6)

For r = 1 we have the ordinary orthogonal polynomials on the semicircle.

For any polynomial g the following equations hold

0 =

Z
Γ
g(z)wm(z) dz +

Z 1

−1
g(x)wm(x) dx(5.7)

and Z
Γ

g(z)wm(z)

iz
dz = πg(0)wm(0) + i

Z
−
1

−1

g(x)wm(x)

x
dx(5.8)

for m = 1, 2, . . . , r.
We consider only the nearly diagonal multi-indices.
Corresponding type II multiple orthogonal polynomials (real) {Pn} sat-

isfy recurrence relation (2.1). If is easy to see that for m = 1, 2, . . . , r associated
polynomials of second kind

Q(m)n (z) =

Z 1

−1

Pn(z)− Pn(x)

z − x
wm(x) dx, n = 0, 1, . . . ,(5.9)
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satisfy the same recurrence relation (but with different initial conditions).

Denote zero moments with μ
(m)
0 , i.e.

μ
(m)
0 =

Z
Γ

wm(z)

iz
dz = πwm(0) + i

Z
−
1

−1

wm(x)

x
dx, m = 1, 2, . . . , r .(5.10)

Let

Dn =

⎡⎢⎢⎢⎢⎢⎣
Q
(1)
n−1(0)− iμ

(1)
0 Pn−1(0) · · · Q

(1)
n−r(0)− iμ

(1)
0 Pn−r(0)

Q
(2)
n−1(0)− iμ

(2)
0 Pn−1(0) · · · Q

(2)
n−r(0)− iμ

(2)
0 Pn−r(0)

...
...

Q
(r)
n−1(0)− iμ

(r)
0 Pn−1(0) · · · Q

(r)
n−r(0)− iμ

(r)
0 Pn−r(0)

⎤⎥⎥⎥⎥⎥⎦ .(5.11)

In similar way as in [6, Theorem 2.1], using equations (5.7), (5.8) for
appropriately chosen polynomials g and orthogonality conditions (5.4)—(5.6),
we can prove existence and uniqueness of multiple orthogonal polynomials on
the semicircle with additional conditions that all matrices Dn are regular.

We represent polynomial Πn as

Πn(z) = Pn(z) + θn,1Pn−1(z) + θn,2Pn−2(z) + · · ·+ θn,rPn−r(z).(5.12)

Coefficients θn,j , j = 1, 2, . . . , r are solution of a system of linear equations

rX
j=1

θn,j

³
Q
(m)
n−j(0)− iμ

(m)
0 Pn−j(0)

´
= iμ

(m)
0 Pn(0)−Q(m)n (0), m = 1, 2, . . . , r.

Under condition that all matrices Dn in (5.11) are regular, the previous
system has unique solution for all n.

Denote

[f, g]j =

Z
Γ
f(z)g(z)wj(z)(iz)

−1 dz =

Z π

0
f(eiθ)g(eiθ)wj(e

iθ) dθ.(5.13)

We put also [f, g]j+cr = [f, g]j for each c ∈ Z.
In a similar way as in real case, we can prove that the multiple orthogonal

polynomials on the semicircle satisfy the following recurrence relation of order
r + 1:

zΠm(z) = Πm+1(z) +
rX

i=0

αm,r−iΠm−i(z) , m ≥ 1,(5.14)

with initial conditions Π0(z) = 1, and Π−1(z) = Π−2(z) = · · · = Π−r(z) = 0.
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Also, we can obtain the recursion coefficients and the multiple orthogo-
nal polynomials on the semicircle using some kind of the discretized Stieltjes-
Gautschi procedure.

Similarly as in the real case we can prove the following result:

Theorem 5.1. Multiple orthogonal polynomials on the semicircle
{Πn}, with nearly diagonal multi-index, satisfy the recurrence relation

Πn+1(z) = (z − αn,r)Πn(z)−
r−1X
k=0

αn,kΠn−r+k(x), n ≥ 1,(5.15)

where

αn,0 =

£
zΠn,Π[(n−r)/r]

¤
ν+1£

Πn−r,Π[(n−r)/r]
¤
ν+1

(5.16)

and

αn,k =

∙
zΠn −

k−1P
i=0

αn,iΠn−r+i,Π[(n−r+k)/r]

¸
ν+k+1£

Πn−r+k,Π[(n−r+k)/r]
¤
ν+k+1

(5.17)

for k = 1, 2, . . . , r.
Here, we put n = cr + ν, where c = [n/r] and ν ∈ {0, 1, . . . , r − 1} ([t] is

integer part of t).

We have to calculate all of the inner products (5.16)—(5.17), i.e., we have

to calculate the integrals of the following type

Z
Γ

zjΠl(z)wk(z) dz

iz
.

For j ≥ 1, because of (5.7), we can calculate these integrals exactly,
except for rounding errors, by using the corresponding Gaussian quadratures.

For j = 0 we haveZ
Γ

Πl(z)wk(z) dz

iz
= μ

(k)
0 Πl(0) + i

Z 1

−1

Πl(x)−Πl(0)
x

wk(x) dx ,

and we use the corresponding Gaussian quadratures and (5.10).
Knowing the recurrence coefficients we form a complex lower banded

Hessenberg matrix Hn as in real case. The zeros of the multiple orthogonal
polynomials on the semicircle are the eigenvalues of the complex Hessenberg
matrix Hn.

Also, we can generate the corresponding quadrature formulae of Gaussian
type: Z π

0
f(eiθ)wk(e

iθ) dθ ≈
nX

ν=1

σk,νf(ζν), k = 1, 2, . . . , r,
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where for each wk, k = 1, 2, . . . , r, the corresponding quadrature is exact for all
polynomials of degree ≤ n+ nk − 1.

The nodes of such optimal set of quadratures are zeros of multiple or-
thogonal polynomial on the semicircle, i.e. eigenvalues of the Hessenberg matrix
Hn. Using the corresponding eigenvectors we obtain the weight coefficients in a
similar way as in the real case.

6. Numerical examples

Numerical examples for real case can be found in [13]. Here we give an
example of multiple Jacobi polynomials on the semicircle. We take the weight
functions

wm(z) = (1− z)α(1 + z)βm , m = 1, 2, . . . , r,

where α, βm > −1, m = 1, 2, . . . , r, and βi − βj /∈ Z whenever i 6= j in order to
have an AT system.

Numerical results suggest that the zeros of these multiple Jacobi polyno-
mials on the semicircle for n ≥ 2 are simple and always contained in the upper
unit half disc D+.

In the next table the nodes (ζν) and weights (σj,ν , j = 1, . . . , r) for
quadrature formulas of Gaussian type are given. (We give parameters with only
seven digits in order to save space.)

The case n = 8, 10, r = 2, α = 1, β1 = 1/2, β2 = 1/4
ν ζν σ1,ν σ2,ν
1 −0.9788997+0.0026247 i 0.0580377− 0.3542335 i −0.0188189− 0.3832973 i
2 −0.8760521+0.0159867 i −0.3374499 + 0.9347142 i −0.2794998 + 0.9968886 i
3 −0.6630103+0.0461827 i 0.0739024− 1.5920321 i −0.2597682− 1.7364585 i
4 −0.3560514+0.0994357 i −2.4651138 + 1.8318576 i −2.2947968 + 2.1521091 i
5 −0.0384815+0.1615833 i 4.0225993 + 0.2344999 i 4.4344593− 0.3611610 i
6 0.2730107+0.1200963 i 1.7070884− 1.8265961 i 1.5093451− 2.0000640 i
7 0.6153346+0.0567013 i 0.0142094− 0.0333422 i −0.0129471 + 0.0126075 i
8 0.8781496+0.0170913 i 0.0683192− 0.0148059 i 0.0636190− 0.0182020 i
1 −0.9880607+0.0012045 i −0.2444479 + 0.3791317 i −0.2090496 + 0.4295410 i
2 −0.9278047+0.0074739 i 0.5579302− 0.9679792 i 0.3858939− 1.1059521 i
3 0.9180556+0.0092898 i 0.0053745− 0.0079086 i 0.0018335− 0.0057780 i
4 −0.7967483+0.0218339 i −1.0054363 + 1.2162234 i −0.9308388 + 1.3867825 i
5 0.7356568+0.0308872 i 0.1766943− 0.0092201 i 0.1691405− 0.0162823 i
6 −0.5916927+0.0466799 i 0.7261829− 1.5490023 i 0.4441955− 1.7913086 i
7 0.4779421+0.0651869 i −0.0093143− 0.1648483 i −0.0616815− 0.1002179 i
8 −0.3288006+0.0861789 i −3.0832225 + 1.3083385 i −3.0114444 + 1.7142267 i
9 0.1891105+0.1151987 i 2.3710585− 2.1396074 i 2.1832689− 2.4192835 i
10 −0.0616346+0.1363395 i 3.6467732 + 1.1149342 i 4.1702746 + 0.5706947 i
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