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a b s t r a c t

Quadrature rules with maximal even trigonometric degree of exactness are considered.
We give a brief historical survey on such quadrature rules. Special attention is given on
an approach given by Turetzkii [A.H. Turetzkii, On quadrature formulae that are exact for
trigonometric polynomials, East J. Approx. 11 (3) (2005) 337–359. Translation in English
from Uchenye Zapiski, Vypusk 1 (149). Seria Math. Theory of Functions, Collection of
papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk, 1959, pp. 31–54]. The
main part of the topic is orthogonal trigonometric systems on [0, 2π) (or on [−π, π))
with respect to some weight functions w(x). We prove that the so-called orthogonal
trigonometric polynomials of semi-integer degree satisfy a five-term recurrence relation.
In particular, we study some cases with symmetric weight functions. Also, we present
a numerical method for constructing the corresponding quadratures of Gaussian type.
Finally, we give some numerical examples. Also, we compare our method with other
available methods.

© 2008 Elsevier Ltd. All rights reserved.

1. Preliminaries

Let the weight functionw(x) be an integrable and nonnegative function on the interval [0, 2π), vanishing there only on
a set of a measure zero. Let us denote by Tn, n ∈ N0, the linear space of all trigonometric polynomials of degree less than or
equal to n.

Definition 1.1. We say that a quadrature rule of the following form∫ 2π

0
f (x)w(x)dx =

n∑
ν=0

wν f (xν)+ Rn(f ),

where 0 ≤ x0 < x1 < · · · < xn < 2π , has trigonometric degree of exactness equal to d if Rn(f ) = 0 for all f ∈ Td and there
exists g ∈ Td+1 such that Rn(g) 6= 0.

We are interested in quadrature rules withmaximal trigonometric degree of exactness. Such quadrature rules are known
as quadrature rules of Gaussian type. Maximal trigonometric degree of exactness for quadrature rule with n + 1 nodes is n.
These quadrature rules have application in numerical integration of 2π-periodic functions.
We start with a brief historical survey of available approaches for the construction of quadrature rules with maximal

trigonometric degree of exactness.
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The first results on quadrature rules with maximal trigonometric degree of exactness were given in the case of an
even trigonometric degree of exactness n, i.e., in the case of an odd number of nodes, in 1959 by Abram Haimovich
Turetzkii (see [1]). Using his approach, nodes of quadrature rules with maximal trigonometric degree of exactness are
zeros from [0, 2π) of the so-called orthogonal trigonometric polynomial of semi-integer degree n/2 + 1/2 with respect
to weight function w on [0, 2π). Turetzkii’s approach is described in detail in Section 2. Quadrature rules with the highest
trigonometric degree of exactness for the Lebesgue measure, giving rise to the Trapezoidal Rule, were considered for the
first time in [2, pp. 73–74].
Also, for an even trigonometric degree of exactness n, an approach based on ideal theory (given in [3] for algebraic

cubature rules) can be applied. Using this approach, to obtain nodes of wanted quadrature rules one has to construct two
quasi-orthogonal trigonometric polynomials of degree n/2 + 1 (orthogonal on Tn/2−1), and compute n + 1 common zeros
of these trigonometric polynomials.
A quite different approachwas given by Ivan PetrovichMysovskikh in [4,5]. He considered approximation of the following

integrals

I(f ) =
1
2π

∫ 2π

0
f (x)w(x)dx,

by a quadrature rule like
∑n
j=0 Cjf (xj), which is exact for all f ∈ Tn for nonnegative integer n. His approach is based on

reproducing kernel Sn(a, z), where a = eix1 is prescribed and z = eix. Reproducing kernel is given as follows

Sn(a, z) = −
1

Dn

∣∣∣∣∣∣∣∣∣∣

d0 d−1 · · · d−n 1
d1 d0 · · · d−n+1 a
...
dn dn−1 · · · d0 an

1 z · · · zn 0

∣∣∣∣∣∣∣∣∣∣
, Dn =

∣∣∣∣∣∣∣∣
d0 d−1 · · · d−n
d1 d0 · · · d−n+1
...
dn dn−1 · · · d0

∣∣∣∣∣∣∣∣ , (1.1)

where dk, k = −n, . . . , n are moments given by

dk =
1
2π

∫ 2π

0
zkw(x)dx, z = eix, d−k = dk, k = 0, 1, . . . , n. (1.2)

Nodes of a quadrature rule with maximal trigonometric degree of exactness are determined by zeros of the reproducing
kernel Sn(a, z), given by (1.1), which is algebraic polynomial of degree n. In [4,5] the reproducing kernel is generated in
expanded form, and coefficients of this polynomial are given as the quotient of two determinants of order n+ 1.
Results given by Mysovskikh have great theoretical importance, but they are not suitable for numerical calculations

because it is necessary to calculate n+ 2 determinants of order n+ 1, and the obtained polynomials are in expanded form.
An odd trigonometric degree of exactness n was considered in [6], where it was shown that nodes of quadrature rules

with maximal trigonometric degree of exactness can be obtained as zeros of the so-called bi-orthogonal trigonometric
polynomials (see also [7]). In [8] the paper [6] is completed by introducing the corresponding technical modifications
in order to have a unified notation both for the odd and even degree of exactness. In [9] a system of bi-orthogonal
trigonometric polynomials in Szegő’s sense [7] was considered, by applying the Gram–Schmidt orthogonalization process
to the trigonometric system {sin νx, cos νx}nν=0. Also, a connectionwith orthogonal polynomials on the unit circle was given.
It is known that so called n-point Szegő quadrature rules (see e.g., [10–16]) of the form

Sτ (f ) =
n∑
ν=1

wν f (λν),

where all weights wν , ν = 1, . . . , n, are positive and nodes λν , ν = 1, . . . , n, are distinct and all lie on the unit circle, are
characterized by the property that

Sτ (f ) =
1
2π

∫ π

−π

f (eit)w(t)dt, for all f ∈ Λ−(n−1),n−1,

where w(x) is an integrable and nonnegative function on the interval [−π, π), vanishing there only on a set of a measure
zero, andΛ−(n−1),n−1 denotes the set of Laurent polynomials

Ln−1(z) =
n−1∑

k=−(n−1)

ckzk, ck ∈ C

of degree at most n−1. A Laurent polynomial Ln−1(z)with z = eit can be expressed as a trigonometric polynomial of degree
at most n − 1. So, it follows that n-point Szegő quadrature rules integrate exactly all trigonometric polynomials of degree
at most n− 1. The nodes of such quadrature rules are zeros of so called para-orthogonal polynomials (see [14,12,10,11,17,
8] for details).



G.V. Milovanović et al. / Computers and Mathematics with Applications 56 (2008) 2915–2931 2917

In this paper our attention is restricted to the case of quadrature rules with an even trigonometric degree of exactness,
based on Turetzkii’s approach.We develop this approach as an alternativemethod to Szegő quadratures for the construction
of the mentioned quadrature rules. We investigate trigonometric orthogonal systems and corresponding quadratures of
Gaussian type. The paper is organized as follows. In the Section 2 we present Turetzkii’s approach, give a useful simple
modification of Turetzkii’s results, as well as a representation of trigonometric polynomials of semi-integer degree in terms
of self-inversive algebraic polynomials. Considerations on trigonometric orthogonal systems are presented in Section 3,
including some five-term recurrence relations. Section 4 is devoted to the casewith symmetricweight functions. A numerical
method for constructing quadratures of Gaussian type is proposed in Section 5. Finally, in Section 6 we give some numerical
examples and compare our method with other methods.

2. Introduction

Let the weight functionw(x) be an integrable and nonnegative function on the interval [0, 2π), vanishing there only on a
set of a measure zero, and let xν , ν = 0, 1, . . . , 2n, be distinct points in [0, 2π). Turetzkii in [1] considered an interpolatory
quadrature rule of the form∫ 2π

0
t(x)w(x)dx =

2n∑
ν=0

wν t(xν), t ∈ Tn. (2.1)

Such a quadrature rule can be obtained from the trigonometric interpolation polynomials (cf. [18,19])

tn(x) =
2n∑
ν=0

t(xν)`ν(x), (2.2)

where

`ν(x) =
2n∏

k=0,k6=ν

sin x−xk2
sin xν−xk2

=
An+1/2(x)

2 sin x−xν2 A
′

n+1/2(xν)

and

An+1/2(x) = A
2n∏
k=0

sin
x− xk
2

(A is a non-zero constant). (2.3)

Multiplying (2.2) with w(x) and integrating over [0, 2π), we obtain that the weights in the quadrature rule (2.1) are given
by

wν =

∫ 2π

0
`ν(x)w(x)dx =

∫ 2π

0

An+1/2(x)
2 sin x−xν2 A

′

n+1/2(xν)
w(x)dx. (2.4)

If the nodes xν , ν = 0, 1, . . . , 2n, are not specified in advance, one can try to find them such that the quadrature rule (2.1)
is exact for all trigonometric polynomials t ∈ T2n, i.e., such that quadrature rule (2.1) has trigonometric degree of exactness
equal to 2n.
In order to formulate and prove his result, Turetzkii [1] considered the so-called trigonometric polynomials of semi-integer

degree n+ 1/2, i.e., trigonometric functions of the form
n∑
ν=0

[
cν cos

(
ν +

1
2

)
x+ dν sin

(
ν +

1
2

)
x
]
, (2.5)

where cν, dν ∈ R, |cn|+ |dn| 6= 0. Evidently, An+1/2(x) in (2.3) is a trigonometric polynomial of semi-integer degree n+ 1/2.
To the contrary, every trigonometric polynomial of semi-integer degree n+ 1/2 of the form (2.5) can be represented in the
form (2.3) (see [1, Lemma 1]). As it can be seen, trigonometric polynomials of semi-integer degree are defined to be from
the linear span T

1/2
n of the set {cos(ν + 1/2)x, sin(ν + 1/2)x, ν = 0, 1, . . . , n}. Note that the dimension of T 1/2n is 2n+ 2,

while the dimension of Tn is 2n+ 1, since Tn is the span of the set {1, cos x, sin x, . . . , cos nx, sin nx}.
For a given trigonometric polynomial of semi-integer degree n+ 1/2

An+1/2(x) =
n∑
ν=0

[
cν cos

(
ν +

1
2

)
x+ dν sin

(
ν +

1
2

)]
, |cn| + |dn| 6= 0,

every polynomial t2n ∈ T2n can be uniquely represented in the form

t2n(x) = An+1/2(x)Bn−1/2(x)+ Rn(x),

where Bn−1/2 ∈ T
1/2
n−1 and Rn ∈ Tn. Using this auxiliary result [1, Lemma 2], Turetzkii [1] proved the following statement:
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Theorem 2.1. The quadrature formula (2.1), with coefficients wν , ν = 0, 1, . . . , 2n, determined by (2.4), is of Gaussian type,
i.e., it is exact for every t ∈ T2n, if and only if the nodes xν (∈ [0, 2π)), ν = 0, 1, . . . , 2n, are zeros of An+1/2(x), which is
orthogonal on [0, 2π) with respect to the weight function w(x) to every trigonometric polynomial of the semi-integer degree
from T

1/2
n−1 .

Remark 2.1. Some particular results connected with this problem can be found in [20] (for the constant weightw(x) = 1)
and [21] (for symmetric weight functions with numerical results only for the weight w(x) = 1). Also, some results for
a π-periodic weight function w on (0, 4π) can be found in [22], with more details only for the weights w(x) = sin2 x,
w(x) = cos2(x) andw(x) = 1.

Remark 2.2. It is well known that for a quadrature rule with themaximal algebraic degree of exactness (Gaussian formula),
its nodes are the zeros of the corresponding orthogonal (algebraic) polynomial. In the case of a quadrature with an odd
maximal trigonometric degree of exactness the nodes are zeros of orthogonal trigonometric polynomials, but for an even
maximal trigonometric degree of exactness the nodes are not zeros of the orthogonal trigonometric polynomial, but zeros
of the orthogonal trigonometric polynomial of semi-integer degree.
Thus, in order to obtain a quadrature rule with the maximal degree in a subspace of algebraic polynomials one

must consider orthogonality in the same subspace. A similar situation is with the quadrature rule with an odd maximal
trigonometric degree of exactness, but in the case of an even maximal trigonometric degree of exactness one must consider
the orthogonality in the subspace of trigonometric polynomials of semi-integer degree. This is not an isolated case, e.g., in a
more general case of Müntz systems, the nodes of a Gaussian quadrature rule are not zeros of the corresponding orthogonal
Müntz polynomial (cf. [23]).

Taking t(x) =
(
An+1/2(x)/ sin(x− xk)/2

)2
(∈ T2n) in (2.1), it is clear that the weights wk are positive for each k =

0, 1, . . . , 2n (see [1, Theorem 2]).
The point is that Theorem 2.1 requires that the trigonometric polynomial of a semi-integer degree An+1/2 has to be

orthogonal to every element of T 1/2n−1 , i.e., it must be∫ 2π

0
An+1/2(x)t(x)w(x)dx = 0, t ∈ T

1/2
n−1 .

Since the dimension of T 1/2n−1 is 2n and An+1/2 has 2n+2 coefficients, it can be seen that An+1/2 is not determined uniquely up
to amultiplication constant, as in the case of algebraic polynomials. Rather, An+1/2 has two free constants we choose those to
be cn and dn. The trigonometric polynomial An+1/2, which is orthogonal on [0, 2π)with respect to the weight functionw(x)
to every trigonometric polynomial of a semi-integer degree less than or equal to n− 1/2, with given leading coefficients cn
and dn, is uniquely determined (see [1, Section 3]). Obviously, we cannot choose cn = dn = 0, since in that case we have not
a polynomial of degree n+ 1/2, but n− 1/2.
For the special choices cn = 1, dn = 0 and cn = 0, dn = 1 we denote the orthogonal polynomials of semi-integer

degree by ACn+1/2 and A
S
n+1/2, respectively. This notation is rather natural, since A

C
n+1/2 and A

S
n+1/2 have the leading terms

cos(n+ 1/2)x and sin(n+ 1/2)x, respectively. Then every An+1/2 ∈ T
1/2
n is a linear combination of ACn+1/2 and A

S
n+1/2. This

also means that we are free to use zeros from [0, 2π) of any orthogonal polynomial of semi-integer degree An+1/2 ∈ T
1/2
n

in the quadrature rule (2.1), i.e., the quadrature rule of Gaussian type is not given uniquely, due to the fact it has 4n + 2
parameters and integrates exactly all trigonometric polynomials in the linear space T2n of dimension 4n+ 1.
There is a simple modification of Theorem 2.1 dealing with the translations of the interval [0, 2π).

Corollary 2.1. For L ∈ R, the quadrature formula∫ 2π+L

L
t(x)w̃(x)dx =

2n∑
ν=0

w̃ν t(τν), t ∈ T2n, (2.6)

with the coefficients w̃ν , ν = 0, 1, . . . , 2n, determined by

w̃ν =

∫ 2π+L

L

Ãn+1/2(x)

2 sin x−τν2 Ã
′

n+1/2(τν)
w̃(x)dx, Ãn+1/2(x) = Ã

2n∏
k=0

sin
x− τk
2

,

is of Gaussian type if and only if the nodes τν , ν = 0, 1, . . . , 2n, are zeros from the interval [L, 2π + L) of Ãn+1/2(x), which is
orthogonal on this interval with respect to the weight function w̃(x) to every trigonometric polynomial of the semi-integer degree
less than or equal to n− 1/2.
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Proof. Starting from the quadrature rule (2.1) for the weight function w(x) = w̃(x + L), x ∈ [0, 2π), and introducing
x := x+ L, we get∫ 2π+L

L
t(x− L)w(x− L)dx =

2n∑
k=0

wν t(xν + L− L), t ∈ T2n.

Since t(x− L) is again in T2n, denoting t̃(x) = t(x− L) and τν = xν+ L, ν = 0, 1, . . . , 2n, we obtain the following quadrature
formula of Gaussian type on [L, 2π + L)∫ 2π+L

L
t̃(x)w̃(x)dx =

2n∑
k=0

wν̃ t(τν), t̃ ∈ T2n, (2.7)

which is exact for any t̃ ∈ T2n. As we can see, only the nodes are changed from the original formula, i.e., τν = xν + L,
ν = 0, 1, . . . , 2n.
If we denote the ‘‘nodal polynomial of the semi-integer degree’’ of the quadrature rule (2.7) by

Ãn+1/2(x) = Ã
2n∏
ν=0

sin
x− τν
2

, Ã 6= 0,

we see that An+1/2(x− L) = Ãn+1/2(x), where An+1/2 is the corresponding ‘‘nodal polynomial of the semi-integer degree’’ of
the quadrature rule (2.1). Thus, it means that the substitution x := x + L into the orthogonality conditions for An+1/2 gets
the orthogonality conditions for Ãn+1/2, i.e., Ãn+1/2 is orthogonal with respect to w̃(x) = w(x − L), x ∈ [L, 2π + L), to all
trigonometric polynomials of the semi-integer degree less than or equal to n − 1/2. Similarly, if we substitute x := x + L
into the integral representation for the weightswν , ν = 0, 1, . . . , 2n, we get exactly what is stated. �

Every t ∈ T
1/2
n can be represented using an algebraic polynomial of degree 2n+1. Analogous statement for trigonometric

polynomials from Tn is proved in [24, pp. 19–20], and statement both for Tn and T
1/2
n is proved in a uniform terminology

in [8, Theorem 1.1.1].

Lemma 2.1. Let

An+1/2(x) =
n∑
k=0

[
ck cos

(
k+

1
2

)
x+ dk sin

(
k+

1
2

)
x
]
∈ T 1/2n ,

and ak = ck − idk, k = 0, 1, . . . , n. Then An+1/2(x) can be represented in the following form

An+1/2(x) =
1
2
e−i(n+1/2)xQ2n+1(eix),

where Q2n+1(z) is an algebraic polynomial of degree 2n+ 1, given by

Q2n+1(z) = an + an−1z + · · · + a1zn−1 + a0zn + a0zn+1 + · · · + an−1z2n + anz2n+1.

It can be easily concluded that Q2n+1(z) = z2n+1Q2n+1(1/z), i.e., the polynomial Q2n+1(z) is self-inversive (see [7] and
[24, p. 16]). If z is a zero of the polynomial Q2n+1(z), then x = arg(z) is a zero of An+1/2(x).
If An+1/2(x) is orthogonal on [0, 2π) with respect to the weight function w(x) to every trigonometric polynomial of

the semi-integer degree less than or equal to n − 1/2, then it has in [0, 2π) exactly 2n + 1 distinct simple zeros (see [1,
Theorem 3]). Thus, the corresponding algebraic polynomial Q2n+1(z) has 2n+ 1 distinct zeros on the unit circle |z| = 1.

3. Trigonometric orthogonal systems

We use the following notation for the expanded forms of ACn+1/2 and A
S
n+1/2,

ACn+1/2(x) = cos
(
n+

1
2

)
x+

n−1∑
ν=0

[
c(n)ν cos

(
ν +

1
2

)
x+ d(n)ν sin

(
ν +

1
2

)
x
]
, (3.1)

ASn+1/2(x) = sin
(
n+

1
2

)
x+

n−1∑
ν=0

[
f (n)ν cos

(
ν +

1
2

)
x+ g(n)ν sin

(
ν +

1
2

)
x
]
. (3.2)

For a given weight functionw, we introduce the inner product of the functions f and g by

(f , g) =
∫ 2π

0
f (x)g(x)w(x)dx. (3.3)
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Orthogonality of trigonometric polynomials of a semi-integer degree on [0, 2π), with respect to the inner product (3.3),
can be reduced to the orthogonality of nearly polynomial functions on the real line.
The following result will be needed in Section 4.

Theorem 3.1. Let w be aweight function on [0, 2π), with a sequence of orthogonal trigonometric polynomials of the semi-integer
degree

An+1/2(x) =
n∑
ν=0

[
c(n)ν cos

(
ν +

1
2

)
x+ d(n)ν sin

(
ν +

1
2

)
x
]
, |c(n)n | + |d

(n)
n | 6= 0.

Then, for every n ∈ N, 0 ≤ k ≤ n− 1, we have∫ 1

−1

[
n∑
ν=0

(
c(n)ν T2ν+1(x)+ d

(n)
ν

√
1− x2U2ν(x)

)][ k∑
ν=0

(
c(k)ν T2ν+1(x)+ d

(k)
ν

√
1− x2U2ν(x)

)] w(2 arccos x)
√
1− x2

dx = 0,

where Tν and Uν , ν ∈ N0, are Chebyshev polynomials of the first and second kind, respectively.

Proof. The orthogonality relation for An+1/2 states∫ 2π

0
An+1/2(x)Ak+1/2(x)w(x)dx = 0, n 6= k.

If we introduce x := 2 arccos x, using representations for Chebyshev polynomials Tn(x) = cos(n arccos x) and
√
1− x2Un(x) = sin((n+ 1) arccos x), n ∈ N0, we get what is stated. �

For ν, µ ∈ N0, we define

ICν = (A
C
ν+1/2, A

C
ν+1/2), JCν,µ = (2 cos x A

C
ν+1/2, A

C
µ+1/2),

ISν = (A
S
ν+1/2, A

S
ν+1/2), JSν,µ = (2 cos x A

S
ν+1/2, A

S
µ+1/2),

Iν = (ACν+1/2, A
S
ν+1/2), Jν,µ = (2 cos x ACν+1/2, A

S
µ+1/2).

Theorem 3.2. The trigonometric polynomials of semi-integer degree ACk+1/2(x) and A
S
k+1/2(x), k ≥ 1, satisfy the following five-

term recurrence relations:

ACk+1/2(x) = (2 cos x− α
(1)
k )A

C
k−1/2(x)− β

(1)
k A

S
k−1/2(x)− α

(2)
k A

C
k−3/2(x)− β

(2)
k A

S
k−3/2(x), (3.4)

ASk+1/2(x) = (2 cos x− δ
(1)
k )A

S
k−1/2(x)− γ

(1)
k A

C
k−1/2(x)− δ

(2)
k A

S
k−3/2(x)− γ

(2)
k A

C
k−3/2(x), (3.5)

where the coefficients α(j)k , β
(j)
k , γ

(j)
k , δ

(j)
k , k ≥ 1, j = 1, 2, are solutions of the following systems of linear equations

JCk−1,k−j = α
(j)
k I
C
k−j + β

(j)
k Ik−j, Jk−1,k−j = α

(j)
k Ik−j + β

(j)
k I
S
k−j,

Jk−1,k−j = γ
(j)
k I

C
k−j + δ

(j)
k Ik−j, JSk−1,k−j = γ

(j)
k Ik−j + δ

(j)
k I
S
k−j,

with α(2)1 = β
(2)
1 = γ

(2)
1 = δ

(2)
1 = 0.

Proof. According to the linear independence of polynomials ACν+1/2(x) and A
S
ν+1/2(x), ν = 0, 1, . . . , k, the expression

2 cos x ACk−1+1/2(x) can be represented in the following form

2 cos x ACk−1+1/2(x) = A
C
k+1/2(x)+

k−1∑
ν=0

(
α
(k−ν)
k ACν+1/2(x)+ β

(k−ν)
k ASν+1/2(x)

)
.

Multiplying both sides of this equality by w(x)ACν+1/2(x) and w(x)A
S
ν+1/2(x) for ν = 0, 1, . . ., k− 3, and integrating over

[0, 2π), according to the orthogonality, we obtain the following homogeneous systems of linear equations

α
(k−ν)
k ICν + β

(k−ν)
k Iν = 0, α

(k−ν)
k Iν + β

(k−ν)
k ISν = 0,

with the unknown coefficients α(k−ν)k , β
(k−ν)
k , ν = 0, 1, . . . , k− 3. The determinants of the previous systems are equal to

Dν =
(∫ 2π

0

(
ACν+1/2(x)

)2
w(x)dx

)(∫ 2π

0

(
ASν+1/2(x)

)2
w(x)dx

)
−

(∫ 2π

0
ACν+1/2(x)A

S
ν+1/2(x)w(x)dx

)2
, ν = 0, 1, . . . , k− 3.
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In order to prove that Dν 6= 0, ν = 0, 1, . . . , k − 3, we need the well-known Cauchy–Schwarz–Bunjakowsky integral
inequality (see [25, p. 45]):(∫ b

a
f (x)g(x)dx

)2
≤

(∫ b

a
f (x)2dx

)(∫ b

a
g(x)2dx

)
, f , g ∈ L2[a, b],

which reduces to an equality if and only if the functions f and g are linearly dependent.
According to linear independence of ACν+1/2(x) and A

S
ν+1/2(x), we get that Dν 6= 0, ν = 0, 1, . . . , k − 3. Therefore, the

previous homogeneous systems have only trivial solutions, i.e., α(k−ν)k = β
(k−ν)
k = 0, ν = 0, 1, . . . , k− 3.

Thus, the previous recurrence relation reduces to the following form

2 cos x ACk−1+1/2(x) = A
C
k+1/2(x)+ α

(1)
k A

C
k−1+1/2(x)+ β

(1)
k A

S
k−1+1/2(x)+ α

(2)
k A

C
k−2+1/2(x)+ β

(2)
k A

S
k−2+1/2(x),

i.e., we obtain the recurrence relation (3.4).
Multiplying both sides of the previous recurrence relation with functionsw(x)ACk−j+1/2(x) andw(x)A

S
k−j+1/2(x), j = 1, 2,

and integrating on [0, 2π), we obtain the following system of linear equations with unknown coefficients α(j)k , β
(j)
k , j = 1, 2,

JCk−1,k−j = α
(j)
k I
C
k−j + β

(j)
k Ik−j, Jk−1,k−j = α

(j)
k Ik−j + β

(j)
k I
S
k−j, j = 1, 2,

which also, by the same arguments, has the unique solution.
Analogously one can obtain the recurrence relation (3.5) for ASk+1/2(x). �

Lemma 3.1. For n ≥ 1, the following equations

JCn,n−1 = I
C
n , JSn,n−1 = I

S
n , Jn,n−1 = Jn−1,n = In

hold.
Proof. Using the recurrence relations (3.4) and (3.5) and orthogonality conditions, we get

ICn = (A
C
n+1/2, A

C
n+1/2) = (2 cos x A

C
n−1+1/2, A

C
n+1/2) = J

C
n,n−1,

and, similarly ISn = J
S
n,n−1. Finally,

In = (ACn+1/2, A
S
n+1/2) = (2 cos x A

C
n−1+1/2, A

S
n+1/2) = Jn−1,n. �

Thus, for computations of the recurrence coefficientswe need the following integrals: ICn , I
S
n , In, J

C
n,n, J

S
n,n, and Jn,n. Therefore,

we denote
JCn = J

C
n,n, JSn = J

S
n,n, Jn = Jn,n.

Now, Theorem 3.2. and Lemma 3.1. give the following corollary.

Corollary 3.1. The recurrence coefficients in (3.4) and (3.5) can be calculated by the following formulae

α
(1)
k =

ISk−1J
C
k−1 − Ik−1Jk−1
Dk−1

, α
(2)
k =

ICk−1I
S
k−2 − Ik−1Ik−2
Dk−2

, (3.6)

β
(1)
k =

ICk−1Jk−1 − Ik−1J
C
k−1

Dk−1
, β

(2)
k =

Ik−1ICk−2 − I
C
k−1Ik−2

Dk−2
,

γ
(1)
k =

ISk−1Jk−1 − Ik−1J
S
k−1

Dk−1
, γ

(2)
k =

Ik−1ISk−2 − I
S
k−1Ik−2

Dk−2
,

δ
(1)
k =

ICk−1J
S
k−1 − Ik−1Jk−1
Dk−1

, δ
(2)
k =

ISk−1I
C
k−2 − Ik−1Ik−2
Dk−2

,

where Dk−j = ICk−jI
S
k−j − I

2
k−j, j = 1, 2, for k ≥ 1, except α

(2)
1 = β

(2)
1 = γ

(2)
1 = δ

(2)
1 = 0.

Let ÃCn+1/2(x) and Ã
S
n+1/2(x) be trigonometric polynomials of semi-integer degree n+ 1/2, orthogonal with respect to the

weight function w̃ on [L, 2π + L), with expansions

ÃCn+1/2(x) = cos
(
n+

1
2

)
x+

n−1∑
ν=0

[̃
c(n)ν cos

(
ν +

1
2

)
x+ d̃(n)ν sin

(
ν +

1
2

)
x
]
, (3.7)

ÃSn+1/2(x) = sin
(
n+

1
2

)
x+

n−1∑
ν=0

[̃
f (n)ν cos

(
ν +

1
2

)
x+ g̃(n)ν sin

(
ν +

1
2

)
x
]
. (3.8)

The existence of such polynomials is proved in Corollary 2.1.
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Theorem 3.3. The trigonometric polynomials of semi-integer degree ÃCn+1/2(x) and Ã
S
n+1/2(x), orthogonal on [−π, π) with

respect to a weight function w̃(x), can be represented as

ÃCn+1/2(x) = (−1)
nASn+1/2(x+ π), ÃSn+1/2(x) = (−1)

n−1ACn+1/2(x+ π),

where ACn+1/2(x) and A
S
n+1/2(x) are the corresponding trigonometric polynomials of semi-integer degree orthogonal on [0, 2π)

with respect to the weight functionw(x) = w̃(x− π).
If we denote the five-term recurrence coefficients for the weight w̃ by α̃(j)k , β̃

(j)
k , γ̃

(j)
k , δ̃

(j)
k , k ∈ N, j = 1, 2, then

α̃
(j)
k = (−1)

jδ
(j)
k , β̃

(j)
k = (−1)

j−1γ
(j)
k , γ̃

(j)
k = (−1)

j−1β
(j)
k , δ̃

(j)
k = (−1)

jα
(j)
k ,

where α(j)k , β
(j)
k , γ

(j)
k , δ

(j)
k , k ∈ N, j = 1, 2, are the corresponding five-term recurrence coefficients for the weight w(x).

Proof. Using the identity Ãn+1/2(x) = An+1/2(x− L), from the proof of Corollary 2.1. we have that

(−1)n−1ACn+1/2(x+ π) = sin
(
n+

1
2

)
x+

n−1∑
ν=0

[
(−1)n+νc(n)ν sin

(
ν +

1
2

)
x+ (−1)n+ν−1d(n)ν cos

(
ν +

1
2

)
x
]

and

(−1)nASn+1/2(x+ π) = cos
(
n+

1
2

)
x+

n−1∑
ν=0

[
(−1)n+ν−1f (n)ν sin

(
ν +

1
2

)
x+ (−1)n+νg(n)ν cos

(
ν +

1
2

)
x
]

are trigonometric polynomials of semi-integer degree orthogonal with respect to w̃(x) = w(x+ π), x ∈ [−π, π). Thus, we
only have to identify ÃCn+1/2(x) and Ã

S
n+1/2(x) from (3.7) and (3.8), respectively, in order to finish the proof.

If we put

ACn+1/2(x) = (−1)
n−1̃ASn+1/2(x− π) and ASn+1/2(x) = (−1)

ñACn+1/2(x− π)

in the five-term recurrence relations (3.4) and (3.5), with the substitution x := x− π , we get what is stated.
Finally, it is easy to see that

c̃(n)ν = (−1)
n+νg(n)ν , d̃(n)ν = (−1)

n+ν−1f (n)ν , f̃ (n)ν = (−1)
n+ν−1d(n)ν , g̃(n)ν = (−1)

n+νc(n)ν . �

Remark 3.1. A five-term recurrence relation for a system of orthonormal sequence of trigonometric polynomials with
respect to a finite positive Borel measure µ on [0, 2π ], with infinite points of increasing, was given in [9]. The orthogonal
basis {Pn(θ)} of trigonometric polynomials, i.e., a sequence satisfying 〈Pn(θ), Pm(θ)〉µ =

∫ 2π
0 Pn(θ)Pm(θ)dµ(θ) = knδn,m,

where kn 6= 0 for all nonnegative integers n, was obtained by applying the Gram–Schmidt method to the trigonometric
system {sin νx, cos νx}nν=0. Trigonometric polynomials Pn(θ)were normalized in such a way that the leading coefficients of
these polynomials in sin nθ and cos nθ were 21−n and P0(θ) = 1. For the corresponding orthonormal sequence {pn(θ)} there
exist three sequences of coefficients {an}n≥2, {bn}n≥0 and {cn}n≥1 such that for n ≥ 0

cos θpn(θ) = an+2pn+2(θ)+ cn+1pn+1(θ)+ bnpn(θ)+ cnpn−1(θ)+ anpn−2(θ),

with initial conditions

p−2(θ) = p−1(θ) = 0, p0(θ) =
1
√
m0
, p1(θ) =

√
m0

m0m2 −m21

(
sin θ −

m1
m0

)
,

wherem0 = 〈1, 1〉µ,m1 = 〈1, sin θ〉µ andm2 = 〈sin θ, sin θ〉µ (see [9, Theorem 2.2]).

4. Symmetric weights

In this section we consider an interesting case of symmetric weights, i.e., the case whenw(x) = w(2π − x).

Lemma 4.1. If the weight function satisfiesw(x) = w(2π − x), then we have β(j)k = 0, γ
(j)
k = 0, j = 1, 2, k ∈ N, and d(n)k = 0,

f (n)k = 0, k ∈ {0, 1, . . . , n}, n ∈ N.

Proof. If we apply the well-known Gram–Schmidt orthogonalization procedure to the basis of T 1/2n ,

cos
(
0+

1
2

)
x, sin

(
0+

1
2

)
x, . . . , cos

(
n+

1
2

)
x, sin

(
n+

1
2

)
x,
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with respect to the inner product (3.3), we conclude that the obtained system of orthogonal functions can be represented
by two sequences of functions fν and gν , ν = 0, 1, . . . , n, where fν depends only on cos-functions and gν depends only on
sin-functions, because for k, ν ∈ N0, we have∫ 2π

0
cos

(
k+

1
2

)
x sin

(
ν +

1
2

)
xw(x)dx =

∫ π

0
cos

(
k+

1
2

)
x sin

(
ν +

1
2

)
xw(x)dx

+

∫ 0

π

cos
(
k+

1
2

)
(2π − x) sin

(
ν +

1
2

)
(2π − x)w(2π − x)(−dx)

=

∫ π

0
cos

(
k+

1
2

)
x sin

(
ν +

1
2

)
xw(x)dx−

∫ π

0
cos

(
k+

1
2

)
x sin

(
ν +

1
2

)
xw(2π − x)dx = 0.

That system of functions, since it is unique, must be equal to the orthogonal trigonometric polynomials of semi-integer
degree ACk+1/2 and A

S
k+1/2, k = 0, 1, . . . , n, i.e., ACk+1/2 depends only on cos-functions and A

S
k+1/2 depends only on sin-

functions, which means d(k)ν = 0, and f
(k)
ν = 0, for all ν ∈ {0, 1, . . . , k}, k = 0, 1, . . . , n. Hence, our system of five-term

recurrence relations degenerates into two independent three-term recurrence relations, i.e.,

β
(j)
k = 0, γ

(j)
k = 0, j = 1, 2, k ∈ N. �

Thus, the recurrence relations (3.4) and (3.5) reduce to the three-term recurrence relations and trigonometric
polynomials of semi-integer degree (3.1) and (3.2) reduce to

ACn+1/2(x) =
n∑
ν=0

c(n)ν cos
(
ν +

1
2

)
x, c(n)n = 1 (4.1)

and

ASn+1/2(x) =
n∑
ν=0

g(n)ν sin
(
ν +

1
2

)
x, g(n)n = 1, (4.2)

respectively.
Now, we get an immediate result:

Lemma 4.2. For every ν ∈ N0, we have

ACν+1/2(π) = 0, ASν+1/2(0) = 0.

Using Theorem 3.1. we can reduce the problem of symmetric weights to algebraic polynomials.

Theorem 4.1. For a weight functionw(x), x ∈ (0, 2π), with the propertyw(x) = w(2π − x), we have the following equations∫ 1

−1
C2n+1(x)C2k+1(x)

w(2 arccos x)
√
1− x2

dx = 0, C2n+1(x) =
n∑
ν=0

c(n)ν T2ν+1(x)

and ∫ 1

−1
S2n(x)S2k(x)

√
1− x2w(2 arccos x)dx = 0, S2n(x) =

n∑
ν=0

g(n)ν U2ν(x),

for all 0 ≤ k ≤ n− 1, n ∈ N. The polynomials C2n+1(x) and S2n(x) satisfy the following three-term recurrence relations

C2n+1(x) = (4x2 − 2− α(1)n )C2n−1(x)− α
(2)
n C2n−3(x), n ∈ N, α(2)1 = 0,

S2n(x) = (4x2 − 2− δ(1)n )S2n−2(x)− δ
(2)
n S2n−4(x), n ∈ N, δ(2)1 = 0,

with C1(x) = x and S0(x) = 1.

Proof. We apply Theorem 3.1. to the sequences ACn+1/2 and A
S
n+1/2, n ∈ N, and keep in mind that those are given by the

expansions (4.1) and (4.2), respectively.
By substitution x := 2 arccos x into the three-term recurrence for C2n+1, n ∈ N, and applying cos(2 arccos x) = 2x2 − 1,

we get what is stated. A similar proof can be done for the sequence S2n, n ∈ N. �

If the weight function w(x), x ∈ (0, 2π), satisfies w(x) = w(2π − x), then the weight function w̃(x) = w(x + π),
x ∈ (−π, π), satisfies w̃(x) = w̃(−x), x ∈ (−π, π), i.e., the function w̃ is an even function on its domain. Hence, using
Lemma 4.1. for ÃCn+1/2 and Ã

S
n+1/2, n ∈ N, the expansions given in (3.7) and (3.8) for ν = 0, 1, . . . , n− 1 satisfy d̃(n)ν = 0 and

f̃ (n)ν = 0, respectively, if the weight function w̃ is even on (−π, π).
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Theorem 4.2. For an even weight function w̃(x), x ∈ (−π, π), for all 0 ≤ k ≤ n− 1, n ∈ N, we have∫ 1

−1
C̃n(x)̃Ck(x)

√
1+ x
1− x

w̃(arccos x)dx = 0, C̃n(x) =
n∑
ν=0

c̃(n)ν (Tν(x)− (1− x)Uν−1(x))

and ∫ 1

−1
S̃n(x)̃Sk(x)

√
1− x
1+ x

w̃(arccos x)dx = 0, S̃n(x) =
n∑
ν=0

g̃(n)ν (Tν(x)+ (1+ x)Uν−1(x)).

The polynomials C̃n and S̃n, n ∈ N, satisfy the following three term-recurrence relations

C̃n(x) = (2x− α̃(1)n )̃Cn−1(x)− α̃
(2)
n C̃n−2(x), α̃

(2)
1 = 0, C̃0 = 1,

S̃n(x) = (2x− δ̃(1)n )̃Sn−1(x)− δ̃
(2)
n S̃n−2(x), δ̃

(2)
1 = 0, S̃0 = 1.

Proof. Since w̃(x) is an even function, from the orthogonality conditions for ÃCn+1/2, we conclude that∫ π

0
ÃCn+1/2(x)̃A

C
k+1/2(x)w̃(x)dx = 0, n, k ∈ N, n > k.

Applying the substitution x := arccos x, we get∫ 1

−1
ÃCn+1/2(arccos x)̃A

C
k+1/2(arccos x)

w̃(arccos x)
√
1− x2

dx = 0. (4.3)

It is easy to see that

cos
((
k+

1
2

)
arccos x

)
=

√
1+ x
2
Tk(x)−

√
1− x
2

√
1− x2Uk−1(x)

and then

ÃCn+1/2(arccos x) =

√
1+ x
2

n∑
ν=0

c̃(n)ν (Tν(x)− (1− x)Uν−1(x)) .

Substituting the obtained formulae in (4.3), after some elementary transformations, we get the first assertion.
The second assertion can be proved in the same way using ÃSn+1/2 and applying

sin
((
k+

1
2

)
arccos x

)
=

√
1− x
2
Tk(x)+

√
1+ x
2

√
1− x2Uk−1(x).

For the proof of the corresponding recurrence relations just take the recurrence relations for ÃCn+1/2 and Ã
S
n+1/2 and put

x := arccos x. �

5. Numerical construction of quadrature rules of Gaussian type

In this section we present a method for constructing quadrature rules of Gaussian type. As we mentioned in Section 2,
for any positive integer n, the quadrature rule of Gaussian type is the following one∫ 2π

0
t(x)w(x)dx =

2n∑
ν=0

wν t(xν), t ∈ T2n, (5.1)

where the nodes xν , ν = 0, 1, . . . , 2n, are zeros of An+1/2 and weightswν are given by

wν =

∫ 2π

0

An+1/2(x)
2 sin x−xν2 A

′

n+1/2(xν)
w(x)dx, ν = 0, 1, . . . , 2n. (5.2)

We choose to use ACn+1/2, i.e., the polynomial of semi-integer degree with leading cosine function (of course, any other
An+1/2 can be used instead). As usual, the algorithm has two parts, dealing with the computation of nodes and weights. The
construction of nodes is independent from the construction of weights and to the contrary, weights can be computed only
when nodes are given.
The construction of weights can be performed using formula (5.2), provided we can calculate the integral and ACn+1/2

efficiently. A calculation of the integral can be performed using the Gauss–Legendre quadrature rule provided the weight
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function is smooth enough and the semi-integer degree of ACn+1/2 is not so big. In practice, this degree should not excite
101/2, if the Gauss–Legendre quadrature rule is applied in double precision arithmetics. For non-smooth weight functions,
problems with instabilities in (3.6) are equivalent with the instabilities for the three-term recurrence coefficients for
algebraic orthogonal polynomials. Provided τk, σk, k = 1, . . . ,N , are the nodes and weights of the Gauss–Legendre
quadrature rule respectively, we have

wν ≈
π

2(ACn+1/2)′(xν)

N∑
k=1

σk
(wACn+1/2)(πτk + π)

cos πτk−xν2

, ν = 0, 1, . . . , 2n.

Here we emphasize that the possibility cos(πτk − xν)/2 = 0 for some k ∈ {1, . . . ,N} and ν ∈ {0, 1, . . . , 2n} is not an
essential problem. Once {xk}Nk=1 is computed, if cos(πτk − xν)/2 = 0 for some k ∈ {1, . . . ,N} and ν ∈ {0, 1, . . . , 2n} we
can always choose a Gauss–Legendre rule with N + 1 instead of N points and start again. As we can see, the computation
requires the values of ACn+1/2(x) at various points on [0, 2π). It turns out that A

C
n+1/2(x) can be computed using five-term

recurrences, given in (3.4) and (3.5), in a numerically stable way, i.e., using double precision arithmetics one gets nearly
double precision results.
The derivative of ACn+1/2(x) can be computed using the same recurrence relations. Namely, differentiating the recurrence

relations (3.4) and (3.5), it is easy to obtain recurrence relations for derivatives of ACn+1/2(x) and A
S
n+1/2(x).

This approach for calculating values ofACn+1/2(x) and values of its derivative requires the five-term recurrence coefficients.
These coefficients can be computed using formulae (3.6), where integrals are approximated using the Gauss–Legendre
quadrature rule. However, this approach still suffers from the fact that it can be used for a computation of a small number
of recurrence coefficients. For examples given below we did not use this procedure; rather, we used analytical expressions
for the recurrence coefficients, which we recently derived (see [26]).
There is still another way for computing weights, based on the fact that the polynomial An+1/2(x)/ sin x−xν2 (ν =

0, 1, . . . , 2n) under integral in (5.2) is a trigonometric polynomial of degree n. In order to calculate exactly this integral
(up to rounding errors) we need a quadrature rule of Gaussian type with much less number of nodes; precisely with only
2[(n+1)/2]+1 nodes. Onemay consider the construction of the sequence ofm = [log2 n]+1 quadrature rules of Gaussian
type (5.1) exact on the sequence of spaces T2nk , where nonnegative integers nk, k = 1, . . . ,m, are determined by nm = n,
nk = [(nk+1+1)/2], k = m−1, . . . , 1.With this approach, only for weights of quadrature rule of Gaussian typewith 2n1+1
nodes, we use the Gauss–Legendre quadrature rule, and for the weights of all other quadratures in considered sequence we
use previously obtained quadrature.
For constructing the nodes xν , ν = 0, 1, . . . , 2n, we use the algebraic polynomial Q2n+1(z) introduced in Lemma 2.1.

According to the representation

An+1/2(x) =
e−i(n+1/2)x

2
Q2n+1(eix), (5.3)

we conclude that the zeros of Q2n+1(z) on the unit circle correspond to the zeros of An+1/2(x) on the interval [0, 2π). Since
An+1/2(x) has 2n+ 1 distinct zeros in [0, 2π), the algebraic polynomial Q2n+1(z) has 2n+ 1 simple zeros on the unit circle.
Using ACn+1/2(x), the algebraic polynomial Q2n+1(z) has the form

Q2n+1(z) = 1+ a
(n)
n−1z + · · · + a

(n)
1 z

n−1
+ a(n)0 z

n
+ a(n)0 z

n+1
+ · · · + z2n+1,

where a(n)ν = c
(n)
ν − id

(n)
ν , ν = 0, 1, . . . , n− 1 (see Lemma 2.1.).

At first, we determine the zeros zν , ν = 0, 1, . . . , 2n, of the algebraic polynomial Q2n+1(z) by the following simultaneous
iterative process

z(k+1)ν = z(k)ν −
Q2n+1(z(k)ν )

P ′k(z
(k)
ν )

, ν = 0, 1, . . . , 2n; k = 0, 1, . . . , (5.4)

where Pk(z) =
∏2n
ν=0(z − z

(k)
ν ). The starting values must be mutually different, i.e., z

(0)
i 6= z

(0)
j , i 6= j. This iterative process

converges quadratically, because it is equivalent to theNewton–Kantorovichmethod applied to the systemof Viète formulae
(cf. [27]).
For the iterative process (5.4) we need to calculate the values Q2n+1(z(k)ν ), where z

(k)
ν ∈ C in general. As we know, we

have (5.3) with x ∈ [0, 2π). Since in (5.3) all functions are analytic, the relation holds true for all x ∈ C by the principle
of analytic continuation (see [28]). As we mentioned before, the values of An+1/2(x) can be computed accurately using the
five-term recurrence relations. Thus, it holds also for the values of the polynomial Q2n+1. The problem is that we have to
compute Q2n+1 at z(k)ν ∈ C, i.e., we have to compute An+1/2 at the point −i Log(z(k)ν ). It might appear that for different
branches of the Log function we might get different results for Q2n+1(z(k)ν ). Actually, this is not the case. Namely, let z 6= 0,
and−i Log z = −i log z + 2kπ for some k ∈ Z, where log 1 = 0. Then, for x = −i log z,

Q2n+1(z) = 2ei(n+1/2)(x+2kπ)An+1/2(x+ 2kπ)

= 2(−1)kei(n+1/2)x(−1)kAn+1/2(x) = 2ei(n+1/2)xAn+1/2(x),
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i.e., the computed value using any branch of the Log function is the same. In the case z(k)ν = 0, we easily obtainQ2n+1(0) = 1,
and we do not perform computation using An+1/2. Thus, we conclude

Q2n+1(z) =
{
1, z = 0,
2e(n+1/2) log zAn+1/2(−i log z), z 6= 0.

The computation of Q2n+1 can be ill-conditioned if performed in this way, provided iterations z(k)ν are not close enough to
the unit circle. So, one should have the starting values as good as possible.
Knowing zeros zν , ν = 0, 1, . . . , 2n, of the algebraic polynomial Q2n+1, the zeros xν , ν = 0, 1, . . . , 2n, of ACn+1/2 can be

obtained as

xν = arg zν ∈ [0, 2π), ν = 0, 1, . . . , 2n.

All computations are performed in double precision arithmetic (16 decimal digits mantissa) in Mathematica, using the
corresponding software package described in [29].
The main problem in the previous iterative process is a choice of the starting iterations z(0)ν , ν = 0, 1, . . . , 2n. The

following auxiliary result is very useful for setting good starting values in the iterative process (5.4).

Lemma 5.1. There exists some ` ∈ Z such that for the zeros xν , ν = 0, 1, . . . , 2n, of ACn+1/2 we have

x0 + x1 + · · · + x2n = (2`+ 1)π, ` ∈ Z.

Proof. This assertion follows directly from the Viète formula:

z0z1 · · · z2n = eix0eix1 · · · eix2n = ei(x0+x1+···+x2n) = −1. �

Knowing coefficients of five-term recurrence relations, for good chosen starting values in iterative process (5.4), using
described procedure we obtain zeros of ACn+1/2 in O(n

2) floating point operations.
As we saw before, the corresponding weights (5.2) can be calculated exactly using quadrature rule of Gaussian type with

2[(n + 1)/2] + 1 nodes. Since
∑[log2 n]
k=0 (n/2k)2 = (4 − 2−2[log2 n])n2/3, it is easy to see that the total cost of our algorithm

for construction of mentionedm = [log2 n] + 1 quadrature rules of Gaussian type (5.1) is also O(n2) operations.
Finally, we address a question of the construction of quadrature rules for an even weight function w(x) = w(−x),

x ∈ (−π, π). Using Theorem 4.2, we have

ÃCn+1/2(arccos x) =

√
1+ x
2
C̃n(x), (5.5)

and algebraic polynomials satisfy the following three-term recurrence relation

C̃n(x) = (2x− α̃(1)n )̃Cn−1(x)− α̃
(2)
n C̃n−2(x), α̃

(2)
1 = 0, C̃0 = 1. (5.6)

This means that we can calculate the zeros of C̃n, i.e., the zeros of Ãn+1/2, using QR-algorithm (see [30–33]). The weightswν ,
ν = 0, 1, . . . , 2n, of the quadrature rule (2.6) can be also constructed using QR-algorithm.

Lemma 5.2. Let w̃ be an even weight function on (−π, π). Let xν and ων , ν = 1, . . . , n, be nodes and weights of the n-point
Gaussian quadrature rule for the following weight function w̃(arccos x)

√
(1+ x)/(1− x), x ∈ (−1, 1), constructed for algebraic

polynomials. Then, for the quadrature rule of Gaussian type (2.6) with respect to the weight function w̃ on (−π, π), we have

w̃2n−ν−1 = w̃ν =
ων+1

1+ xν+1
, ν = 0, 1, . . . , n− 1, w̃2n =

∫ π

−π

w̃(x)dx−
2n−1∑
ν=0

w̃ν,

τ2n−ν−1 = −τν = arccos xν+1, ν = 0, 1, . . . , n− 1, τ2n = π.

Proof. The Gaussian quadrature rule for algebraic polynomials can be constructed using the three-term recurrence (5.6).
The recursion coefficients (formonic orthogonal polynomials) are given by α̃(1)ν /2 and α̃

(2)
ν /4, ν ∈ N. Using QR-algorithmwe

get the nodes xν , ν = 1, . . . , n, and applying x := arccos x we get the zeros of ÃCn+1/2, given by τ2n−ν = −τν = − arccos xν ,
ν = 0, 1, . . . , 2n− 1. Using Lemma 4.2. and Theorem 3.3. we obtain τ2n = π .
It is well known that the weights in Gaussian quadrature rules can be constructed using Shohat formula (see [34,35]). In

our case we have

ων = µ0

n−1∑k=0
 C̃k(xν)k∏
j=2
α
(2)
j


2
−1

,
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where

µ0 =

∫ 1

−1

√
1+ x
1− x

w̃(arccos x)dx.

Applying (5.5) we get

ων =
(1+ xν)µ0

2
n−1∑
k=0

 ÃCk+1/2(τ2n−ν−1)k∏
j=2

α
(2)
j


2 , ν = 1, . . . , n.

According to Corollary 2.1. the weights of the quadrature rule are not affected by the translation of the support. Using a
result from [1], the weightswν for the weight functionw(x) = w(2π − x), x ∈ [0, 2π), are given by

w2n−ν = w̃2n−ν =
µ0

2
n−1∑
k=0

 ASk+1/2(τ2n−ν+π)k∏
j=2

α
(2)
j


2 =

µ0

2
n−1∑
k=0

 ÃSk+1/2(τ2n−ν )k∏
j=2

α̃
(2)
j


2 ,

for ν = 0, 1, . . . , n− 1, where we use the fact that nodes are transformed by an additive law from Corollary 2.1, and where

µ0 =

∫ 2π

0
sin2

x
2
w(x)dx =

∫ π

−π

cos2
x
2
w̃(x)dx =

∫ 1

−1

√
1+ x
1− x

w̃(arccos x)dx.

Combining formulae for the weights we obtain

w̃2n−ν =
ων+1

1+ xν+1
, ν = 0, 1, . . . , n− 1.

Since this formula is symmetric, we have w̃ν = w̃2n−ν−1, ν = 0, 1, . . . , n− 1. Finally, it must be

2n∑
ν=0

w̃ν =

∫ π

−π

w̃(x)dx,

and, therefore,

w2n =

∫ π

−π

w̃(x)dx−
2n−1∑
ν=0

w̃ν . �

Completely similar arguments can be applied to prove the following result.

Lemma 5.3. Let w̃ be an even weight function on (−π, π). Let xν and ων , ν = 1, . . . , n, be nodes and weights for the n-point
Gaussian quadrature rule for the following weight function w̃(arccos x)

√
(1− x)/(1+ x), x ∈ (−1, 1), constructed for algebraic

polynomials. Then, for the quadrature rule of Gaussian type (2.6) with respect to the weight function w̃ on (−π, π), we have

w̃2n−ν = w̃ν =
ων+1

1− xν+1
, ν = 0, 1, . . . , n− 1, w̃n =

∫ π

−π

w̃(x)dx−
2n−1∑
ν=0

w̃ν,

τ2n−ν = −τν = arccos xν+1, ν = 0, 1, . . . , n− 1, τn = 0.

Remark 5.1. Interesting connection with Gaussian quadrature rule with respect to a weight function σ(x) on the interval
[−1, 1] and Szegő quadrature rulewith respect to symmetric weight functionω(θ) = σ(cos θ)| sin θ | on [−π, π]was given
in [36].

6. Numerical examples

In this section we give two numerical examples.

Example 6.1. Letw(x) = 1+ sinmx, wherem is an odd integer.

According to the explicit formulae given in [1,26], for m ≥ 3 and for all positive integers n ≤ [m/2], the trigonometric
polynomial of semi-integer degree ACn+1/2(x) is given by A

C
n+1/2(x) = cos(n+ 1/2)x. Thus, the nodes xν and the weightswν ,
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Table 6.1
Nodes xν , ν = 0, 1, . . . , 16, and weightswν , ν = 0, 1, . . . , 50, for n = 25 andw(x) = 1+ sin 15x

ν xν w17j+ν , j = 0, 1, 2

0 0.0734401134707617 0.1849824504539084
1 0.1720803992707313 0.1537846831517915
2 0.2993059533314362 0.0307792282514791
3 0.4461644342899088 0.1401732745185891
4 0.5445227530917630 0.1898081115080525
5 0.6414418782341709 0.0778455112386129
6 0.8337565680606713 0.0908209422996504
7 0.9305122558894531 0.1925521119018577
8 1.0284562970240495 0.1271338202783832
9 1.1941155620071260 0.0374793000746708
10 1.3057227567822522 0.1667479588549361
11 1.4044808463174123 0.1773988199716636
12 1.5068361968932778 0.0494873674658285
13 1.6866505393455060 0.1148661358623812
14 1.7841265106107811 0.1937788694612881
15 1.8811643708168992 0.1029645966854189
16 2.0695809349059611 0.0637919204146833

ν = 0, 1, . . . , 2n, can be obtained explicitly

xν =
2ν + 1
2n+ 1

π, wν =
2π
2n+ 1

, ν = 0, 1, . . . , 2n. (6.1)

It is easy to see that the sum of zeros xν , ν = 0, 1, . . . , 2n, given by (6.1), is equal to (2n+ 1)π .
For n > [m/2]we calculate the nodes using the iterative process (5.4). For the weights we start with a quadrature rule of

Gaussian type, such that the nodes and the weights are known explicitly, and we use the procedure described in Section 5,
dealing with the construction of a sequence of quadrature rules of Gaussian type.
In our numerical experiments, at first, we select the starting values x(0)ν ∈ (0, 2π) and then set the starting iteration

z(0)ν = e
ix(0)ν , ν = 0, 1, . . . , 2n. We choose the starting values x(0)ν such that their sum is equal to (2n+ 1)π . In addition, for

some values n > [m/2] + 1, we use the zeros of ACn−1/2(x) to generate the starting values x
(0)
ν , ν = 0, 1, . . . , 2n. Based on

the several numerical experiments we observed that for n > [m/2] + 1 the zeros have some kind of interlacing property
(obviously all polynomials ACk+1/2(x), k = 0, 1, . . . , [m/2], have one common zero xk = π ).

If τ (n)0 < τ
(n)
1 < · · · < τ

(n)
2n are zeros of A

C
n+1/2(x), n > [m/2] + 1, in order to calculate zeros of A

C
n+3/2(x) we select the

starting values x(0)ν ∈ (0, 2π), ν = 0, 1, . . . , 2n+ 2, in such a way that the following inequalities hold

x(0)0 < τ
(n)
0 < x(0)1 < τ

(n)
1 < · · · < τ (n)n < x(0)n+1 < x

(0)
n+2 < τ

(n)
n+1 < x

(0)
n+3 < · · · < τ

(n)
2n < x

(0)
2n+2.

We use explicit formulae in order to get the recurrence coefficients in (3.4) and (3.5). In numerical experiments we
observe that the problem of finding starting values is more difficult for small m (e.g. m = 1, 3, 5). The simplest starting
values are

x(0)ν =
2ν + 1
2n+ 1

π, ν = 0, 1, . . . , 2n (6.2)

(starting nodes are equidistant in (0, 2π) and sum of them is equal to (2n + 1)π ). We have applied the iterative process
(5.4) with the starting iteration z(0)ν = e

ix(0)ν , ν = 0, 1, . . . , 2n, where x(0)ν are given by (6.2) in the following cases:

• casem = 9 for 5 ≤ n ≤ 45;
• casem = 15 for 8 ≤ n ≤ 25 and for n = 30(5)85;
• case m = 75 for n ∈ {38, 39, 40} (the number of iterations is equal to 6) and for n = 45(5)100 (for all of these values n
the number of iterations is 5).

But, in the case m = 1, m = 3, and m = 5, we can use the starting values (6.2) only for n < 10, n < 20, and n < 30,
respectively. For bigger values of nwe use zeros of ACn−1/2 in order to generate the starting iteration.
In Table 6.1, the nodes xν and weightswν , ν = 0, 1, . . . , 2n, for n = 25 andw(x) = 1+ sin 15x are given. In this case we

have some symmetry, since wν = wν+17j, j = 1, 2, ν = 0, 1, . . . , 16, and xν+17j = xν + 2jπ/3, j = 1, 2, ν = 0, 1, . . . , 16,
so that only xν ,wν , ν = 0, 1, . . . , 16, are presented in Table 6.1.

Example 6.2. Letw(x) = 1+ sinmx, wherem is an even integer.

According to [1,26], for m ≥ 4, for all positive integers n ≤ m/2− 1, we have ACn+1/2(x) = cos(n+ 1/2)x, and nodes xν
and weightswν , ν = 0, 1, . . . , 2n, are given by (6.1).
For n ≥ m/2 we calculate the nodes using the iterative process (5.4).
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Table 6.2
Nodes xν , ν = 0, 1, . . . , 2n, for n = 25 andw(x) = 1+ sin 50x

ν xν x17+ν x34+ν

0 0.0437696975461690 2.1636406417855051 4.2651012450237054
1 0.1680572310428011 2.2883880600363662 4.3852058050373930
2 0.2924577772609259 2.4130974373388425 4.5046039583815650
3 0.4169517048517318 2.5377596507423607 4.6234496920089237
4 0.5415228156521995 2.6623641411606281 4.7420276283431659
5 0.6661575921351178 2.7868985020797753 4.8606971330055078
6 0.7908446090617998 2.9113479584697332 4.9797911584537416
7 0.9155740710944654 3.0356947016184854 5.0995317482730982
8 1.0403374458729844 3.1599170377010471 5.2200072319479234
9 1.1651271687302412 3.2839883015926769 5.3412019414901779
10 1.2899364005225395 3.4078754885382263 5.4630423375637033
11 1.4147588240731420 3.5315375783972615 5.5854341400227252
12 1.5395884676639467 3.6549236000621025 5.7082840158088338
13 1.6644195460588000 3.7779706681729619 5.8315092331359442
14 1.7892463108602127 3.9006026336522674 5.9550403615334283
15 1.9140629026986649 4.0227307996524905 6.0788207018859129
16 2.0388631978902007 4.1442595261254562 6.2028045110215764

Table 6.3
Weightswν , ν = 0, 1, . . . , 2n, for n = 25 andw(x) = 1+ sin 50x

ν wν w17+ν w34+ν

0 0.1242234407383922 0.1247636888477994 0.1204763708301496
1 0.1243476420018499 0.1247298161762916 0.1197370793194431
2 0.1244501944630916 0.1246874233622537 0.1190846784234882
3 0.1245349734569849 0.1246352503882133 0.1186551985157037
4 0.1246050049375511 0.1245716712995453 0.1185624353256949
5 0.1246626514561804 0.1244945990189778 0.1188336003611944
6 0.1247097559001120 0.1244013597149017 0.1193917984733010
7 0.1247477509830184 0.1242885289281262 0.1201035034380715
8 0.1247777417982283 0.1241517217768391 0.1208440219991488
9 0.1248005674244240 0.1239853332159593 0.1215325114340890
10 0.1248168462168162 0.1237822367135557 0.1221322173565282
11 0.1248270082283731 0.1235334819122534 0.1226356842093022
12 0.1248313172236255 0.1232281062294575 0.1230502424417207
13 0.1248298839460249 0.1228533330493070 0.1233886346224002
14 0.1248226716326329 0.1223957327593081 0.1236642040515870
15 0.1248094941871655 0.1218444226955629 0.1238888869081770
16 0.1247900068753692 0.1211979506978345 0.1240726312135605

The situation with the starting iteration is similar as in Example 6.1. We tested the following cases using the starting
values (6.2):

• casem = 10 for 5 ≤ n ≤ 50;
• casem = 50 for n = 25(5)100 (for n = 25 the number of iterations is 6, and for n = 30(5)100 the number of iterations
is 5);
• casem = 100 for n = 50(5)100 (for n = 50 and n = 55 the number of iterations is 6, and for n = 60(5)100 the number
of iterations is 5).

In the case m = 4 we can use the starting values (6.2) for n ≤ 22, and in the case m = 2 we can use the starting values
(6.2) only for n ≤ 2. Thus, for bigger values of nwe generate the starting iteration using zeros of ACn−1/2.
The nodes xν and the weights wν , ν = 0, 1, . . . , 2n, for n = 25 and w(x) = 1+ sin 50x, are presented in Tables 6.2 and

6.3, respectively.

Remark 6.1. In order to use zeros of ACn−1/2 to generate the starting values for computing zeros of A
C
n+1/2, we may consider

the construction of the sequence of the quadrature rules of Gaussian type (5.1) exact on the sequence of spaces T2k,
1 ≤ k ≤ n. Then the total cost of our algorithm is O(n3) operations.

Finally, we compare our method with the other methods.
At first, we considerMysovskih’s results given in [4,5]. It has been already said that his theoretical results are not suitable

for numerical calculations. Notice that if moments (1.2) are known, we can calculate
∫ 2π
0 f (x)w(x)dx, f ∈ Tn, so in the case

of an even trigonometric degree of exactness it is possible to use these moments for computation of recurrence coefficients
by (3.6), since the product of two trigonometric polynomials of semi-integer degree is trigonometric polynomial.
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For the case of an even trigonometric degree of exactness, using approach based on ideal theory (see [3]), nodes can be
obtained as common zeros of two quasi-orthogonal trigonometric polynomials, instead of one trigonometric polynomials
of semi-integer degree, i.e., of one algebraic polynomial in our method.
Nodes of Szegő quadrature rules are eigenvalues of n × n unitary upper Hessenberg matrix Hn(τ ), determined by

parameter τ from unit circle and the so-called Schur parameters γ1, . . . , γn−1, and weights are determined by the square
of the first component of the corresponding eigenvector of unit length (see e.g., [12,10,11]). Matrix Hn(τ ) is given by
Hn(τ ) = 1

−1/2
n Ĥn(τ )1

1/2
n , where

Ĥn(τ ) =


−γ 0γ1 −γ 0γ2 · · · −γ 0γn−1 −γ 0τ

1− |γ1|2 −γ 1γ2 · · · −γ 1γn−1 −γ 1τ

0 1− |γ2|2 · · · −γ 2γn−1 −γ 2τ
...

0 0 · · · 1− |γn−1|2 −γ n−1τ

 ,
γ0 = 1,1n = diag[δ0, δ1, . . . , δn−1], δ0 = 1, and δj = δj−1(1− |γj|2), j = 1, . . . , n− 1. There are several algorithms for the
eigen decomposition of such kind of matrices (see [37–39]). In [40], it is shown that Hessenberg matrices can be compactly
represented, andworking with such representation, computation of eigensystem can be performed very efficiently (see [37,
39–46]). The total cost of these methods are O(n3) operations, and sometimes can be reduced down to O(n2) operations.
There is still another way to compute nodes of the Szeg̈o quadrature rules using five diagonal matrices presented in [15].
Our method is restricted only to quadrature rules with an odd number of nodes (an even trigonometric degree of

exactness). As it was said in Remark 2.2, for the case of an even number of nodes, quadratures can be considered
in similar way using trigonometric polynomials instead of trigonometric polynomials of semi-integer degree. We use
recurrence relations to obtain wanted orthogonal systems in order to escape numerical non-stability which is characteristic
for Gram–Schmidt method. Also, recurrence relations provide a stable way for computation of values of trigonometric
polynomials of semi-integer degree in some fixed points in contrast to using expanded forms. This method is a simulation
of the development of Gaussian quadrature rules for algebraic polynomials. We demonstrated how in the case of symmetric
weight function the quadrature rules of Gaussian type can be constructed using orthogonal polynomials on the real line. Also,
our method can be extended to the quadrature rules with multiple nodes with maximal trigonometric degree of exactness
(such quadratures for constant weight function were considered in [47,48]).
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