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Complex polynomials {=,}, n,(z)=2z"+ -, orthogonal with respect to the com-
plex-valued inner product (f, g) = [% f(e")g(e™)df are studied. By direct calculation
of moment determinants it is shown that these polynomials exist uniquely. The
three-term recurrence relation satisfied by these polynomials is obtained explicitly
as well as their relationship with Legendre polynomials. It is shown that the zeros
of m, are all simple and are located in the interior of the upper unit half disc, dis-
tributed symmetrically with respect to the imaginary axis. They can be (and have
been) computed as eigenvalues of a real nonsymmetric tridiagonal matrix. A linear
second-order differential equation is obtained for n,(z) which has regular singular
points atz=1, —1, o (like Legendre’s equation) and an additional regular
singular point on the negative imaginary axis. Applications are discussed involving
Gauss—Christoffel quadrature over the semicircle, numerical differentiation, and the
computation of Cauchy principal value integrals. © 1986 Academic Press, Inc.

1. INTRODUCTION

We study orthogonal polynomials relative to the inner product
(f8)=] ()7 /(2s() dz, (1.1)
where I is the semicircle I'= {ze C: z=¢", 0 <8< n}. Alternatively,
(f:8)= Jte™g(e")de. (L1)

Note that the second factor g is not conjugated, so that the inner product
is not Hermitian. Nevertheless, the orthogonal polynomials can be viewed
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SEMICIRCLE ORTHOGONAL POLYNOMIALS 231

as being orthogonal with respect to the (complex-valued) moment
functional

PF =y, ,uk=f7t e*0d6 = 7, k=0,
0
= 2i/k, k odd, (1.2)
=0, keven, k#0.

This moment functional is shown to be quasi-definite; it therefore generates
a unique system of (monic, complex) polynomials {7, } satisfying

degm, =k, k=0,1,2,..,
(e, m =0 fk#1 {1.3)
#0 k=1

It turns out, moreover, that (m, 7;) >0 for k=0, 1, 2,.... Orthogonality
could not be achieved if I” were the complete circle, since in that case
{f, g)=2nf(0)g(0). One could consider, however, arbitrary circular arcs.
Also, weight functions other than the constant weight function in {1.1") can
be studied. Some results in this direction, involving Gegenbauer type
weight functions, indeed have already been obtained, but they are not yet
sufficiently complete for presentation at this time.

The paper is organized as follows. In Section 2 we develop preliminary
material on moment determinants which is used to establish quasi-
definiteness of the moment functional (1.2). Section 3 develops the three-
term recurrence relation for the orthogonal polynomials and Section 4 their
connection with Legendre polynomials. In Section 5 we discuss the zeros of
the orthogonal polynomial n, and show, in particular, that all are con-
tained in the open half disc D, = {ze C: |z] <1,Im z>0}. A second-order
linear differential equation for , is obtained in Section 6. Section 7 deals
with Gauss—Christoffel quadrature formulae for integration over the
semicircle, which are applied to numerical differentiation and, in Section §;
to compute Cauchy principal value integrals.

2. PRELIMINARIES ON MOMENT DETERMINANTS

The purpose of this section is to evaluate the determinants

o By m0r M-y Ho Ry o0 Uy Uy [\

4, = Ff1 Ffz ll.n ’ Al = i’%l P‘z ."Ln’~1 Hrz'+1 ! :
. . . . . i
HBny Hn " Hop -2 Uy Ha "7 Hon—3 :u'ln—-li

(2.1)
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where u, are the moments defined in (1.2). We first express these deter-
minants in terms of the Hilbert-type determinants

b3

1
2042~ 3:‘:;;‘:1’

1 m
Hy=1, H,=det|—| |
0 © [2z+2j~1]-«=1

L]

H0=1, Hm-:det[
(2.2)

m=1,273,..
Lemma 2.1. We have
4,=2"H2,,n(even)>2;  A4,=2"""nH} ,,,n(odd)>1. (23)

Proof. Let first n be even. By (1.2) and (2.1), after removing a factor 2i
from each even-numbered row and column, we have

Ay=(—1)"2"

T 1 0 % 0 0 nil
| 0 % 0 % nil 0
0 % 0 % 0 0 nil , n even.
0 nil 0 nil 0 0 2n1——3
nil 0 n-}-l 0 n%1-3m2n1—3 0
(24)

Using Laplace expansion by columns numbered 1, 3,.., n— 1, one finds
that only one non-zero contribution results, namely from the minor and
cominor pair

2 4 6 =n 1 3 5 n—1
(1 3 5"'11—1)’ (2 4 6 n ) (23)

Since the moment matrix is symmetric, and the sign associated with the
pair (2.5) is (—1)™/, one immediately obtains the first relation in (2.3).
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To prove the second relation, for # odd, we use Laplace expansion by
columns 1, 3,...n in

An:(_l)(n~l)/2 2n—1

1 1
1 0 = 0 . 0
" 3 )
1 1 1
1 0 = 0 - 0 -
3 5 n
1 1 1
6 = 0 = 0 - = 0
3 3 " , nodd. §
|1 t 1 1
! 0 = 0 ..
n—72 n n+2 2n—3
1 1 1
0 -0 0 0 |
I n n+2 2n—3 |
(2.6}
LEmma 2.2, We have
A, =2""YinH,  H|, 5,  nfeven)=2,
| /248 (n—2)/2 { 27)
=2"H ¢ 12 Hiuo 1y n{odd)>1.
Proof. 1 nis even, then
A;:(_I)(n-Z)/22n~ll~
| 1 1
| i 0 - o - 0 0
T 3 n—3
1 1 1
b o3 0 3 O 1 T
1 1 1
- — o - 0 0 .
0 3 0 5 7 , neven
1 1 1
0 0 0 0
0 n—1 n+1 2n—5
1 1 1 1 i
n—1 0 n+1 n+3 2n—3 2n—1

(2.8)
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Laplace expansion by columns 1,3, 5,..., n— 1, n results in a single non-
vanishing term, namely

1 2 4---n-2 n X(3 5 7 n-—1
1 3 5--n—1 n 2 4 6---n-2)
with sign 14143454 -+ +(n—1)=(n*+4)/4, from which the first

relation in (2.7) follows readily. The second relation follows similarly, using
Laplace expansion by columns 2, 4,..,n— 1, n in

A= (= 1)l 02 97

1 1 1
10 = 0 0 -
4 3 n—2 n
i ol L .4 0 0
3 5 n—2
1 1 1 1
0 = 0 il
0 3 s 0 n nx2 | modd 1
1 1 1 1
n—>2 0 n 0 n+2 '2n~5 0 0
1 1 1 1
0 L 0= 0 0 =
(2.9)

In order to evaluate the determinants in (2.2), we use Cauchy’s formula
(Muir {11, p. 3457)

detl: !
a;,+b;

LemMma 2.3. We have
_ 2 Ty R T (2K)!
- m o Qm4+2k-2)

g 2 KT (2R)!
m m2 T, @m+2k)

"o T o (ai—a) (bi— b))
= oA L 2, 2.10
:Lj:l HZ’=1 (a;+b;) ( )

H, m=1,2,3,.. (211)

m=1,2,3,.. (212)

Proof. Use (2.10) with a;=2i, b,=2j—3, and simplify, to get (2.11).
Similarly, (2.12) follows from (2.10) with a,=2i, b;=2j—1. 1|

Combining Lemmas 2.1 and 2.3 yields
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LemMMA 2.4. We have

Tt kP TT D™ 2k

4,=20=1"
! § (n— 1))V [T D2 (n+ 2k — 11

n(odd)> 1,

{2.13)

LI RCTIEE) ! (k)Y

4,=2"
" "2 (nt2k—2)7

n{even) = 2.
2.14)

Combining Lemmas 2.2 and 2.3 yields

LemMa 2.5. We have

gty TBZT KT 2K
" 2n— DI 07 (n+ 2k - D)2

n{oddy=1,

-

2.15)

w2 T2 R TTER) (k)2

Ar:2n2~2n71~ ,
" Ton—1 ) T102) " (n+ 2) 12

n {even) = 2.

(2.16)
3. RECURRENCE RELATION

We note, first of all, from Lemma 2.4, that A4,>0, all »>=1, and
therefore, in particular, that the moment sequence (1.2) is quasi-definite
(cf, eg, Chibara [2, Chap.1, Definition 3.27]). The orthogonal
polynomials (1.3) therefore exist uniquely, and (n., 7m,)=4,,,/4,>0
(Chihara [2, Chap. 1, Theorems 3.1 and 3.27]). Moreover, the following
theorem holds.

THEOREM 3.1.  The (monic, complex) polynomials {n,} orthogonal with
respect to the inner product (1.1) satisfy the recurrence relation

T2} =z — i )milz) — Brme—1(2), k=0,1,2,..,

(3.1)
n_4(z)=0, To(z) =1,
where
%, =8y, o, =0,—6,_1, B.=6%_,, k=1, {3.2}
and 6, is given by
2
S
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Proof. The fact that the polynomials {m.} satisfy a three-term
recurrence relation (3.1) follows from the property (zf, g) = (f; zg) of the
inner product (1.1) (cf. Gautschi [ 6, Theorem 21). It is well-known that

g Ay

Bi= R k=1, (34)
k Ai

from which the last relation in (3.2) follows via Lemma 2.4 by an elemen-
tary (but lengthy) computation. Likewise,

’ I3
_Ak+1_Ak

o = —
A 4,
k+1 k

k=0

(where A{)=0), from which the first two relations in (3.2) follow via
Lemmas 2.4 and 2.5. |

Using Stirling’s formula in (3.3), one finds from (3.2)

o, — 0, Bi—% ask— oo,

just like in Szegd’s theory for orthogonal polynomials on the interval
[—1, 1] (Szegd [14, Egs. (12.7.4) and (12.7.6) ).
From (3.1) and (3.2) it follows easily that —if,_, is the coefficient of

Z~Vinmw,,

nz)=z5—i0, _,zF 14 -, k=1 (3.5)

Furthermore, |7, )| =nf, B, - Br=7(00, -0, _)% by (3.2), and hence,
by (3.3),

1 KI[T((k+1)/2)]2

el =—=2%

NG Qo

4. CONNECTION WITH LEGENDRE POLYNOMIALS

k0. (3.6)

The polynomial 7, in (1.3) is simply related to the (monic) Legendre
polynomials. We have, in fact,

THEOREM 4.1. Let {P,} denote the sequence of monic Legendre
polynomials. Then the representation

ﬂ:n(z):ﬁn(z)_ien—lpn—l(z)’ n>17 (41)

holds, where 0, is given by (3.3).
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Proof. Let hy=[", [P(z)]°dz. Then
TCn(Z) =Voﬁo(2)+?1ﬁ1(z)+ A ynpn(z}'a

where

- 1 “ AT o ) )
hive=| 2)Pu@)dz = — | () Pyl e s,

the second equality following from Cauchy’s theorem. Since zP(z) is a
linear combination of ny(z), ,(2),..., 7x, 1(2), the orthogonality relations
(1.3) yield yo=y,= - =v,_,=0. Clearly, y, =1, while, in view of {3.5),

) 1 ~
e A R LA eT

1 - -
=j 2B, (2)dz—if, A,
-1

Here the second integral vanishes, the integrand being an odd function,
andsoy,_,=—i0,_,. |

5. THE ZEROS OF 7,(z}

We begin with a simple symmetry property.

THEOREM 5.1. If (e C is a zero of the polynomial 7, then so is —(. The
zeros of w, are thus located symmetrically with respect 1o the imaginary oxis.

Proof. Denote by 7, the polynomial obtained from 7, by conjugating
all coefficients,

Equation (4.1) then shows that
TEn(—Z)z(—l)nT_Cﬂ(Z). (51)

Therefore, if { is a zero of «,, there follows

0=7,(0)=(—1)"T (- =(-1)"n.(=0),
hence 7,(—{)=0. |

We show next that ail zeros of 7, lie in the upper unit half disc.
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THEOREM 5.2. All zeros of the polynomial m, are contained in
D,={zeC:|z|<1landImz>0}.

Proof. We first apply Rouché’s theorem to show that all zeros of =, lie
in the open unit disc D = {ze C: |z| < 1}. Consider

__ P
Qn(Z)——_ﬁn_l(z)’ zedD.

We are seeking lower bounds ¢, (not depending on z) of |Q,(z)| for ze dD,
10.(2)l =24, ze€dD.
From the recurrence relation for the (monic} Legendre polynomials

1

PH(Z)=ZPn_1(Z)—4—:W

pnfz(z)a

we find
1 1
—(n—1)72Q, (z)

Since Q,(z) =1z, we clearly have ¢, = 1. Furthermore, (5.2} shows that we
can take

0.(5)=2- (52)

1 1
=1, =1— .. on=2
7 1 i—(n-1 2q, ;"

It is readily seen by induction that

n

- >1.
m—1

qn

Therefore, | P, (z)| = (n/(2n—1))|P, _,(z)| on D, and thus

" n 1 -
|P(z)| 2o———10,_ 1P, _,(2)l, zedD,
zn_lgngl 1 1( )l

where 0, is given in (3.3). Now,

n 1 2 n n+ I\
2n—10n_1‘E[F(5“)/r< 2 ﬂ

and using a refinement of Gautschi’s inequality for the gamma function,

I'(x+1)
I(x+s)

> (x+1s)' 5, x>0,0<s<1,
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due to Kershaw [107], with x=n/2, =14, one finds

n 1 >2n+1
2”—19,,,; 2}’1

> 1. (5.3)

Consequently, |P,(z)|>10,_,P,_(z)| on D, and therefore by Rouché’s
theorem, applied to (4.1), all zeros of =, lie 1a D.

To complete the proof of Theorem 5.2 we use in (4.1) a result of
Giroux [8, Corollary 37, according to which all zeros of =, either lie in the
half strip Imz 20, —&,<Rez< ¢, or in the conjugate half strip, where ¢,
is the largest zero of the Legendre polynomial P,. Since by (3.5) the sum of
the zeros has positive imaginary part, it is the upper half strip that applies.
It remains to show that all zeros ofm, are nonreal. If there were a
zero { = x € R, then indeed P, 1{x) #0, since otherwise, by (4.1), we would
have the contradiction P,(x)=P,_,(x)=0. The same equation (4.1) then
implies i0, , = P {x)/P,_,(x), which is plainiy impossible. [

Remarks. (1) We have proved, more precisely, that all zeros of =,
are contained in the region {zeC:lz|<1l}n{zeCilmz>0, —¢,<
Rez<¢,}, where &, is the largest zero of the Legendre polynomial P,,.

(2) The fact that all zeros of m, lie in the closure of D follows also
from a result of Specht [13, Satz 7*], applied to (4.1), and Kershaw’s
inequality used above. We feel, however, that our proof has independent
interest.

THEOREM 3.3. All zeros of =, are simple.

Proof. Let { be a zero of n,,, hence, by (4.1),

A

P()=i0, P, ().

We prove that n,({)#0.
Using the recurrence relations

k2
Prs(2)=2Pulz) = Pri(2) (54)
and
(1—22) Pi(z) = (k+ 1) zP(z) — 2k + 1) B (2) (5.5)
in

- A 1 - . A «
() =P ) =10, P, I(C)=m LPOF, (0= PP, (D]
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yields, after a little computation,

1 n> 4 . . .
1 — 2 _ 2 _2 1
() (1—-C2)Pn_1(5)[2”‘*1'P"‘I(C)ﬁ—(zn DPE) nCI%AC)Pn-(C)]
z——————P”_I(C) [(n*—(2n—1)%6%_, —2n(2n—1){6,_ (]

(1= (@2n—1)
Letting { =« + iff, the expression in brackets becomes
n?—(2n—1)°0%_ +2n(2n—1)B6,_, —2n(2n— 1)af, _ i,

which, by virtue of >0 and (5.3), is clearly nonzero. ||

The zeros {, of n,, may be computed as eigenvalues of the Jacobi matrix

ing B 0
B, o, B,
0, o, -
J = v T . (5.6)
" X - . 9}1—2
0 ‘Gn—zl- o,

By a similarity transformation with the diagonal matrix D,=
diag (1, i, 1% %, 1, i,...) e R"*" these can be seen to equal {,=in,, where 7,
are the eigenvalues of the real nonsymmetric tridiagonal matrix

*o 8, 0
-0 o 0, )
_61 062 -
—iD; 'j,D,= - ‘ . (5.7)
: 0.2
0 _"Hn—2. ocn—l

Using the EISPACK routine HQR [12, p. 2407, we computed all zeros of
7, for selected values of n up to n=73. Figure I shows those with non-
negative real parts for n=2(1)11, as well as those with smallest, and next
to smallest, positive real parts for n=12, 16, 24, 40, 72 and those with
smallest positive real parts for n=13, 17, 25, 41, 73.

Flgure 1, together with the facts that m,(z)=z~(2i/n) and n4(z)=
z°— (81/57z)z — (3/5)z + (8i/157), suggests that the imaginary part of every
zero of m, is <2/m, if n21, and <.315076..., the unique positive root of
- (8/57z)t:Z +(3/5)t — (8/157) =0, if n = 2.
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6. DIFFERENTIAL EQUATION

Like the Legendre polynomial P,, the polynomial 7, satisfies a second-
order linear differential equation with regular singular points at 1, —1, «c.
There is, however, an additional regular singular point on the negative
imaginary axis which moves as a function of .

THEOREM 6.1, The polynomial n,{z) satisfies the differential equation
(1—-22)[#*—(2n—1)202_, —2n(2n—1)zi0,_, Jn(z)
—2[(m®—(2n—1)%02_ )z —n(2n—1)(z* + 1)i8,,_ I (2) (6.1}
+nl(n+ 1) —(n—1D(2n—1)202_, ~2(2n— 1)n’zif, _, In,(2)=0,
where 6, is given by (3.3).
Proof*. Letu=P,_,(z) and v=(2n— 1)n,(z), and define

w(z) — (Z~ 1)(n/2)- (n— 1/2)i9n~1(z + 1)(n/2)+(n7 1/2)i6, - | (6.2)

! The authors are indebted to Professor F. Calogero for the reference Ahmed and Bruschi
{17, where similar proof techniques are employed.
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where we assume, for the moment, that zeD, ={zeC:|z]<1 and

Imz>0} and where fractional and imaginary powers denote principal
branches. An elementary calculation, using (5.5) and (4.1), will show that

(2° = Dlw(zu] = olz), (6.3)
where the prime denotes differentiation with respect to z. There follows

1
u:—jZTCOjUdZ,

, (Y o 1

u —(Eo—) Jzz_lvdz+22_lv,

) 1>f o o (1) o +< 1 >'U+ 1
={—| | ——vdz+{— .
“=\o) 17 o) 71 \71 21

Inserting this into Legendre’s differential equation

(22— V" + 2zu’' — n(n—1)u =0,

and simplifying, yields

! VY —1
?)'——%U—}-[((ﬁ_l)(z)_)) _n(nw )]fzza—)l vdz = 0. (6.4)

Noting by (6.2) that

o  —nz+(2n—1)i0, |

_—a_) 22 _ 1 : d(Z),
<(Zz__1)<_1_)’ ‘oan—1) 1n*—(2n—1)62  —2n(2n—1)zif,_,
a) ) a) z2—1
=: b(z), (6.5)
one obtains from (6.4)
1, alz) ~
m—)l) +b(Z)U+jZZ— 1 vdz =0.

Differentiating this with respect to z and muitiplying the result by
—[n*—(2n—1)’02_, —2n(2n—1)zi6, _,1*/o(z) yields, after some lengthy,
but elementary computation, the desired differential equation (6.1). By the
permanence principle, the restriction imposed on z can now be lifted. ||
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We remark that the differential equation (6.1) has four regular singular
points, one each at 1, -1, and oo, and an additional one at
zo= —[n*—(2n—1)%02_i/[2n(2n—1)6,_,]. In view of (5.3), z, is
located on the negative imaginary axis; it approaches. the origin
monotonically as n increases. Since by Theorem 5.2 the zeros of z,, are con-
tained in D,, and therefore are regular points of the differential
equation (6.1), it follows again that they must all be simple.

7. GAUSS—CHRISTOFFEL QUADRATURE OVER THE SEMICIRCLE

The orthogonal polynomials 7,,(z) can be used in the usual way (see, e.g.,
Gautschi [ 7, Section 1.37) to construct a Gauss—Christoffel quadrature rule

n

| ge)di= Y 0,8+ R(2)  RiPo_)=0. (1)

v=1

for integrals over the semicircle. Indeed, the nodes {, = (" are precisely the
zeros of m,(z), whereas the weights o, = 06" can be obtained by an adap-
tation of the procedure of Golub and Welsch [9] Letting
fip(z)=ny(z)/||7, || denote the normalized orthogonal polynomials and

(z) = [Ro(2), 71(2)os B ()17
the vector of the first # of them, it is easily seen that

L) =L (),

where J, is the Jacobi matrix in (5.6). The nodes {, are therefore the eigen-
values of J, and #({,) the corresponding eigenvectors. Defining

p(z)=D, #(z), (7.2}

where, as before, D, =diag (1, i, i%, >, 1, i,...), one finds

[—iD;'J,D,1p(L,)=n.p(L.), (7.3)
ie., p(,) is an eigenvector of the real matrix (5.7) corresponding to the
eigenvalue n, = —i{,. Denote by V,, the matrix of the eigenvectors of (5.7},
each normalized so that the first component is equal to 1. Then

Vo=[01, 020 00], 0, =~/70(5,). (7.4)

640/46/3-3
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Now substituting in (7.1) for g in turn all components of the vector p(z)
in (7.2) yields

1
T
ﬁel=7 V.0, o=0y,055 0,1,
o

where e, is the first coordinate vector. Therefore,

V,o=me,. (7.5)

The weights ¢, in (7.1) can thus be found by solving the linear system of
equations (7.5). Using the EISPACK routine HQR2 [12, p. 248] to com-
pute the matrix ¥,, and the LINPACK routines CGECO and CGESL
[4, Chap. 1] to solve the system (7.5), we observed estimates of the con-
dition number (furnished by CGECO) which were only moderately large.
For example, cond V,=20.5,73.3, 1849 for n= 10, 20, 40, respectively. It
thus appears that the system (7.5) is reasonably well conditioned.

Since the matrix in (7.3) is real, the nonreal eigenvalues #, occur in con-
jugate complex pairs (see also Theorem 5.1). One has, moreover, the
following theorem.

THEOREM 7.1. If n, is real, so is o,. If n,.,=mn, is complex,
theno, ,=0,.

Proof. Assume first that n is odd, and for simplicity, that there is one
real eigenvaluen, and n—1 conjugate complex eigenvalues,,, , =¥,
v=1,2,.., [n/2]. (Figure 1 suggests that this is indeed the case.) Then the
first eigenvector v, in (7.4) is real and the others occur in conjugate com-
plex pairs, v,,, | =0,,, v=1, 2,.., [#/2]. By (7.5) therefore,

[n/2]
o0+ Z (02,02, + 03,4 1 03,) =Te;.

v=1

Conjugating this, gives

[n/21
o,v + Z (Gay 4102, + 0o, 05,) = Te .

v=1

By the nonsingularity of ¥,, hence the uniqueness of o, there follows
Gay 1= 02, forv=1,2,.,[n/2], proving the second part of the theorem.
Since the sum above, as well as v,, arc real, it follows that also o, is real,
which proves the first part of the theorem. A similar argument applies
when # is even. |}
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In Table I we display the Gauss—Christoffel formulae (to 8 decimals only,
to save space) for n =5, 10, 20. They were obtained (to higher precision) on
the CDC 6500 computer, using the routines HQR2, CGECO and CGESL
mentioned above.

ExaMPLE 7.1. [Zexp (ce®)d=rn+i[Ei(c)+ E(c)], ¢>0.

The exact answer in terms of the exponential integrals (cf. Gautschi and
Cahill [5, Egs.5.1.1and 5.1.2]) follows from (8.1) below (where f{z)=
exp (cz)) and (8.8) (where x =0).

We apply the Gauss—Christoffel rule (7.1) with g(z)=exp (cz) for
n=2,5,10,20 and c¢=.2,.6, 1.0, 2.0, 6.0, 10.0. The results are compared
with the approximations furnished by the composite trapezoidal rule based
on n equal subintervals of [0, z] and by the n-point Gauss—Legendre for-
mula on [0, n]. Since the real part of the integrand is an even function, the
trapezoidal rule must produce for the real part half of the result it would
obtain if it were applied over the whole interval of periodicity, [ —n, 7],
using 2# subintervals. In particular, the composite trapezoidal rule, like the
Gauss—Christoffel rule (7.1), integrates the first 2n— 1 powers in the real
part exactly. This will not be the case for the imaginary part, which is an
odd function. Here the trapezoidal rule, unlike the Gauss rule, integrates

TABLE 1

Gauss—Christoffel Formula for n=35, 10, 20

n v ¢, a,
5 1,2 +0.89052727  +0.022495461i 00072402551 - +0.30663646/
3,4 +0.48026508 +0.11792794i 0.50270345 +0.92618932;
5 0.22216141; 199138066
10 1,2 +0.97146604  +0.0028731070; 00078107581  +0.074979250i
3,4 +0.85284258  +0.015150376i 0.023571055  +0.19000917;
5,6 +0.65232339  +0.037578303i 0063357456  +0.35652707i
7,8 +0.39255204  +0.072381390i 023196483 +0.66539219;
9,10 +0.11928205  +0.12236097; 1.24409223 +0.83467375;
20 1,2 +0.99279481  +0.00036088122; 0.00093961488 - +0.018602063;
34 +0.96223284  +0.0019015682; 0.0023283767  +0.044211071;
5,6 +0.90804700 +0.0046758976: 0.0041099345  +0.072223615i
7.8 +0.83157445  +0.0086981042; 0.0066940217  +0.10457986;
9,10 +0.73472727  +0.014013039; 0.010908872  +0.14441960;
11,12 +0.61995356  +0.020739446i 0018712830  +0.19743837;
13,14 +0.49022929  +0.029167472i 0035680664  +0.27542598i
15,16 +0.34918044  +0.040007722i 0082367746 +0.40649151i
17,18 +0.20200473  +0.055045977: 0.26876888 +0.65608704
19,20 +0.061601584 +0.075471956: 1.14028539 +0.69192546;
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exactly only linear terms, and the error in the imaginary part must be
expected to exhibit the familiar ©(4*) behavior, where h=n/n. Table II
shows the results (numbers in parentheses denote decimal exponents). The
three pairs of entries for each ¢ and n represent the relative errors in the
real and imaginary part corresponding to the n-point Gauss—Christoffel
rule (7.1), the n-point Gauss-Legendre rule on [0, 7], and the composite
(n+ 1)-point trapezoidal rule, in that order. Note that the error of the
Gauss—Christoffel rule, even for the real part, is usually several orders of
magnitude smaller than the corresponding error of the trapezoidal rule,
unless both are near the level of machine precision (3.553 x 10™'* on the
CDC 6500 computer). The large errors of the trapezoidal rule in the
imaginary parts, and their (¢(h*) decay, are particularly conspicuous. Note
also the relatively poor performance (compared to (7.1)) of the Gauss—
Legendre rule.

The exponential integrals £i and E, in Example 7.1 were computed by
the FUNPACK functions EI and EONE, respectively (cf. Cody [3]).

EXAMPLE 7.2. f'(a)=(/mh) [ e~ [f(a+ (h/2)e) —f(a— (h/2)e®)]db.

TABLE 1II

Relative Errors in Real and Imaginary Parts

¢ n=2 n=>5 n=10 n=20

02 GC 74(—6) 24(—6) 90(—15) 7.1(—14) 14(—14) 1.2(—13) 2.7(—14) 21(—13)
GL 48(—3) 25(—2) 47(~7) 12(—5) 45(—14) 3.0(—12) 4.6(—13) 2.4(—13)
T 67(—5) 22(—1) 14(—14) 34(—2) 14(—14) 84(—3} 27(—14) 2.1(—3)
06 GC 60(—4) 19(—4) 3.1(-12) 51(—13) L8(—14) 1.2(—13) 2.7(—14) 2.0(—13)
GL 38(—2) 33(-2) 65(—5) 21(—5) 74(—11) 62(—10) 40(—13) 2.4(—13)
T 54(—3) 28(—1) 17(=9) 39(—2) 23(—14) 9.6(—3) 32(—14) 2.4(—3)
10 GC 47(=3) 15(—3) 52(—10) 7.1(—11) 2.3(—14) 1.3(—13) 1.4(—14) 22(—13)
GL 83(—2) 14(—1) 28(—4) 64(—4) 68(—9) 60(—9) 3.7(—13) 2.2(—13)
T 42(=2) 37(=1) 28(=7) 50(—2) 14(—14) 12(—2) 50(—14) 3.0(—3)
20 GC 78(—2) 21(—2) 56(—7) 64(—8) 23(—14) 1.6(—13) 4.5(—15) 2.8(—13)
GL 1.6(—1) 49(—1) LI1(—2) 52(—3) 23(—=7) L1(—6) 40(—13) 1.4(—13)
T 67(—1) 71(=1) 2.8(—4) 1L1(—1) 39(—13) 2.5(—2) 5.4(—14) 62(—3)
60 GC 9.0(0) 60(—1) 53(=2) L1(—3) 40(=9) 42(—11) 1.0(—12) 8.7(—13)
GL 49(1) 21(0) 13(1)  32(—1) 93(=2) 12(—3) 34(—8) 25(—11)
T 102) 1000) 17(1)  14(0)  1.5(—3) 26(—1) 34(—13) 59(—2)
100 GC 1.1(2)  10(0) 22(1) 28(—2) 20(—4) 12(—7) 59(—11) 1.6(—12)
GL 13(3) 12(0) 64(2) 2.1(0) 82(1) 12(—2) 11(—4) 14(—6)
T 553) 10(0) 28(3) 13(0) 41(1) 1000) 12(—8) 1.9(—1)

~—

Note. Gauss—Christoffel (GC), Gauss—Legendre (GL), and trapezoidal (T) integration of
(= exp(ce®)db.
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TABLE IiI

Numerical differentiation by (7.7)
with #n =2, for f(z) =exp(z), a=0

h f(0)~
1. 0.9999419%437142
0.5 0.99999638098906
0.25 0.99999977391086
0.125 0.99999998587099
0.0625 0.99999999911702
0.03125 0.99999999994522

0.015625 0.99999999999667

It is assumed here that fis analytic on some domain containing the point
a and a circular neighborhood of a with radius #/2. The formula given for
the derivative is then an easy consequence of Cauchy’s theorem. Applying
(7.1) to the integral on the right yields

1 & o, h
S S

In the case where « is real, and f{(z) is real for real z, this can be simplified
by using Theorems 5.1 and 7.1. For example, when » is even, and Re {, >0
forv=1, 2,.., n/2, one finds

vng/le { [ <a+§€v>—f<a—gCV>J}, neven. (7.7)

To give a numerical illustration, let f{z})=¢", a=0 and n=2. Then

1 24 —n?
= [/ =+ i), alzé[%+iTTcz],
~/ — T

ﬁ~3[n—36 2+z(12 n)}
{4l Jag_ g2

and (7.7) for h=2"% k=0(1)6, produces the approximations in Table 1L

8. AN ArpPLICATION TO CAUCHY PRINCIPAL VALUE INTEGRALS

Let C,, 0 <eg<1, be the contour in the complex plane formed by the unit
upper semicircle, the line segment from —1 to —e, the upper semicircle of
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radius ¢ and center at the origin, and the line segment from ¢ to 1. For any

function f analytic on the closed upper unit half disc we then have, by
Cauchy’s theorem, lim,,, |, f(z) dz/z=0, hence

J[ilj:'(;t‘) dt=i{nf(0)—f:f(e"") dH}, (8.1)

where the integral on the left is a Cauchy principal value integral. In par-
ticular, if f(z) is real for real z, as we shall henceforth assume, we have

Jf / (t Y 4= 1m j f(e™) do. (8.2)

If the singularity is not at the origin, but at some arbitrary point x
on (—1,1), we map x to the origin by a linear fractional transformation
and obtain

MfY)d Jf g(x”)dz Imj (x, €°) db, (8.3)

where
g(x, 2) = f% / (xz+1). (8.4)

Applying (7.1) to (8.3) yields

VA ‘
Imdt'—lm Z O-vg(xs Cv)+Rn(g(xa' )) . (85)
- v=1
Note that g(x, z) has a singularity at z= —1/x, which is farther away

from the interval [—1, 1] the smaller |x|. We expect therefore (8.5) to
provide a good approximation (when R, is neglected), unless |x| is close
to 1.

One might think of proceeding more directly by following the derivation
at the beginning of this section, but with a contour C, that excludes the
point x rather than 0. This would give

/@, {nf(x) f: f(ele),lgde}, —l<x<l.  (86)

1 t—Xx xe

Applying the quadrature rule (7.1) to the integral on the right of (8.6),
however, would produce poor results, owing to the pole atz=x of the
integrand function f(z)/(1 —xz™").
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A better alternative is to use Gauss—Legendre quadrature on (8.3) (cf,
e.g., Gautschi [7, p. 106]),

al I n ‘:
| tf—(l dtx Qg(x, 1,),  reven, (8.7)
S t—Xx

v=1 "V

where 7, =1\ arc the zeros of the Legendre polynomial P, and 2, = 2! the
associated Christoffel numbers. This requires only real arithmetic, in con-
trast to (8.5), but may be less stable on account of the division by the two
zeros 7, of opposite sign closest to the origin.

(,('I

ExampLt 8.1. I(x,¢c)=f » xdt_. —l<x<l ceR

A simple calculation yiclds
I(x, ¢)y=e"[Ei(c(l —x)}+ E{(c(1+x))] if ¢ >0,
=In [(1 —x)/(1 + x)] fe=0, (8.8
—e “FLEi(|e[(1+x))+ E(jel(t = x))] if ¢ <0,

It

where Ei, L', are exponential integrals.

The quadrature rules (8.5) and (8.7) were found to give comparabie
results in this example. Both, indeed, have similar approximation proper-
ties: (8.5) is exact when g is a polynomial of degrec <2n—1, and (8.7}
when g is a polynomial of degree <2n. When n is large, however, and the
truncation error near the level of machine precision, (8.5) was observed to
produce somewhat more accurate results on account of better stability.
Measuring cancellation in the respective quadraturc sums by the ratio of
the absolutely largest quadrature term and the modulus of the quadrature
sum, it was found, for cxample, that for n=40 and ¢=0.5 the degree of
cancellation is 12 orders of magnitude larger in (8.7) than in (8.5).
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