3. Now we shall show how to get the conditions for the inclusion %, (r, g) & %, (r, b)-

THEOREM 4, Let 0 < p, g = =, The inclusion &, (r,p) < %, (r.#) holds if and only if for each m there
exists a k such that rqLy 1) Sryly (n).

Proof, The sufficiency of the condition is obvious, We shall prove the necessity. Let %, (r, B < Z, ().
We consider a number 0 < s < min (p, q) and we set p* = p*(s), q* = q*(s). According to property 1) of the oper-
ation of taking the dual and (2)

Lor (15, 8) = (Lp (r, PP Lo 2 (g (r, L = L (15, 1)
Now using Theorem 2, we get that for each m there exists a k such that (Liry) Ly () = (1/r,,) Lo- @), Again passing
to the dual with respect to Lg(u), we arrive at the inclusion rylgw(p) 2r,Lpe (p). But p** = p and g** =g, Thus
the theorem is proved,

LITERATURE CITED
1, B. Subramanian, "On the inclusion Lp(u)_C' Lq(u)," Am, Math. Monthly, 85, No, 6, 479-481 (1978).

INEQUALITIES WITH CONVEX SEQUENCES

G. V. Milovanovich and 1. Zh, Milovanovich UDC 517.51

In this paper we prove some inequalities with mean powers for convex sequences of order k and one in-
equality of Holder type,

We give some definitions and theorems, which will be used later in the paper.

Definition, For a positive sequence a = {ay, . . . , ap) the mean power of order r, r € R, r = +%, is de-
fined by the formula

(ipiayil’i)m' r#0, [rl<<+4 o,

i=l1 i=al

i=l

n 1/P
M‘:i(a: p) = (n a’i,i) , r=20,

max (@, ...y &), I = -} oo,

min(a, ..., @,), = — o<,

»
where p = (1, . . . » Pp) iS 2 weight sequence, P= Zpi.

i==l

Let us assume that Sg is the set of all real convex sequences a = (a1, . .., ay) of order k, 1 <k <n,

L] &k
Sy = 31Ahm=2(“‘1)‘(i)am+k—lzot l=m=n—Fk;.
=0

We define a sequence 2l = (al(r)’ .oy a[(lr)) (r is a natural number) as follows:
af) = m~'alh, a) =a, a = ap/m—t.
Let 8P = {alaESkA(A""a‘ni'!")gO, i=1,..,p)}, where p < k.
In [1] theorems are proved according to whieh, for each k € {2, 3,...} one has the implications

2€Sy=>a”€8 maaeSF a2 ¢S,
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Using theorems from {1} we shall prove the following theorem,

THEOREM 1, Ifp; >0, i=1,...,n, andx = Ky, ...,Xp) is a pbsitive sequence from Sl({k_i), n >k,
then forr = s
M (x; p) Z oM (x:p) (2)*
where @y is a constant, calculated according to the formula
= M7 @ pyME @p) =1, a= ("m0
The equality in (2) is achieved for x = a,
Proof. To prove () we first set p; = p;is (59, %; =x; /1K™, 1 =1, ..., n in the inequality [2]
MP (=M p), r=s. @)
Then, defining for any sequences a = (4y, . . . 5 4y}, b = (by, . . ., by) the sequence &b = {ajby, . . . , ayby), we
get
MY (xa™; pa®) = MET (xa™; pa), 2’ = (170, ..., "1y,

To complete the proof we shall show that one has

DEEDNEES JYE) T
13 L3

i=! == {=1

It is obtained from Chebyshev's inequality [3]

Eq; 24, zv,ZZq, th

==l =i

8 (k-1 JES

D gy = 1-8) @)

. r
for q; = pii , Vi =x%i /1 ., N

Since the sequence x = {xy, . . . , Xy) belongs to S(k"1) k = 2, according to a theorem from [1] the se-
guence (xl/lk'i, ... xn/nk‘j) is nondecreasing.

If in (3) one sets x; = iK1, then @, = 1.

COROLLARY 1, Since % =1, (2) is more precise than (3).

COROLLARY 2. For k=2, from Theorem 1 we get the theorem connected with Theorem 3 of [4].
We note that this theorem is proved in {4], and later also proved in [5].

CQROLLARY 3, We introduce x; = ik, i=1,...,nin )., Then o4+ =«,, so {2) becomes more precise
with increasing k.

COROLLARY 4, ¥pj=1, i=1,...,n, then ) assumes the form

i Ur n Is
(3#) =nw($a)"

I3
M (k) = g0 )l gD Y
E)E)

Since lim @Y M (k) = (s(k— )+ D ur (k—1) + N | as n — +e from (4) one can get the inequalities for

>

where

convex functions of order k proved in [6].
Remark, On an integral analog of Theorem 1 cf. [7].
Analogously to Theorem 1, one can prove the following theorem.

- THEOREM 2. Let the sequence p = (Dy, .« « 5 Py X = Ky« « « »Xn)y b= {by, ..., by) be such that p; >
0, P >0 5, >0,..,%, >0, 5, >0,..,b,>0; bj=<b,=..=b,and &;/by,... ,xn/bn), n > k be a sequence from
S§~", k=2. Then for r == s one has

*Numbered as in Russian original — Publisher.



ME (x; py MK (b; p) = H,ME” (x; p)/ M5 (b; p), (5)
where H,= MU (a; pb")/MP (a; pb) =1, and the sequence a is defined in Theorem 1. The equality in (5) is achieved
for xj = bjik~!, i=1,...,n.

COROLLARY 5. In (5) we setx; =b;, i =1,...,n We get H,,,=H,, and thus (5) becomes more pre-
cise when the order of convexity of the sequence (x;/by, ... ,%y/by) increases,

COROLLARY 8. For k =2 from Theorem 2 one can get the theorem connected with Theorem 4, proved
in [4]. '

THEOREM 3. Let the sequence p = (p1, . . . , Pn) be positive, Let the r sequences a = (aj, ..., ay), b=
®By.evesby)y.. 1=, ..., 1) be positive and belong to the set Sl({k'l), n>k, Then for 0s=m; =1, i=
1,..., rone has

2 piaibi ves li
i=1 > Q"

n N ] m. 1jm, n , l/m, ==
(zpia;") l(iglpzl’i’) (ZPJ:") ©

i==l =

where
Q 7
rlh—
EPi‘
i=!
I me—0) " 3 w1\
(Ere) " (B

i==l

Q=

The equality in (6) is achieved for a; =b; =...=/; = ik“l, i=1,,...,n.

Proof. In [8] for sequences from the set S%, k=2 there is proved Chebyshev's inequality

(k1)
o (R
n pit

Epiaibi'"lig—i—:;‘l"———; Epiai Epili . @)
(Z Pifk_l)

i=l i=Il i==l

i=1

From (7) we get

Using Theorem 1 we get

ip-x-/(i . ’."")”m[> S ( - .(h—nm,-)‘/'"i
wil| Zpet | = Znd U X p : (©)

From (8) and (9) follows ).

COROLLARY 7. For k=2, r=2,p;=1,i=1,...,n, from Theorem 3 we get a theorem similar to
Theorem 3 of [5].
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SOLUTION OF THE FOKKER - PLANCK - KOLMOGOROV
EQUATION FOR NONAUTONOMOUS SYSTEMS SUBJECTED
TO PERIODIC AND RANDOM DISTURBANCES

Nguyen Dong An - ‘ : UDC 517

The effect of a random disturbance on mechanical systems can be properly studied by the method of
Folkker— Planck—Kolmogorov (FPK) equations, especially when the latter is combined with the asymptotic meth-
od of nonlinear mechanics [1]. In the nonzutonomous case, however, it was noted in [1]} that the corresponding
FPK equation will be complicated. In this paper we shall solve the FPK equation for an important class of non-
autonomous systems. On the basis of [2] we shall seek the solution in the form of a series for the amplitude.

We obtain a system of separable differential equations that makes it possible to successively find the series
coefficients of any order,

1. Let us consider a nonautonomous mechanical system with one degree of freedom whose equation of
motion has the form

X 4 %% = ef (x, )}) 4 &P cos vt - Vg0t ) )
in the principal resonance region
0 = v% -+ g4, 2)
where ;*(t) is white noise of unit intensity, and
Flx, %) = i o, (iisyijxfkf) , O Yi; = comst @)
s=1 ij=0
is a polynomial in x and X,

With the use of (2) let us rewrite (1) in the form

¥4 v = efy (5 % W) + Veak O, )
where
Fo(x, ;c, viy = f(x, ;c)—eAx;!—Pcvs vi. )
By a change of variables [1]
x=acosP, x=-—avsing, P=vi+0 {6)

we can transform Eq. (4) with the aid of Ito's formula to standard form

da=— [_~ _:3 Fu(x, x, vE) sinp -+ -2%‘% cos? qa] df — va sin Ydk (f),
. 2 by {7)
dé = [~— %— Fi (x, x, ¥ cos b —- z:;z sin P cos 1|>] dt — 1/5?— cos pdE(f).

Vietnam. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 34, No. 4, pp. 525-528, July-
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