3. Now we shall show how to get the conditions for the inclusion $\mathcal{L}_{\nu}(\mathbf{r}, \mathbf{\mu}) \subseteq \mathcal{L}_{\sigma}(\mathbf{r}, \mathbf{\mu})$.

THEOREM 4. Let 0 < p, $q \le \infty$. The inclusion $\overline{\mathcal{L}}_p(\mathbf{r}, \mu) \subseteq \overline{\mathcal{L}}_q(\mathbf{r}, \mu)$ holds if and only if for each m there exists a k such that $r_m L_p(\mu) \subseteq r_k L_q(\mu)$.

<u>Proof.</u> The sufficiency of the condition is obvious. We shall prove the necessity. Let $\overline{\mathcal{L}}_p(\mathbf{r}, \boldsymbol{\mu}) \subseteq \overline{\mathcal{L}}_q(\mathbf{r}, \boldsymbol{\mu})$. We consider a number $0 < s < \min(p, q)$ and we set $p^* = p^*(s)$, $q^* = q^*(s)$. According to property 1) of the operation of taking the dual and (2)

$$\mathscr{L}_{p^*}(1/r,\mu) = (\overline{\mathscr{L}}_p(r,\mu))_{L_q(\mu)}^* \supseteq (\overline{\mathscr{L}}_q(r,\mu))_{L_q(\mu)}^* = \mathscr{L}_{\sigma^*}(1/r,\mu).$$

Now using Theorem 2, we get that for each m there exists a k such that $(1/r_k)L_{q^*}(\mu) \subseteq (1/r_m)L_{p^*}(\mu)$. Again passing to the dual with respect to $L_S(\mu)$, we arrive at the inclusion $r_k L_{q^{**}}(\mu) \supseteq r_m L_{p^{**}}(\mu)$. But $p^{**} = p$ and $q^{**} = q$. Thus the theorem is proved.

LITERATURE CITED

1. B. Subramanian, "On the inclusion $L_D(\mu) \subseteq L_Q(\mu)$," Am. Math. Monthly, 85, No. 6, 479-481 (1978).

INEQUALITIES WITH CONVEX SEQUENCES

G. V. Milovanovich and I. Zh. Milovanovich

UDC 517.51

In this paper we prove some inequalities with mean powers for convex sequences of order k and one inequality of Hölder type.

We give some definitions and theorems, which will be used later in the paper.

Definition. For a positive sequence $\mathbf{a} = (a_1, \dots, a_n)$ the mean power of order $\mathbf{r}, \mathbf{r} \in \mathbf{R}, \mathbf{r} = \pm \infty$, is defined by the formula

$$\mathbf{M}_{\pi}^{(r)}(\mathbf{a}, \mathbf{p}) = \begin{cases} \left(\sum_{i=1}^{n} p_{i} a_{i}^{r} / \sum_{i=1}^{n} p_{i}\right)^{1/r}, & r \neq 0, |r| < + \infty, \\ \left(\prod_{i=1}^{n} a_{i}^{p_{i}}\right)^{1/p}, & r = 0, \\ \max(a_{1}, ..., a_{n}), & r = + \infty, \\ \min(a_{1}, ..., a_{n}), & r = -\infty, \end{cases}$$

where $p = (p_1, \ldots, p_n)$ is a weight sequence, $P = \sum_{i=1}^{n} p_i$

Let us assume that S_k is the set of all real convex sequences $a = (a_1, \ldots, a_n)$ of order k, $1 \le k \le n$,

$$S_{k} = \left\{ \mathbf{a} \mid \Delta^{k} a_{m} = \sum_{i=0}^{k} \left(-1\right)^{i} {k \choose i} a_{m+k-i} \geq 0, \quad 1 \leq m \leq n-k \right\}.$$

We define a sequence $\mathbf{a}^{(r)} = (a_1^{(r)}, \dots, a_n^{(r)})$ (r is a natural number) as follows:

$$a_m^{(r)} = m^{-1}a_m^{(r-1)}, \quad a_m^{(1)} = a_m, \quad a_m^{(r)} = a_m/m^{r-1}.$$

In [1] theorems are proved according to which, for each $k \in \{2, 3, ...\}$ one has the implications

$$\mathbf{a} \in S_k^{(1)} \Rightarrow \mathbf{a}^{(2)} \in S_{k-1}$$
 and $\mathbf{a} \in S_k^{(k-1)} \Rightarrow \mathbf{a}^{(k)} \in S_1$.

Yugoslavia. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 4, pp. 522-525, July-August, 1982. Original article submitted November 2, 1980.

Using theorems from [1] we shall prove the following theorem.

THEOREM 1. If $p_i > 0$, $i = 1, \ldots, n$, and $\mathbf{x} = (x_1, \ldots, x_n)$ is a positive sequence from $S_k^{(k-1)}$, n > k, then for $r \ge s$

$$M_n^{[r]}(\mathbf{x}; \mathbf{p}) \ge \alpha_b M_n^{[s]}(\mathbf{x}; \mathbf{p}) \tag{2}$$

where α_k is a constant, calculated according to the formula

$$\alpha_b = M_n^{[r]}(\mathbf{a}; \mathbf{p})/M_n^{[s]}(\mathbf{a}; \mathbf{p}) \ge 1, \quad \mathbf{a} = (1^{k-1}, ..., n^{k-1}).$$

The equality in (2) is achieved for x = a.

<u>Proof.</u> To prove (2) we first set $\mathbf{p_i} = \mathbf{p_i} \mathbf{i^{S(k-1)}}$, $\mathbf{x_i} = \mathbf{x_i}/\mathbf{i^{k-1}}$, $i = 1, \ldots$, n in the inequality [2]

$$M_n^{[r]}(\mathbf{x}; \mathbf{p}) \ge M_n^{\mathrm{fs}}(\mathbf{x}; \mathbf{p}), \quad r \ge s. \tag{3}$$

Then, defining for any sequences $\mathbf{a} = (a_1, \dots, a_n)$, $\mathbf{b} = (b_1, \dots, b_n)$ the sequence $\mathbf{ab} = (a_1b_1, \dots, a_nb_n)$, we get

$$M_n^{[r]}(xa^{-1}; pa^s) \ge M_n^{[s]}(xa^{-1}; pa^s), a^t = (1^{t(k-1)}, ..., n^{t(k-1)}).$$

To complete the proof we shall show that one has

$$\sum_{i=1}^{n} p_{i} x_{i}^{r} \sum_{i=1}^{n} p_{i} i^{s(k-1)} \geq \sum_{i=1}^{n} p_{i} i^{r(k-1)} \sum_{i=1}^{n} p_{i} x_{i}^{r(s-r)(k-1)}.$$

It is obtained from Chebyshev's inequality [3]

$$\sum_{i=1}^n q_i \sum_{i=1}^n q_i u_i v_i \ge \sum_{i=1}^n q_i u_i \sum_{i=1}^n q_i v_i$$

for $q_i = p_i i^{S(k-1)}$, $u_i = i^{(r-s)(k-1)}$, $v_i = x_i^r / i^{r(k-1)}$, $i = 1, \ldots, n$.

Since the sequence $\mathbf{x}=(x_1,\ldots,x_n)$ belongs to $S_k^{(k-1)}$, $k\geq 2$, according to a theorem from [1] the sequence $(x_1/1^{k-1},\ldots,x_n/n^{k-1})$ is nondecreasing.

If in (3) one sets $x_i = i^{k-1}$, then $\alpha_k \ge 1$.

COROLLARY 1. Since $\alpha_k \ge 1$, (2) is more precise than (3).

COROLLARY 2. For k = 2, from Theorem 1 we get the theorem connected with Theorem 3 of [4].

We note that this theorem is proved in [4], and later also proved in [5].

COROLLARY 3. We introduce $x_i = i^k$, $i = 1, \ldots, n$ in (2). Then $\alpha_{k+1} \ge \alpha_k$, so (2) becomes more precise with increasing k.

COROLLARY 4. If $p_i = 1$, $i = 1, \ldots, n$, then (2) assumes the form

$$\left(\sum_{i=1}^{n} x_i^r\right)^{1/r} \ge M\left(k\right) \left(\sum_{i=1}^{n} x_i^s\right)^{1/s},\tag{4}$$

where

$$M(k) = \left(\sum_{i=1}^{n} \tilde{i}^{r(k-1)}\right)^{1/r} i \left(\sum_{i=1}^{n} \tilde{i}^{s(k-1)}\right)^{1/s}.$$

Since $\lim_{n\to+\infty} (n^{(r-s)/sr}M(k)) = (s(k-1)+1)^{1/s}/(r(k-1)+1)^{1/r}$, as $n\to+\infty$ from (4) one can get the inequalities for convex functions of order k proved in [6].

Remark. On an integral analog of Theorem 1 cf. [7].

Analogously to Theorem 1, one can prove the following theorem.

THEOREM 2. Let the sequence $p = (p_1, \ldots, p_n)$, $\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$, $\mathbf{b} = (b_1, \ldots, b_n)$ be such that $p_1 > 0$, ..., $p_n > 0$; $p_1 > 0$, ..., $p_n > 0$; $p_1 > 0$, ..., $p_n > 0$; $p_1 > 0$, ..., $p_n > 0$; $p_1 > 0$, ..., $p_n > 0$; $p_1 < 0$, and $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, and $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$, ..., $p_n > 0$; $p_1 < 0$,

^{*}Numbered as in Russian original - Publisher.

$$M_n^{[r]}(\mathbf{x}; \mathbf{p})/M_n^{[r]}(\mathbf{b}; \mathbf{p}) \ge H_k M_n^{[s]}(\mathbf{x}; \mathbf{p})/M_n^{[s]}(\mathbf{b}; \mathbf{p}),$$
 (5)

where $H_k = M_n^{[r]}(\mathbf{a}; \mathbf{pb'})/M_n^{[s]}(\mathbf{a}; \mathbf{pb'}) \ge 1$, and the sequence **a** is defined in Theorem 1. The equality in (5) is achieved for $\mathbf{x_i} = \mathbf{b_i} \mathbf{i}^{k-1}$, $\mathbf{i} = 1, \ldots, n$.

<u>COROLLARY 5.</u> In (5) we set $x_i = b_i$, $i = 1, \ldots, n$. We get $H_{k+1} \ge H_k$, and thus (5) becomes more precise when the order of convexity of the sequence $(x_1/b_1, \ldots, x_n/b_n)$ increases.

COROLLARY 6. For k = 2 from Theorem 2 one can get the theorem connected with Theorem 4, proved in [4].

THEOREM 3. Let the sequence $p = (p_1, \ldots, p_n)$ be positive. Let the r sequences $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n), \ldots, 1 = (l_1, \ldots, l_n)$ be positive and belong to the set $S_k^{(k-1)}$, n > k. Then for $0 \le m_i \le 1$, $i = 1, \ldots, r$ one has

$$\frac{\sum_{i=1}^{n} p_{i} a_{i} b_{i} \dots l_{i}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{m}\right)^{1/m_{1}} \left(\sum_{i=1}^{n} p_{i} b_{i}^{m_{2}}\right)^{1/m_{2}} \dots \left(\sum_{i=1}^{n} p_{i} t_{i}^{m_{r}}\right)^{1/m_{r}}} \ge Q_{r},$$
(6)

where

$$Q_r = \frac{\displaystyle\sum_{i=1}^n p_i i^{r(k-1)}}{\left(\displaystyle\sum_{i=1}^n p_i i^{m_1(k-1)}\right)^{1/m_1} \cdots \left(\displaystyle\sum_{i=1}^n p_i i^{m_r(k-1)}\right)^{1/m_r}} \, .$$

The equality in (6) is achieved for $a_i = b_i = \ldots = l_i = i^{k-1}$, $i = 1, \ldots, n$.

Proof. In [8] for sequences from the set $S_k^{(k-1)}$, $k \ge 2$ there is proved Chebyshev's inequality

$$\sum_{i=1}^{n} p_{i} a_{i} b_{i} \dots l_{i} \ge \frac{\sum_{i=1}^{n} p_{i} i^{r(k-1)}}{\left(\sum_{i=1}^{n} p_{i} i^{k-1}\right)^{r}} \left(\sum_{i=1}^{n} p_{i} a_{i}\right) \dots \left(\sum_{i=1}^{n} p_{i} l_{i}\right). \tag{7}$$

From (7) we get

$$\frac{\sum_{i=1}^{n} p_{i} a_{i} \dots l_{i}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{m_{1}}\right)^{1/m_{1}} \dots \left(\sum_{i=1}^{n} p_{i} l_{i}^{m_{r}}\right)^{1/m_{r}}} \ge \frac{\sum_{i=1}^{n} p_{i} i^{r(h-1)}}{\left(\sum_{i=1}^{n} p_{i} i^{h-1}\right)^{r}} \frac{\left(\sum_{i=1}^{n} p_{i} a_{i}\right) \dots \left(\sum_{i=1}^{n} p_{i} l_{i}\right)}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{m_{1}}\right)^{1/m_{1}} \dots \left(\sum_{i=1}^{n} p_{i} l_{i}^{m_{r}}\right)^{1/m_{r}}}.$$
(8)

Using Theorem 1 we get

$$\sum_{i=1}^{n} p_{i} x_{i} / \left(\sum_{i=1}^{n} p_{i} x_{i}^{m_{i}} \right)^{1/m_{i}} \ge \sum_{i=1}^{n} p_{i} i^{k-1} / \left(\sum_{i=1}^{n} p_{i} i^{(k-1)m_{i}} \right)^{1/m_{i}}. \tag{9}$$

From (8) and (9) follows (6).

COROLLARY 7. For k = 2, r = 2, $p_i = 1$, $i = 1, \ldots, n$, from Theorem 3 we get a theorem similar to Theorem 3 of [5].

LITERATURE CITED

- 1. G. V. Milovanovich and I. Z. Milovanovich, "Neke diskretne nejednakosti za nizove Konveksne reda k," Naucni Podmladak, No. 1/2, 20-26 (1981).
- 2. D. S. Mitrinovic and P. M. Vasic (eds.), Analytic Inequalities, Springer-Verlag (1970).
- 3. D. S. Mitrinovich and P. M. Vasic, "History, variations and generalizations of the Cebysev inequality and the question of some priorities," Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 461-497, 1-30 (1974).

- 4. P. M. Vasic and I. Z. Milovanovic, "On the ratio of means," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 577-598, 33-37 (1977).
- 5. R. T. Rakhmail, "Refinement and inversion of certain inequalities for convex and concave sequences," Ukr. Mat. Zh., 30, No. 6, 840-845 (1978).
- 6. H. Thunsdorff, Konvexe Funktionen und Ungleichungen [in German], Göttingen (1932).
- 7. Lj. R. Stankovic, "Extension of Fhunsdorff's inequality to the case of convex function of order k," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 438-541, 145-148 (1975).

SOLUTION OF THE FOKKER - PLANCK - KOLMOGOROV EQUATION FOR NONAUTONOMOUS SYSTEMS SUBJECTED TO PERIODIC AND RANDOM DISTURBANCES

Nguyen Dong An

UDC 517

The effect of a random disturbance on mechanical systems can be properly studied by the method of Fokker-Planck-Kolmogorov (FPK) equations, especially when the latter is combined with the asymptotic method of nonlinear mechanics [1]. In the nonzutonomous case, however, it was noted in [1] that the corresponding FPK equation will be complicated. In this paper we shall solve the FPK equation for an important class of non-autonomous systems. On the basis of [2] we shall seek the solution in the form of a series for the amplitude. We obtain a system of separable differential equations that makes it possible to successively find the series coefficients of any order.

1. Let us consider a nonautonomous mechanical system with one degree of freedom whose equation of motion has the form

$$\ddot{x} + \omega^2 x = \varepsilon f(x, \dot{x}) + \varepsilon P \cos vt + \sqrt{\varepsilon} \sigma \xi(t) \tag{1}$$

in the principal resonance region

$$\omega^2 = v^2 + \varepsilon \Delta,\tag{2}$$

where $\xi(t)$ is white noise of unit intensity, and

$$f(x,x) = \sum_{s=1}^{m} \alpha_s \left(\sum_{i,j=0}^{i+j=s} \gamma_{ij} x^i x^j \right), \alpha_s, \gamma_{ij} = \text{const}$$
(3)

is a polynomial in x and x.

With the use of (2) let us rewrite (1) in the form

$$x + v^2 x = \varepsilon f_1(x, x, vt) + \sqrt{\varepsilon} \sigma \dot{\xi}(t), \tag{4}$$

where

$$f_1(x, \dot{x}, vt) = f(x, \dot{x}) - \Delta x + P \cos vt.$$
 (5)

By a change of variables [1]

$$x = a \cos \psi, \quad \dot{x} = -a v \sin \psi, \quad \psi = vt + \theta$$
 (6)

we can transform Eq. (4) with the aid of Ito's formula to standard form

$$da = \left[-\frac{\varepsilon}{v} f_1(x, \dot{x}, vt) \sin \psi + \frac{\varepsilon \sigma}{2v^2 a} \cos^2 \psi \right] dt - \frac{\sqrt{\varepsilon} \sigma}{v} \sin \psi d\xi(t),$$

$$d\theta = \left[-\frac{\varepsilon}{av} f_1(x, \dot{x}, vt) \cos \psi - \frac{\varepsilon \sigma^2}{a^2 v^2} \sin \psi \cos \psi \right] dt - \frac{\sqrt{\varepsilon} \sigma}{av} \cos \psi d\xi(t).$$
(7)

Vietnam. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 4, pp. 525-528, July-August, 1982. Original article submitted July 14, 1981.