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The classical orthogonal polynomials (Qn) can be specificated as the Jacobi poly-

nomials P
(α,β)
n (t) (α, β > −1), the generalized Laguerre polynomials Lsn(t) (s >

−1), and finally as the Hermite polynomials Hn(t). Their weight functions t 7→ w(t)
on an interval of orthogonality (a, b) satisfy the differential equation

d

dt
(A(t)w(t)) = B(t)w(t),

where the functions t 7→ A(t) and t 7→ B(t) are defined as in Table 1.

Table 1. The Classification of the Classical Orthogonal Polynomials

(a, b) w(t) A(t) B(t) λn Qn(t)

(−1, 1) (1− t)α(1 + t)β 1− t2 β − α− (α+ β + 2)t n(n+ α+ β + 1) P
(α,β)
n (t)

(0,+∞) tse−t t s+ 1− t n Lsn(t)

(−∞,+∞) e−t
2

1 −2t 2n Hn(t)

The classical orthogonal polynomial t 7→ Qn(t) is a particular solution of the
following differential equation of the second order

(1) L[y] = A(t)y′′ +B(t)y′ + λny = 0,

where λn is given in the above table.

Let (f, g) =
∫ b
a
f(t)g(t)w(t) dt and ‖f‖2 = (f, f), and let Pn be the set of all

algebraic polynomials of degree at most n. Similarly to the well-known Landau in-
equality [5] for continuously–differentiable functions and other generalizations (see,
for example, [1–4] and [6–8]), in this short note we state the following characteriza-
tion of the classical orthogonal polynomials.
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Theorem. For all Pn ∈ Pn the inequality

(2) (2λn +B′(0))‖
√
AP ′n‖2 ≤ λ2n‖Pn‖2 + ‖AP ′′n ‖2

holds, with equality if only if Pn(t) = cQn(t), where Qn is the classical orthogonal
polynomial of degree n orthogonal to all polynomials of degree ≤ n− 1 with respect
to the weight function t 7→ w(t) on (a, b), and c is an arbitrary real constant. The
λn, A(t) and B(t) are given in Table 1.

Proof. Using (1) we have

‖L[Pn]‖2 = ‖AP ′′n ‖2 + ‖BP ′n‖2 + λ2n‖Pn‖2

+ 2(AP ′′n , BP
′
n) + 2λn(AP ′′n , Pn) + 2λn(BP ′n, Pn).

A simple application of integration by parts gives

2(AP ′′n , BP
′
n) = −B′(0)‖

√
AP ′n‖2 − ‖BP ′n‖2

and
‖
√
AP ′n‖2 = −(AP ′′n , Pn)− (BP ′n, Pn).

Then, we find

‖L[Pn]‖2 = ‖AP ′′n ‖2 −B′(0)‖
√
AP ′n‖2 + λ2n‖Pn‖2 − 2λn‖

√
AP ′n‖2.

Since ‖L[Pn]‖ ≥ 0, we obtain (2).

It is easy to see that the equality case is given by Pn(t) = cQn(t). Namely, the
polynomial solution of the equation (1) is only cQn(t), where c is a constant. �

Now, we give the special cases.

First, for w(t) = e−t
2

on (−∞,+∞), the inequality (2) reduces to Varma’s result
[9]:

‖P ′n‖2 ≤
1

2(2n− 1)
‖P ′′n ‖2 +

2n2

2n− 1
‖Pn‖2.

In the generalized Laguerre case, the inequality (2) becomes

‖
√
tP ′n‖2 ≤

n2

2n− 1
‖Pn‖2 +

1

2n− 1
‖tP ′′n ‖2,

where w(t) = tse−t on (0,+∞).

In the Jacobi case
(
A(t) = 1−t2, w(t) = (1−t)α(1+t)β on (−1, 1)

)
the inequality

(2) reduces to the following inequality(
(2n− 1)(α+ β) + 2(n2 + n− 1)

)
‖
√

1− t2P ′n‖2

≤ n2(n+ α+ β + 1)2‖Pn‖2 + ‖(1− t2)P ′′n ‖2.
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In the simplest case, when α = β = 0 (Legendre case), we obtain

‖
√

1− t2P ′n‖2 ≤
n2(n+ 1)2

2(n2 + n− 1)
‖Pn‖2 +

1

2(n2 + n− 1)
‖(1− t2)P ′′n ‖2.

In Chebyshev case (α = β = −1/2), we get

‖
√

1− t2P ′n‖2 ≤
n4

2n2 − 1
‖Pn‖2 +

1

2n2 − 1
‖(1− t2)P ′′n ‖2,

where ‖f‖2 =
∫ 1

−1(1− t2)−1/2f(t)2 dt.
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