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1. Introduction

The last fifty years have seen a great deal of progress in the field of orthogonal sys-
tems (orthogonal algebraic and trigonometric polynomials, orthogonal Müntz poly-
nomials, orthogonal rational functions, etc.), as well as many their applications in
mathematics, physics and other computational and applied sciences (electronics and
communication, control system theory, process identification, etc.). The orthogo-
nal polynomial systems, especially classical orthogonal polynomials (cf. Szegő [53],
Chihara [11], Freud [16], Suetin [50], Geronimus [23–24], Nevai [43], Milovanović,
Mitrinović, Rassias [36]), play very important role in many problems in approxima-
tion theory and numerical analysis. Some of them found very important applications
in applied sciences and have become the main tool in several methods and proce-
dures. Also, there are many non-classical orthogonal polynomials on the real line
(cf. Gautschi [18] and [17] for software), as well as several classes of non-standard
orthogonal polynomials (cf. Milovanović [32–33] and [35]). For example, the Szegő
class on the unit circle (cf. Szegő [51–52] and [53, pp. 287–295], Geronimus [22–
23], Nevai [44]), orthogonal polynomials on the semicircle and on a circular arc (see
Gautschi and Milovanović [20–21], Gautschi, Landau, Milovanović [19], de Bruin [7],
and also papers [29–30], [37–39]), orthogonal polynomials on the radial rays in the
complex plane (see [31], [33–34] and [40]), etc.

In the recent years, the other classes of orthogonal systems, as Malmquist systems
(cf. Walsh [55], Müntz systems (cf. Borwein and Erdélyi [5]), and others, have also
taken a significant role in applications. A great progress in the theoretical sense
for such orthogonal systems was made too. The first papers for orthogonal rational
functions on the unit circle whose poles are fixed were given by M.M. Djrbashian
[12–13]. These rational functions generalize the orthogonal polynomials of Szegő [53,
pp. 287–295]. Recently, the paper of Djrbashian [13], which originally appeared in
two parts, has been translated to English by K. Müller and A. Bultheel [42]. A
survey on the theory of orthogonal systems and some open problems was written
also by Djrbashian [14]. Several papers in this direction have been appeared in the
last period ([8–10], [26], [46–49]).
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The orthogonal Müntz systems were considered first by Armanian mathematicians
Badalyan [3] and Taslakyan [54]. Recently, it was investigated by McCarthy, Sayre
and Shawyer [27] and more completely by Borwein, Erdélyi, and Zhang [6] (see also
the recent book [5]).

This paper is organized as follows. In Section 2 we use the orthogonality relation
for Jacobi polynomials in order to obtain rational functions (via Laplace transform),
which can be applied in many technical fields. In the same section, we mention some
of these important applications. Section 3 is devoted to the orthogonal Müntz sys-
tems which represent an important extension of the orthogonal polynomial systems.
The Malmquist systems of orthogonal rational functions are considered in Section 4.
Finally, in Section 5 we give some connections between the previous mentioned or-
thogonal systems using one new nonstandard inner product.

2. Applications of Orthogonal Systems

The applications of the classical orthogonal polynomials in technical fields as electri-
cal network synthesis, electronics and telecommunication, signal processing theory,
control system theory and process identification are well known. The Legendre, La-
guerre, Chebyshev and Jacobi polynomials are very useful for design and construc-
tion of electrical network, transfer functions, orthogonal filters, adaptive control,
telecommunication systems, etc. These applications are based on the least squares
polynomial approximations. The orthogonality of these polynomials enable the con-
struction of optimal network and optimal filters. Moreover, the Laplace transforms
of the classical polynomials, or their modifications are rational functions, which can
be easy factorized. This property is very convenient in constructing simple proce-
dures for forming signal generators, adaptive controllers, and practical realizations
of the transfer functions. For instance, Chebyshev orthogonal polynomials are used
very much for technical applications, so there exist Chebyshev orthogonal filters.
Many papers were published about Chebyshev polynomials and their applications in
technics.

For designing orthogonal filters and optimal transfer functions may be used some
modifications of the Legendre or Jacobi polynomials, which are orthogonal on the
interval (−1, 1). On the other side, technical systems which are designed using
orthogonal polynomials work in the real time, so we need the corresponding approx-
imations on the interval (0,∞). For example, by substituting x = 2e−at − 1 (a > 0)
in a polynomial orthogonal on (−1, 1), we obtain an exponential polynomial orthog-
onal on the (0,∞). For polynomials orthogonal on (0, 1) we use the substitution
x = e−at (a > 0).

Applying the Laplace transform on the exponential orthogonal polynomials we
obtain orthogonal rational functions. In the sequel we will consider some applications
of the classical orthogonal polynomials in technics, using their Laplace transforms
and corresponding orthogonal functions.



Starting from the orthogonality relation for Jacobi polynomials P
(α,β)
n (x) with

the parameters α, β > −1, i.e.,
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) dx = ‖P (α,β)
n ‖2δnm, (2.1)

where

‖P (α,β)
n ‖2 =

2α+β+1Γ (n + α + 1)Γ (n + β + 1)
n!(2n + α + β + 1)Γ (n + α + β + 1)

and putting x + 1 = 2e−2t, we obtain
∫ ∞

0

ϕn(t)ϕm(t) dt = δnm,

where

ϕn(t) =
2(α+β+2)/2

‖P (α,β)
n ‖

e−(β+1)t(1− e−2t)α/2P (α,β)
n (2e−2t − 1).

Then, the Laplace transform of ϕn can be expressed in the form

Wn(s) = L[ϕn(t)] =
∫ ∞

0

e−stϕn(t) dt

=
2−(s+1)/2

‖P (α,β)
n ‖

∫ 1

−1

(1− x)α/2(1 + x)(s+β−1)/2P (α,β)
n (x) dx

=
2(α+β)/2

‖P (α,β)
n ‖

· Γ
(

α
2 + 1

)
Γ

(
1
2 (s + β + 1)

)

Γ
(

1
2 (α + β + s + 3)

) ×

× 3F2

(−n, α + β + n + 1, 1
2 α + 1; α + 1, 1

2 (α + β + s + 3); 1
)
,

where the hypergeometric function 3F2 is reduces to

Q(α,β)
n (s) = 3F2

(−n, α + β + n + 1, 1
2 α + 1; α + 1, 1

2 (α + β + s + 3); 1
)

=
∞∑

k=0

(−n)k(α + β + n + 1)k

(
1
2 α + 1

)
k

(α + 1)k

(
1
2 (α + β + s + 3)

)
k
k!

=
∞∑

k=0

(−1)k
(n

k

) (α + β + n + 1)k

(
1
2 α + 1

)
k

(α + 1)k

(
1
2 (α + β + s + 3)

)
k

.

In a simpler case when α = 0, the function 3F2 can be reduced to 2F1. Namely,

Q(0,β)
n (s) = 3F2

(−n, β + n + 1, 1; 1, 1
2 (β + s + 3); 1

)

= 2F1

(−n, β + n + 1; 1
2 (β + s + 3); 1

)
.



Using a representation of the Jacobi polynomials, with parameters

α̂ =
s + β + 1

2
and β̂ = −s− β + 1

2
,

in terms of hypergeometric function (see Bateman and Erdélyi [2])

2F1

(
−n, n + α̂ + β̂ + 1; α̂ + 1; 1

2 (1− x)
)

=
P

(α̂,β̂)
n (x)(n + α̂

n

) ,

we find

Q(0,β)
n (s) =

P
(α̂,β̂)
n (−1)(n + α̂

n

) = (−1)n

(n + β̂

n

)

(n + α̂

n

) ,

because of

n + α̂ + β̂ + 1 = n + β + 1 and α̂ + 1 =
s + β + 3

2
.

Thus, in this case we get

Wn(s) = L

[
2β/2+1

‖P (0,β)
n ‖

e−(β+1)tP (0,β)
n (2e−2t − 1)

]

=
2β/2

‖P (0,β)
n ‖

· Γ
(

1
2 (s + β + 1)

)

Γ
(

1
2 (s + β + 3)

) · (−1)n(n + β̂)(n− 1 + β̂) · · · (1 + β̂)
(n + α̂)(n− 1 + α̂) · · · (1 + α̂)

,

i.e.,

Wn(s) =
√

2(2n + β + 1)

n−1∏
i=0

(s− (2i + 1 + β))

n∏
i=0

(s + (2i + 1 + β))
. (2.2)

Sometimes, we put x + 1 = 2e−t in (2.1). Then the previous rational functions
become

W̃n(s) =
√

2 Wn(2s) =
√

2n + β + 1

n−1∏
i=0

(
s− 2i + 1 + β

2

)

n∏
i=0

(
s +

2i + 1 + β

2

) . (2.3)



In a degenerating case β = −1, when the Jacobi polynomial P
(0,−1)
n (x) can be

expressed in the form

P (0,−1)
n (x) =

1 + x

2
P

(0,1)
n−1 (x),

from (2.3) we obtain

W̃n(s) =
√

2n

n−1∏
i=1

(s− i)

n∏
i=1

(s + i)
. (2.4)

Fig. 2.1

Using (2.4) we can obtain an orthogonal filter (see [1, pp. 42–71]), which is given
in Fig. 2.1. In this case the corresponding function ϕ̃(t) can be expressed in the form

ϕ̃(t) =
√

2n

n∑

i=1

an,ie
−it,

where

an,i = (−1)i

(
n + i− 1

i− 1

)(n

i

)
.

This Jacobi filter has been used in signal theory for obtaining the orthogonal sig-
nals φ(t) = ϕ̃(t). Also, this filter is useful in the adaptive control in construction of
adjustable models. The application of this filter is very often in the process identi-
fication as well. In this case, the network, obtained by Jacobi’s filter, is connected
with an unknown process as it is shown in Fig. 2.2.

By adjusting the parameters bi, so that the error e(t) is minimal (or zero), one
can derive the model of an unknown process.



Fig. 2.2

An application of the Legendre polynomials is also given in [1]. Namely, using
(2.2) with β = 0, one can obtain the following sequence of the rational functions

Wn(s) =
√

2(2n + 1)

n−1∏
i=0

(s− (2i + 1))

n∏
i=0

(s + 2i + 1)
.

These functions can be used in practical realization in the same way as the previous
functions of the Jacobi type.

Fig. 2.3

In [15] it was also presented a method for designing of orthogonal filters, based
on the classical orthogonal polynomials. In construction of some real filters has been
used the Hermite polynomials. A method for process identification was derived in [4]
and based on the Laguerre polynomials. It is well known that the Laplace transform
of the Laguerre polynomials is given by

L[Ln(x)] =
(−1)n

n!
(s− 1)n

sn+1
.

In order to obtain the Laguerre orthogonal filters, we can take the modified La-
guerre functions φn,α(x), which Laplace transform is given by

L[φn,α(x)] =
√

2α

s + α

(s− α

s + α

)n

. (2.5)



Fig. 2.4

Fig. 2.5

The orthogonal filter obtained by (2.5) is displayed in Fig. 2.3.
In this way, we can obtain one base of the orthogonal functions φn,α(x), useful

for process identification. Such a system is presented in Fig. 2.4.
Using the complex rational functions Fn(s) defined by

Fn(s) =

√
1− α2

n

s− αn

n−1∏

i=0

1− ᾱis

s− αi



(see Section 4), some applications in obtaining orthogonal filters are given in [25]
and [45]. Such an orthogonal filter is presented in Fig. 2.5.

3. Müntz Orthogonal Systems

Let Λ =
{
λ0, λ1, . . .

}
be a given sequence of complex numbers. Taking the following

definition for xλ:
xλ = eλ log x, x ∈ (0,+∞), λ ∈ C,

and the value at x = 0 is defined to be the limit of xλ as x → 0 from (0,+∞)
whenever the limits exists, we will consider orthogonal Müntz polynomials as linear
combinations of the Müntz system

{
xλ0 , xλ1 , . . . , xλn

}
(see [5–6]). The set of all

such polynomials we will denote by Mn(Λ), i.e.,

Mn(Λ) = span
{
xλ0 , xλ1 , . . . , xλn

}
,

where the linear span is over the complex numbers C in general. The union of all
Mn(Λ) is denoted by M(Λ).

The first considerations of orthogonal Müntz systems were made by Badalyan [3]
and Taslakyan [54]. Recently, it was investigated by McCarthy, Sayre and Shawyer
[27] and more completely by Borwein, Erdélyi, and Zhang [6].

Supposing that Re(λk) > −1/2 (k = 0, 1, . . . ) we can give the following definition
of the Müntz-Legendre polynomials on (0, 1] (see [54], [6]):

Definition 3.1. The nth Müntz-Legendre polynomial on (0, 1] is given by

Pn(λ0, . . . , λn; x) =
1

2πi

∮

Γ

n−1∏
ν=0

s + λ̄ν + 1
s− λν

xsds

s− λn
(n = 0, 1, . . . ), (3.1)

where the simple contour Γ surrounds all the zeros of the denominator in the inte-
grand.

For polynomials Pn(x) ≡ Pn(λ0, . . . , λn; x) one can prove an orthogonality rela-
tion on (0, 1):

Theorem 3.1. Let the polynomials Pn(x) be defined by (3.1). Then

∫ 1

0

Pn(x)Pm(x) dx = δn,m/(1 + λn + λn)

holds for every n,m = 0, 1, . . . .



Evidently, that the polynomials P ∗n(x) = (1 + λn + λn)1/2Pn(x) are orthonormal .
Supposing that λν 6= λµ (ν 6= µ) it is easy to show that polynomials Pn(x) can be
expressed in the form

Pn(x) =
n∑

k=0

cn,kxλk ,

where

cn,k =

n−1∏
ν=0

(1 + λk + λ̄ν)

n∏
ν=0
ν 6=k

(λk − λν)
.

In a limit case when λ0 = λ1 = · · · = λn = λ, the polynomials (3.1) reduce to

Pn(λ0, . . . , λn; x) = xλLn(−(1 + λ + λ̄) log x),

where Ln(x) is the Laguerre polynomial orthogonal on the (0,∞) with respect to
the exponential weight e−x, and for which Ln(0) = 1.

There is also a generalized Rodrigues formula for the Müntz-Legendre polynomials
(see [27]). Some recurrence relations also hold:

Theorem 3.2. Let the polynomials Pn(x) be defined by (3.1). Then

x(P ′n(x)− P ′n−1(x)) = λnPn(x) + (1 + λ̄n−1)Pn−1(x),

xP ′n(x) = λnPn(x) +
n−1∑
ν=0

(1 + λν + λν)Pν(x),

xP ′′n (x) = (λn − 1)P ′n(x) +
n−1∑
ν=0

(1 + λν + λν)P ′ν(x).

Similar to the Legendre polynomials and here also Pn(1) = 1 for each n.

An interesting question is connected by the zero distribution of the Müntz-Legen-
dre polynomials. A nice proof of the following result was given in [6].

Theorem 3.3. For real numbers λν > −1/2 (ν = 0, 1, . . . ) the Müntz-Legendre
polynomial Pn(x) has exactly n distinct zeros in (0, 1), and it changes sign at each
of these zeros.

Some inequalities for Müntz polynomials were also investigated in [6].



4. Malmquist Orthogonal Systems

Let A =
{
a0, a1, . . .

}
be an arbitrary sequence of complex numbers in the unit circle

(|aν | < 1). The Malmquist system of rational functions (see [55], [12–14]) is defined
in the following way

φn(s) =
(1− |an|2)1/2

1− āns

n−1∏
ν=0

aν − s

1− āνs
· |aν |

aν
(n = 0, 1, . . . ), (4.1)

where for aν = 0 we put |aν |/aν = āν/|aν | = −1. Such system of functions was
intensively investigated in several papers by Djrbashian [12–14], Bultheel, González-
Vera, Hendriksen, and Nj̊astad [8–10], Pan [46–49], etc.

In this section we want to prove some auxiliary results in order to connect this
system of orthogonal functions with some Müntz system of polynomials.

Excluding the normalization constants, the system (4.1) can be represented in the
form

Wn(s) =

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
, (4.2)

where a∗ν = 1/āν . For aν = 0 we put only s instead of (s− aν)/(s− a∗ν).
Suppose now that aν 6= aµ for ν 6= µ. Then (4.2) can be written in the form

Wn(s) =
n∑

k=0

An,k

s− a∗k
, (4.3)

where

An,k =

n−1∏
ν=0

(a∗k − aν)

n∏
ν=0
ν 6=k

(a∗k − a∗ν)
(k = 0, 1, . . . , n). (4.4)

The case when aν = aµ can be considered as a limiting process aν → aµ.
Alternatively, for |aν | < 1, (4.4) can be reduced to

An,k =

n−1∏
ν=0

( 1
āk
− aν

)

n∏
ν=0
ν 6=k

( 1
āk
− 1

āν

) =
ā0 · · · ān

āk
·

n−1∏
ν=0

(ākaν − 1)

n∏
ν=0
ν 6=k

(āk − āν)
. (4.5)



It is well-known that system of functions (4.1) is orthonormal on the unit circle
|s| = 1 with respect to the inner product

(u, v) =
1

2πi

∮

|s|=1

u(s)v(s)
ds

s
=

1
2π

∫ π

−π

u(eiθ)v(eiθ) dθ. (4.6)

Namely, (φn, φm) = δnm (n,m = 0, 1, . . . ).

We note also that

(u, v) =
1

2πi

∮

|s|=1

u(s)v(s∗)
ds

s
,

where s∗ = 1/s̄ on the unit circle |s| = 1.

Because of completeness we prove the following result:

Theorem 4.1. If the system of rational functions
{
Wn

}+∞
n=0

defined by (4.2) and
the inner product ( . , . ) by (4.6), then

(Wn,Wm) = ‖Wn‖2δnm,

where

‖Wn‖2 =
|a0a1 · · · an|2

1− |an|2 .

Proof. It is enough to prove that (Wn,Wm) = 0 for m < n, because of the property
(u, v) = (v, u). Supposing that m < n, we have

(Wn,Wm) =
1

2πi

∮

|s|=1

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
·

m−1∏
ν=0

(s̄− āν)

m∏
ν=0

(s̄− ā∗ν)
· ds

s

=
1

2πi

∮

|s|=1

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
·

m−1∏
ν=0

(1
s
− 1

a∗ν

)

m∏
ν=0

(1
s
− 1

aν

) · ds

s

=
1

2πi

∮

|s|=1

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
·

m−1∏
ν=0

(s− a∗ν)

m∏
ν=0

(s− aν)
· (−1)a0 · · · am

a∗0 · · · a∗m−1

ds.



Evidently, for |aν | < 1, i.e., |a∗ν | > 1, and m < n, Cauchy’s theorem gives
(Wn,Wm) = 0. For m = n we see that

‖Wn‖2 = − a0 · · · an

a∗0 · · · a∗n−1

· 1
2πi

∮

|s|=1

ds

(s− a∗n)(s− an)

= − a0 · · · an

(1/ā0) · · · (1/ān−1)
· 1
an − a∗n

=
|a0a1 · · · an|2

1− |an|2 . ¤

Lemma 4.1. Let |z| ≤ 1 and let F be defined by

F (z) =
1

2πi

∮

|s|=1

Wn(s)Wm(z̄s)
ds

s
, (4.7)

where the system functions Wn(s) is defined by (4.2) with mutually different numbers
aν (ν = 0, 1, . . . ) in the unit circle |s| = 1. Then

F (z) =
n∑

i=0

m∑

j=0

An,iĀm,j

a∗i ā
∗
j − z

, (4.8)

where the numbers An,k are given in (4.4).

Proof. For |z| ≤ 1 we conclude that the function

F (z) =
1

2πi

∮

|s|=1

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
·

m−1∏
ν=0

(z

s
− 1

a∗ν

)

m∏
ν=0

(z

s
− 1

aν

) · ds

s

=
(−1)a0 · · · am

a∗0 · · · a∗m−1

· 1
2πi

∮

|s|=1

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
·

m−1∏
ν=0

(s− a∗νz)

m∏
ν=0

(s− aνz)
ds

has (m + 1) poles in the circle |s| = 1: ajz (j = 0, 1, . . . , m). By Cauchy’s residue
theorem we find that

F (z) =
(−1)a0 · · · am

a∗0 · · · a∗m−1

m∑

j=0

n−1∏
ν=0

(ajz − aν)

n∏
ν=0

(ajz − a∗ν)
·

m−1∏
ν=0

(ajz − a∗νz)

m∏
ν=0
ν 6=j

(ajz − aνz)
.



Since

Gm,j =

m−1∏
ν=0

(ajz − a∗νz)

m∏
ν=0
ν 6=j

(ajz − aνz)
=

m−1∏
ν=0

(aj āν − 1)

m∏
ν=0
ν 6=j

(aj − aν)
· 1
ā0 · · · ām−1

,

because of (4.5), we have

Gm,j =
aj

a0 · · · am
· Ām,j · 1

ā0 · · · ām−1
=

aj āmĀm,j

|ā0 · · · ām|2 .

Thus,
a0 · · · am

a∗0 · · · a∗m−1

Gm,j = ajĀm,j ,

and we obtain

F (z) = −
m∑

j=0

Ām,j

n−1∏
ν=0

(
z − aν

aj

)

n∏
ν=0

(
z − a∗ν

aj

) .

On the other hand, expanding Qj(z) =
n−1∏
ν=0

(z−aν/aj)
/ n∏

ν=0
(z−a∗ν/aj) in partial

fractions, we get

Qj(z) =
n∑

i=0

n−1∏
ν=0

(a∗i
aj
− aν

aj

)

n∏
ν=0
ν 6=i

(a∗i
aj
− a∗ν

aj

) · 1

z − a∗i
aj

=
n∑

i=0

n−1∏
ν=0

(a∗i − aν)

n∏
ν=0
ν 6=i

(a∗i − a∗ν)
· 1
z − a∗i ā

∗
j

.

Because of (4.4), the right hand side of the last equality becomes
n∑

i=0

An,i

z − a∗i ā
∗
j

,

so that we obtain

F (z) =
m∑

j=0

Ām,j

n∑

i=0

An,i
1

a∗i ā
∗
j − z

,

i.e., (4.8). ¤
For z = 1, from (4.7) we see that F (1) = (Wn,Wm). Thus,

(Wn,Wm) =
n∑

i=0

m∑

j=0

An,iĀm,j

a∗i ā
∗
j − 1

. (4.9)



5. A Connection Between Malmquist and Müntz Systems

In this section we give a connection between the Malmquist system of rational func-
tions (4.2) and a Müntz system, which is orthogonal with respect to a new inner
product.

Using the numbers a∗ν which appear in (4.2), i.e., A∗ =
{
a∗0, a

∗
1, . . .

}
, we form

the Müntz system
{
xa∗0 , xa∗1 , . . . , xa∗n

}
. Notice that all such numbers are outside the

unit circle. In order to short our notation and to be consistent to Section 3, we write
a∗ν = λν (ν = 0, 1, . . . ).

In our consideration we need a new operation:

Definition 5.1. For α, β ∈ C we have

xα ¯ xβ = xαβ (x ∈ (0,∞)). (5.1)

Using (5.1) we can introduce an external operation for the Müntz polynomials
from M(A∗) = M(Λ).

Definition 5.2. Let P ∈ Mn(Λ) and Q ∈ Mm(Λ), i.e.,

P (x) =
n∑

i=0

pix
λi and Q(x) =

m∑

j=0

qjx
λj , (5.2)

then

(P ¯Q)(x) =
n∑

i=0

m∑

j=0

piqjx
λiλj . (5.3)

Under restrictions that for each i and j we have

|λi| > 1, Re(λiλ̄j − 1) > 0, (5.4)

then we can introduce a new inner product for Müntz polynomials.

Definition 5.3. Let the conditions (5.4) be satisfied for the Müntz polynomials
P (x) and Q(x) given by (5.2). Their inner product [P, Q] is defined by

[P,Q] =
∫ 1

0

(P ¯Q)(x)
dx

x2
, (5.5)

where (P ¯Q)(x) is determined by (5.3).

It is not clear immediately that (5.5) represents an inner product. Therefore, we
prove the following result:



Theorem 5.1. Let Λ =
{
λ0, λ1, . . .

}
be a sequence of the complex numbers such

that the conditions (5.4) hold. Then

(i) [P, P ] ≥ 0;

(ii) [P, P ] = 0 ⇐⇒ P (x) ≡ 0;

(iii) [P + Q,R] = [P,R] + [Q,R];

(iv) [cP, Q] = c[P,Q];

(v) [P, Q] = [Q, P ]

for each P, Q, R ∈ M(Λ) and each c ∈ C.

Proof. Let P (x) and Q(x) be given by (5.2). Using (5.5) and (5.3) we have

[P, Q] =
∫ 1

0

(P ¯Q)(x)
dx

x2
=

n∑

i=0

m∑

j=0

piqj

∫ 1

0

xλiλ̄j−2dx.

Because of (5.4), we find that
∫ 1

0
xλiλ̄j−2dx = 1/(λiλ̄j − 1) for each i and j, so that

we get

[P, Q] =
n∑

i=0

m∑

j=0

piqj

λiλ̄j − 1
. (5.6)

In order to prove (i) and (ii) it is enough to conclude that the quadratic form

[P, P ] =
n∑

i=0

n∑

j=0

1
λiλ̄j − 1

pipj ,

i.e., its matrix Hn =
[
1/(λiλ̄j − 1)

]n

i,j=0
, is positive definite. Therefore, we use the

Sylvester’s necessary and sufficient conditions (cf. [28, p. 214])

Dk = det Hk = det
[
1/(λiλ̄j − 1)

]k

i,j=0
> 0 (k = 0, 1, . . . , n).

In order to evaluate the determinants Dk, we use Cauchy’s formula (see Muir [41,
p. 345])

det
[

1
ai + bj

]k

i,j=0

=

k∏
i>j=0

(ai − aj)(bi − bj)

k∏
i,j=0

(ai + bj)



with ai = λi and bj = −1/λ̄j . Thus, we obtain

Dk =
1

k∏
j=0

λ̄j

det
[

1
λi − 1/λ̄j

]k

i,j=0

=
1

k∏
j=0

λ̄j

·

k∏
i>j=0

(λi − λj)
(
− 1

λ̄i
+

1
λ̄j

)

k∏
i,j=0

(
λi − 1

λ̄j

) ,

i.e.,

Dk =
1

k∏
j=0

λ̄j

·

k∏
i>j=0

|λi − λj |2
λ̄iλ̄j

k∏
i,j=0

λiλ̄j − 1
λ̄j

.

Since D0 = 1/(|λ0|2 − 1) > 0 (because of (5.4)) and

Dk =
Dk−1

|λk|2 − 1

k−1∏

i=0

|λk − λi|2
|λiλ̄k − 1|2 ,

by induction we conclude that Dk > 0 for all k.

The properties (iii)–(v) follow directly from (5.5) or (5.6). ¤

Now we are ready to define the Müntz polynomials

Qn(x) ≡ Qn(λ0, λ1, . . . , λn; x), n = 0, 1, . . . , (5.7)

orthogonal with respect to the inner product (5.5).

Consider again the Malmquist system of rational functions (4.2), i.e.,

Wn(s) =

n−1∏
ν=0

(s− 1/λ̄ν)

n∏
ν=0

(s− λν)
, (5.8)

where Λ =
{
λ0, λ1, . . .

}
is a complex sequence such that (5.4) holds.

Definition 5.4. The nth Müntz polynomial Qn(x), associated to the Malmquist
function (5.8), is defined by

Qn(x) =
1

2πi

∮

Γ

Wn(s)xs ds, (5.9)



where the simple contour Γ surrounds all the points λν (ν = 0, 1, . . . , n).

Using (5.9), (4.3), (4.4) and Cauchy’s residue theorem we get, a representation of
(5.7) in the form

Qn(x) =
n∑

k=0

An,kxλk , (5.10)

where

An,k =

n−1∏
ν=0

(λk − 1/λ̄ν)

n∏
ν=0
ν 6=k

(λk − λν)
(k = 0, 1, . . . , n), (5.11)

and where we assumed that λi 6= λj (i 6= j).
Finally, we prove an orthogonality relation for polynomials Qn(x). Other results

in this direction will be published elsewhere.

Theorem 5.2. Under previous conditions on the sequence Λ, the Müntz polynomials
Qn(x), n = 0, 1, . . . , defined by (5.9), are orthogonal with respect to the inner product
(5.5). i.e.,

[Qn, Qm] =
1

(|λn|2 − 1)|λ0λ1 · · ·λn−1|2 δn,m. (5.12)

Proof. According to (5.6) and (5.10), we have

[Qn, Qm] =
n∑

i=0

m∑

j=0

An,iĀm,j

λiλ̄j − 1
,

where An,k is given by (5.11).
Using Lemma 4.1 with z = 1, i.e., equality (4.9), we conclude that

[Qn, Qm] = (Wn,Wm),

where Wn(s) is determined by (5.8).
Since aν = 1/λ̄ν (ν = 0, 1, . . . ), from Theorem 4.1 it follows (5.12). ¤
For the norm of polynomial Qn(x) we obtain

‖Qn‖ =
√

[Qn, Qn] =
1

|λ0λ1 · · ·λn−1| ·
1√

|λn|2 − 1
,

where the complex numbers satisfy the condition (5.4).
One particular result can be interesting:



Corollary 5.3. Let Qn(x) be defined by (5.9) and let λ0 = λ1 = · · · = λn = λ.
Then

Qn(x) = xλLn

(−(λ− 1/λ̄) log x
)
, (5.13)

where Ln(x) is the Laguerre polynomial orthogonal with respect to e−x on [0,∞) and
such that Ln(0) = 1.

Proof. For λ0 = λ1 = · · · = λn = λ, (5.9) reduces to

Qn(x) =
1

2πi

∮

Γ

(s− 1/λ̄)n

(s− λ)n+1
xs ds,

where λ ∈ int Γ. Since

Res
z=λ

[
(s− 1/λ̄)n

(s− λ)n+1
xs

]
=

1
n!

lim
z→λ

dn

dsn

[(
s− 1/λ̄

)n
xs

]

we obtain by Cauchy’s residue theorem

Qn(x) =
1
n!

n∑

k=0

(n

k

)
n(n− 1) · · · (k + 1)(λ− 1/λ̄)kxλ(log x)k

= xλ
n∑

k=0

1
k!

(n

k

)
(λ− 1/λ̄)k(log x)k,

which gives (5.13). ¤
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Faculty of Electronic Engineering
Department of Automatics, P.O. Box 73
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