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Abstract. Let &n be the class of algebraic polynomials P{x) = J2"=oa»x''

of degree at most n and \\P\\ja = (/R \P(x)\2do(x))ll2 , where da(x) is a

nonnegative measure on R . We determine the best constant in the inequality

\&v\ < Cn,^{da)\\P\\lja , for v = n and v = n — 1, when P e 3"n and

such that P(i,k) = 0. k=\,... ,m. The case da(t) = dt on [-1, 1] and

P( 1) = 0 was studied by Tariq. In particular, we consider the cases when the

measure da(x) corresponds to the classical orthogonal polynomials on the real

line R.

1. Introduction

Let &n be the class of algebraic polynomials P(x) = J2"=o a^xV of degree at

most n . The first inequality of the form \av\ < C„j„||/>|| was given by Markov

[3]. Namely, if \\P\\ = ||F||oo = max_i<x<j \P(x)\ and Tn(x) = YH^tn.uX*
denotes the «th Chebyshev polynomial of the first kind, Markov proved that

,, ,v ,    , ^ f Vn,v\ • \\P\\oo       if«-^iseven,

(L1) 1^1   -   \    U I      II DM -t ■ AA
\ \tn-\,v\ • ||"||oo     lf«-I/lSOdd.

For v = n , (1.1) reduces to the well-known Chebyshev inequality

(1.2) |a«|<2"-1||JP||00.

Using a restriction on the polynomial class like P(l) = 0 or P(-l) = 0,

Schur [6] found the following improvement of (1.2):

|^|<2«-'(cos^)2"||JP||00.

This result was extended by Rahman and Schmeisser [5] for polynomials with

real coefficients, which have at most n - 1 distinct zeros in (-1, 1).
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166 G. V. MILOVANOVlC AND ALLAL GUESSAB

Similarly in the L2-norm, Tariq [8] improved the following result of Labelle

[2]:

.          l-3.5--.(2«-l) f2n+\\l/2 ( fx 2     V/2
\a„\<--y-(^-2-J     ^JjP(x)\2dxj     .

Under restriction P(\) = 0, Tariq [8] proved that

. n        (2n)\   (2n+\V12 ( lA ._.  ,|2 , V/2

with equality case

1  ""'
(1.3) />(x) = />„(x)-^£(2^ + l)P„(x).

i>=0

Also, he obtained that

(1.4) !«„_,!<    n + l    .2-_1((||_l)I)2^-_j    ||P||2,

with equality case

(1.5) PW = ^±Ip„(x)-jp„_l(x) + -I^^(2I,+ l)P,(x).
i>=0

In the absence of the hypothesis P(l) = 0, the factor (n2 + 2)x/2/(n + 1)

appearing in the right-hand side of (1.4) is to be dropped.
In this paper we give a short proof of a more general problem involving the

L2-norm of polynomials with respect to a nonnegative measure on the real line

R. The standard Jacobi, the generalized Laguerre, and the Hermite measures

are included.

2. Main results

Let da(x) be a given nonnegative measure on the real line E, with compact

or infinite support, for which all moments pk = JMxkda(x), k = 0, I, ... ,

exist and are finite and po > 0.   In that case, there exists a unique set of

orthonormal polynomials nk(-) = nk{-; do), k = 0, I, ... ,  defined by

nk(x) = bk(do)xk + ck(do)xk~x 4- lower degree terms,        bk(do) > 0,

(nk,nm) = 8km,        k,m>0,

where

(2.1) (/, g)= [ f(x)gJx)do(x)       (/, g £ L2(R)).
Jr

For P £ £Pn , we define

(2.2) \\P\\da = ̂ (PTP) = (J \P(x)\2 do(xf)     .

Also, for £,k £ C, k = 1,..., m, we define a restricted polynomial class

■ntfi,..., &,) = {P €&n\P($k) = 0, k = 1,..., m}       (0<m<n).

In the case m = 0, this class of polynomials reduces to £Pn . The case m = n is

trivial. If & =•••=&= £   (1 < k < m), then the restriction on polynomials

at the point x = £ becomes P($) = P'(£) = ■■• = pP-Vtf) = 0.
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Theorem 2.1. If P £ &>n(Zi, ... , £w), then

(2.3) \a„\ < b„-m(dd)\\P\\da,

where the measure do(x) is given by

m

(2.4) dd{x) = Y[\x-clk\2do(x)
k=\

and the norm \\P\\da is defined by (2.2). Inequality (2.3) is sharp and becomes

an equality if and only if P(x) is a constant multiple of the polynomial

m

(2.5) nn-m(x;do)\\(x-£,k).

k=\

Proof. At first we consider the inner product (2.1). Then the polynomial P(x) =

Yl"=oa"x" e ^°n can be represented in the form P(x) = Ylv=oa"nv{x; do),

where a„ = (P, nv), v = 0, 1, ... , n, and a„ = anbn(do). Since

fn \ 1/2

\\Pha= I £K I2)    >K|,

we have a simple estimate

(2.6) |tf„|<M^)II^IU,

with equality if and only if P(x) = Ann(x; do), where A is an arbitrary

constant.

Suppose now that Pe^Ki.y. Then we can write

m

(2.7) P{x) = Q{x)H(x-Zk),
k=\

where Q € ^-m . Applying the inequality (2.6) with the measure do(x) given

by (2.4) to the polynomial Q, we find

I a* I < b„-m(dd)\\Q\\dd ,

because the leading coefficient of the polynomial Q is equal to an. Since

WQtdi = I \Q(x)\2do(x) = f \P(x)\2do(x) = \\P\\2a,
Jr Jr

we obtain inequality (2.3), with equality if and only if P(x)  is a constant

multiple of the polynomial (2.5).   □

Theorem 2.2. Let P £ £Pn(t\\, ... , t\m), sm = J2k=i & • an^ ^et tne measure

do(x) and the norm \\P\\da be given by (2.4) and (2.2), respectively. Then

(2.8) \a„-i\ < \](Cn-m - smbn-m)2 + b2n_m_x\\P\\da ,

where b„ — bv(do) and cv = cv(do) are the coefficients in the orthonormal

polynomial nv(-) = nv(-; da).

The extremal polynomial in (2.8) is a constant multiple of the polynomial

m

((c„-m - smb„-m)nn-m(x) + bn-m-inn-m-i(x))Y[(x - £k).

k=\
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Proof. Similar to the proof of Theorem 2.1, we consider the inner product (2.1)

and any polynomial P £ £Pn . Then we have

(2 9) an=a„b„(do) = (P, b„(do)n„),

a„-i = a„c„(do) + an-ib„-i(do) = (P, cn(do)nn + bn^(do)nn-X),

where nu(-) = nu(-; do).

Using now (2.7), where Q(x) = a'n_mx"-m + a'n_m_lxn-m-1 + ■ ■ ■ , we find

that

(2.10) a'n_m = a„,       a'n_m_l= an-i+sman,

where sm - ]C)tLi £k ■ Now, the corresponding equalities (2.9) for polynomial

Q in the measure do , defined by (2.5), become

®n—m = vti > Un-m^n—m) >

an_m_\ = {{J, cn—mnn—m -\- on—m—\nn—m—\),

where we put nv(') = nv(-, do).

According to (2.10), we obtain a„_, = <_m_, - sma'„_m = (Q, Wn-m),

where

"n — m\X) = [Cn — m ~ ^mOn—m)^n — m(X) + un — m — \ nn—m — \ \X).

Then, using the Cauchy inequality, we get

|a«-il < Q^-illGlUr) = cB,B_i||PLff,

where

Cn,n-\ = HW^-wlUd- = \](Cn-m-Smbn-m)2 + b2n_m_v

The extremal polynomial is x ■-► W/„_m(x) nJtLi (x ~ €k) ■   n

In the next section we consider examples with the measures of the classical

orthogonal polynomials (Jacobi, generalized Laguerre, and Hermite polynomi-

als).

3. Special cases

At first we observe the following Jacobi case: do(x) = (1 - x)a(l + x)fi dx ,

a, p > -1 . Let {PJ,a'^} be the sequence of the Jacobi polynomials orthogonal

with respect to the measure do(x) on (-1, 1). For such polynomials we have

(cf. Szego [7])

(i-xni+x^pjr^Hx) = t^ (jLJ [(i -xr+a(i+*)■+'].

Their leading coefficients are given by

k^fi) = (n+a + P+l)„        (/>(a,/n(jc) = k(.J)xn + ,ower degree terms)
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The leading coefficients in the corresponding orthonormal polynomials are given
by

h lda\ - /»<"■« = (n + a + P+l)n fn\(2n + a + P + l)Y(n + a + P + l)\ 1/2
n[     '      " 2"n\ \   2°+p-+xY(n + a+l)Y(n + p+l)   J     "

Also, we need the coefficients

/>>£) p(<*J)
r  (An\ _ r(<*,P) _ Jcfi)h(<*,fi) ,,(<*, B) _ °n-\ Ja,B) _ K„ ,,.(<*, fi)s2

bn ' kn_\

where

ta.fi)       (a-P)n ,a,fi)     (    4n(n + a + p)(n + a)(n + P)    \1'2

2n + a + p' "       ~\(2n + a + P)2((2n + a + p)2-\)J      '

and
(a J) 2(n + a)(n + P)

(2n + a + P)(2n + a + P+l)'

Corollary 3.1. Under restrictions pW(l) = 0 (/' = 0, ... , k- 1) and jPW(-I) =
0  (i = 0, ... , m - k - I), we have that

(3-D K\<bt+2k^+2m-2kip\\da,

with equality if and only if P(x) is a constant multiple of the polynomial

(x- l)k(x+ \)m-kPt+n2kJ+lm~lk)(x).

Proof. Since the restrictions on polynomials are given only in the points x = 1

and x = -1 , the new measure do(x) is again the Jacobi measure

do(x) = (l-x)a+2k(l+x)fi+2m-2kdx,

so the result follows immediately from Theorem 2.1.   □

Similarly, from Theorem 2.2 follows

Corollary 3.2. Under the same restrictions as in Corollary 3.1, we have that

(3.2) |a„_,| < bn-m\](rn-m -sm)2 + v2_m\\P\\da,

where

h _ h{a+2k,p+2m-2k) f _   (a+2k,fi+2m-2k) - _    (a+2k,p+2m-2k)
"n—m — on_m ,      rn—m — rn_m ,      Vn—m — [/„_ m

The equality is attained in (3.2) if and only if P(x) is a constant multiple of
the polynomial

(x-l)*(x-Mr-*((f„_M-sw)^

where xn-m = ^lkJ+2m~2k).

The case when a = p = 0 and m = k = 1 (i.e., only with restriction

P(\) = 0) was investigated by Tariq [8]. In that case, the best constant in (3.1)

is ^2_'I0), and the extremal polynomial is given by x h-> (x - l^i'j^x), which
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is equivalent to (1.3). Since

.      _.(2,0)_    n2-\

"-'"   "-1  ~«(2» + l)*

inequality (3.2) reduces then to (1.4), with an extremal polynomial

x^(x-i)(ef)(x)-^e2°)(x)),

which is equivalent to (1.5) up to a constant factor.

In a general case for polynomials Pe^,({|,,..,y, the problem reduces

to the generalized Jacobi measure

m

db(x) = (1 - x)Q(l + xY \\ \x - &|2.
k=\

Consider now the generalized Laguerre measure do(x) = xae~x dx, a >

-1, on (0, +oo). With L[„)(x) we denote the generalized Laguerre polyno-

mial. The leading coefficient b„(do) - b^ in the corresponding orthonormal

polynomial is given by b^ = 1 /^n\Y(n + a + 1).
As a direct corollary of Theorem 2.1 we have

Corollary 3.3. Under restriction P(''(0) = 0   (i = 0, ... , m - 1), we have that

\\P\\

y/(n - m)\Y(n + a + m + 1)

with equality if and only if P(x) = AxmL^2m\x), where A is an arbitrary

constant.

Similar to the above, in the Hermite case do(x) = e~x dx on (-oo, +00),

the problem reduces to the generalized Hermite measure

m

do(x) = e-x2Y[\x-c:k\2dx.

k=\

Some considerations on polynomials under the restriction LP = 0, where L

is a given functional from ^„ to C, was given by Milovanovic and Marinkovic

[4] using a method of Giroux and Rahman [1].
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