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1. Introduction

There are several papers on the so-called Boubaker polynomials and on their applications in different problems arising in
physics and other computational and applied sciences (cf. [2,3,9,26]). These polynomials {B,(x)} have a close relationship
with the Chebyshev polynomials of the first and second kind, T,(x) and U,(x), which are orthogonal on (-1, 1) with respect
to the weights functions 1/v1 —x2 and v 1 — x2, respectively.

Solutions to several applied physics problems are based on the so-called Boubaker Polynomials Expansion Scheme (BPES),
using only the subsequence {Bsn(x)} of these polynomials (cf. [26] and references therein). Such polynomials satisfy the rela-
tion (cf. [9])

Bami1)(X) = (x* — 4% + 2)Bam (X) — ByBam-1)(x), m > 1, (1.1)

with By(x) = 1 and B4(x) = x* — 2, where , =0,, = -2 and B, =1 form > 2.
Recently, Kumar [11] has presented a method for obtaining an analytical solution of Love’s integral equation (see [13,14]),
with a positive parameter d,

1 /! d
f(x)—ﬁllmf(Y)dy:1; -1<x<1 (1.2)

for a particular electrostatical system, based on the Boubaker polynomials expansion scheme (BPES). However, a mistake has
appeared in his approach.

The main goal of this paper is a correction of Kumar’s approach, as well as the proof of most important properties of the
Boubaker polynomials, including the zero distribution. The paper is organized as follows.
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In Section 2 some properties of the polynomials B, (x) and certain related polynomials (the three-term recurrence relation,
relations with Chebyshev polynomials, properties of zeros, etc.) are presented. The proofs of statements are given in Sec-
tion 3. Finally, in Section 4 an application of these polynomials B,(x) in solving Love’s integral equation is given, which ap-
pears in an electrostatic problem.

2. Properties of Boubaker polynomials

The well-known Chebyshev polynomials of the first and second kind for x € (—1,1) are defined by (cf. [15, p. 6])

Tn(x) = cos(narccosx) and U,(x) = sin ((n + 1) arccos x)

V1—x2 '
respectively. Their explicit expressions are
/2] k
n (71) (nfkfl)! n-2k
= = — _— >
Tox) =1, Ta(x) 2’; K2k (20" n=l

and

[n/2] k
(=1)"(n—k)!
Un) =3 ki(n — 2k)!

k=0

2x)"* n>0

and they satisfy the same three-term recurrence relation (cf. [15, p. 9]), i.e.,
Tni1(x) = 2xTp(X) — Tno1(x),  Upyr(x) = 2xUp(x) = Up_1(X), n =1,

with To(x) =1, T1(x) = x and Up(x) = 1, Uy (x) = 2x.
In a similar way, the monic Boubaker polynomials are defined as (cf. [2,3,9,26])

/2] n—k\ n— 4k
B = (-0 (") e m @1
kZ; k n—k

and By (x) = 1. Polynomials of even and odd orders are even and odd functions, respectively, i.e., B,(—x) = (—1)"Bn(x),n € Np.
For example, for n < 11 we have
Bi(x) =x, By(x)=x*4+2, B3(x)=x>+x, Byx)=x'-2,
Bs(x) =x> —x> —3x, Bs(x) =x°—2x*—3x?+2, By(x) =x’ —3x° — 2x> 4 5x,
Bs(x) =x® —4x% +8x2 — 2, Bo(x) = x° — 5x” +3x° + 10x°> — 7x,
Bio(x) = x1° — 6x% 4 7x% + 10x* — 15x% 4 2,
By (x) = x'"" — 7x° +12x7 + 7x° — 25x% + 9x.

In the sequel we give some of most important properties of these polynomials. Some of them are known.
2.1. Three-term recurrence relations and connections with Chebyshev polynomials

The polynomials B,(x) can be alternatively represented by a three-term recurrence relation
Bni1(x) =xBn(X) —Bp_1(x), n=2,3,..., (2.2)

where By(x) = 1,B;(x) = X, By(x) = x> + 2.

As we can see, the relation (2.2) is not true for n = 1. In order to provide a relation for each n € N, we can define a se-
quence {By}yen, BY fo = 0,8 = =2 and f; = 1 for k > 2. Then, we have the three-term recurrence relation in the following
form

By1(x) = XBy(x) — BBia(x), k=0,1,..., (2.3)
with By(x) =1, B_;(x) = 0.
The polynomials (2.1) can be expressed in terms of Chebyshev polynomials of the first and second kind, T,(x) and U,(x).
Theorem 2.1. For n > 1 the following formulas
Bn(x) = 2T, (x/2) + 4Up_2(x/2) (2.4)
and
Ba(x) = Un(x/2) + 3Un 2(x/2) (25)
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hold, where U_1(x) = 0.
Eliminating U, ,(x/2) from (2.4) and (2.5), we get

Bn(x) = 4U,(x/2) — 6T, (x/2).
Now, according to Eq. (1.1.9) in [15, p. 6], we obtain the expansions of B,(x) in terms of Chebyshev polynomials of the first
kind,

Bon(x) = 2T2n(%/2) + 8T2n_2(x/2) + 8T2n_a(x/2) + - - + 8T (x/2) + 4T (x/2)
and

Boni1(X) = 2T2041(%/2) + 8T2n_1(x/2) + 8Ton_3(x/2) + - -- + 8T3(x/2) + 8T1(x/2).

In the following we recall a property of orthogonal polynomials on a symmetric interval (—a,a),a > 0, satisfing a three-
term recurrence relation of the form (2.3). For such kind of polynomials, which are orthogonal with respect to an even
weight function on (—a,a), two new polynomial systems orthogonal on the interval (0,a?) can be defined (cf. [15, pp.
102-103]).

In a quite similar way, we can also introduce here two new (nonorthogonal) systems of monic polynomials {p,,(t)} and
{q(t)} via Boubaker polynomials By (x), so that

Bon(X) = P(®*)  and  Bomy1(X) = Xq,(X?) (2.6)

and prove the following result:

Theorem 2.2. Let B,,,m > 1, be recursive coefficients in the recurrence relation (2.3). Then,

Pt (6) = (= an)Pm(£) = b1 (t)  aNd 1 () = (€ = )G () = A1 (1), (2.7)
with py(t) = qo(t) = 1,p_;(t) = q_;(t) = 0, where the recursive coefficients are given by
am = Pom + Pomir = { 2 m=0, bm = BymPom-1 = { 2 m=1
2, m>1, 1, m>2

and

-1, m=0,
> 1, dm = PomPomis =1, m= 1.

Cm = ﬁ2m+1 + ﬁ2m+2 = {2

)

2.2. Determinatal form of polynomials and distribution of zeros

Using the recurrence relation (2.3) for k = 0,1,...,n — 1 and defining the n-dimensional vector b, (x) by
ba(x) = [Bo(X) B1(%) ... Bii(¥)]",

we obtain the equation

(xI, — Mp)b,(x) = By(x)en, (2.8)
where I, is the identity matrix of order n,e, =[00 ... 0 1}T is the last coordinate vector, and M, is a tridiagonal matrix of
order n, given by

0 1 (0] 0 1 0

pr 0 1 -2 0 1

M, = g, 0 - = 1 0
o 1 R 1
0 B,y O (0] 10

According to (2.8) the monic polynomials B,(x) can be expressed in the following determinant form
B, (x) = det(xl, —M,), n > 1.
It is a form which is well known in the theory of orthogonal polynomials (cf. [15, p. 100]). We also conclude that the zeros of

the polynomial B, (x) are eigenvalues of the matrix M,. Now we apply a result of Veseli¢ [24] to the irreducible tridiagonal
matrix M,, for which we can form, according to [24, Eq. (3)], the following sequence

1, -2,-2,..., 2.
—_—————

n-1
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Since the numbers of positive and negative signs in this sequence are k, =1 and k. =n -1, respectively, and
k = min(k,,k_) = 1, we conclude that M, for n > 3 has at least |k, — k_| = n — 2 different real spectral points. Furthermore,
using Gerschgorin’s theorem, it is easy to see that all eigenvalues are in the unit circle |z| < 2 (see also [26]). Thus,
Bn(x),n > 2, can have only one pair of conjugate-complex zeros.

Precisely, the following result holds:

Theorem 2.3. Every polynomial B,(x),n > 2, has two complex conjugate zeros +i,/y,, y, >0, and other zeros are real and
symmetrically distributed in (—2,2), where limp_,..7,, = 4/3. The corresponding representations of these polynomials for m > 2
are

m—1 m—1
BZm( = + Yom H X *TZm‘ BZm+] (X) + Vomi1 H TZmH\ (29)

v=1 v=1

where 4> Ty > > Tym1 >0and n=2morn=2m+ 1.

Remark 2.1. Theorem 2.3 on zero distribution of B, (x) has been mentioned in [17, Theorem 4]. Recently, a similar result has
appeared on arXiv:1211.0383 (see [10]).
The corresponding tridiagonal matrices (of Jacobi type) of order m for the polynomial sequences {p,,(t)} and {q,,(t)} are

-2 1 0 -1 1 0

-2 2 1 -1 2 1

P= 1 2 - and JI = 1 2
| RN
0 1 2 0 1 2

respectively. Otherwise, these polynomial systems {p,,(t)} and {q,,(t)} consist of the following polynomials
{1, t+2, 2 -2, -2 -3t+2, t* -4 +8t -2, £* —6t* + 7t + 10 — 15t + 2, ...}

and
{1, t+1, 82—t -3, -3t -2t +5, t* =53 +3t2 + 10t - 7, > = 7t* + 1263 + 7t* - 25t + 9, ...},

respectively.
In order to investigate zeros of the polynomials B,(z) on the imaginary axis we put z = iy and consider B,(iy)/i",n > 2,
i.e., the sequence of polynomials
V=2, y0*-1), ¥ -2, yor+yr=3), y2y -3y -2y0° +3y  -2y2 - 5), ¥ 4y -8yP -2, y(®
+5y% +3y* —10y%? — 7), etc.

For t > 0 we define two sequences of polynomials ey (t) and on(t), m=1,2,..., by

em(t) = (=1)"Byy(ivt) and om(r):(—nmw, (2.10)
ivt
respectively. According to (2.1) and Theorem 2.2, it is clear that
o 2m—k\2m-—4k ,
em(t) = (-1 kz( >mt (2.11)
and
T /2m—k\2m -4k +1
_(_1\m ) — m-k
ontt) = (-17au(-0 = >(*" ) SR 212

Theorem 2.4. For any m € N the polynomials e, (t) and o,,(t) have only one positive zero.

In Fig. 2.1 we present the graphs of polynomials e, (t) (left) and o, (t) (right) for t € [0,2] and m = 2,3, 4, and 5. Notice that
en(0) = —2 and 0, (0) = —(2m — 1), and the unique positive zero &, of en(t) (and also #,, of 0,,(t)) belongs to (1, 3/2) Also
derivatives el (t) and o) (t),v =1,2,... (of course for a sufficiently large m) have the unique positive zeros ¢ and %}
respectively, for which it is easy to see that

&V <y <&n oand nit) <) <y (2.13)
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Fig. 2.1. The graphs of polynomials en(t) (left) and o (t) (right) for m = 2 (black line), m = 3 (blue line), m = 4 (red line) and m = 5 (brown line). (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)

Remark 2.2. Other zeros of e, (t) and o,,(t) are also real, but negative.

In the sequel we investigate the exact positions of these zeros and give their asymptotics when m — +oco. First we need
some auxiliary results.

Lemma 2.5. The values of polynomials e, (t) and o(t), as well as their derivatives of the first and second order at t =4/3

are
_ 2 / _ 3 m+1 —-m

en(4/3) = —gm. €n(4/3) =55 3"+ (8m - 3)3 ]

€n(4/3) = 1057 |8 - 7)3™ — (32m2+16m—21)3’"’]
and

om(4/3) =2 o (4/3) = = [3m2 _ (8m+9)3 ™

n(4/3) = gm. 0u(4/3) =7 3" - 8m+9)37™),

0" (4/3) = 20948 [(8m711)3’”*2 (32m2+112m+99)3”"],

respectively.

Remark 2.3. Some interesting finite sums can be obtained from (2.11), (2.12), and Lemma 2.5. For example, we have
Zm:<m+’<>m—2k(4)k_ <m+’<>4/<—2m+1(4>k_1
=\ 2k m+k \3 7\ 2k 2k +1 3 3m’

(o () Lm0

k=1 2k -1

M=

=~
Il

The following result is related with positive zeros &, and #,, of the polynomials en(t) and o, (t), respectively.

Theorem 2.6. For each m > 1, the following inequalities

4 64 1 64
0<£m—3 gt 1+32m3<w (2.14)
and
4 2m -1 4 64 1 1
3om- 1437 M<373 et 7w 21

hold.
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3. Proofs

Proof of Theorem 2.1. First equality (2.4), which has been known earlier, can be proved, for example, by the mathematical
induction, or by solving (2.2), i.e., y,, .1 — Xy, +¥n,_1 = 0,n > 1, as a difference equation with respect to n, supposing thatx is a
fixed number in (-2,2), for example, x = 2 cos 0. Then, the roots of the characteristic equation are e*, so that the general
solution of this equation is y, = C; cosnf + C, sinnf. Taking the starting values

Vi =Bi(x) =x=2cos0 and y, =B,(x) =x*>+2=2c0520+4,
we get C; = —2 and C, = 4 cot 6, so that

Ba(x) = —2 cosnd+ 4508080 _ 5 s n0+4w
sin 0 sin 0
Le., By(X) = 2T, (x/2) + 4U,_»(x/2).
Since 2T, (x) = Un(x) — Up_2(x), (2.5) follows directly from (2.4). O

)

Proof of Theorem 2.2. According to (2.3) we have

Bom3(X) = XBam2(X) — BomiaBom1(x)  and Bomi2(X) = XBom+1(X) — Bomi1Bom (%),
or, using (2.6),

X1 () = XDt () = Pomy2Xqm(X*) AN Py (X)) = X°qp(X*) = Pomi1Pm(X)-

Putting x?> = t, it is easy to see that

Pins1 () + Bom 1P (t) = £G4 (£) 3.1
and

Tms1(8) + Bams2@m(t) = D (). (3-2)
If we replace k by k — 1 in (3.2), multiply it by t, and finally add it to the relation (3.1), we obtain

D1 () + (Bomi1 — OPm(t) + Bomtqm-1(£) = 0. 33)

In a similar way, taking k instead of k in (3.1) and combining it with (3.3) we get
Pmi1 (t) + (ﬁZm + ﬂ2m+1 - t)pm(t) + ﬁZmﬁZm—lpm—l(t) = 07

i.e., the first relation in (2.7). In a similar way we obtain the corresponding recurrence relation for polynomials {q,,}. O

Proof of Theorem 2.4. In the proof we use the number of sign variations (differences) between consecutive nonzero coef-
ficients of a polynomial ordered by descending variable exponent. We note that the coefficients in (2.11) are positive for
k < m/2 and negative for k > m/2, so that we have only one sign variation.

According to Descartes’ Rule the number of positive zeros is either equal to the number of sign differences between
consecutive nonzero coefficients, or lower than it by a multiple of 2.

Since e (0) = —2 < 0 and e,y (T) > O for each sufficiently large positive T, we conclude that e, (t) has only one positive
zero.

A similar proof can be done for polynomials op,(t). O

Proof of Lemma 2.5. According to (2.7) and (2.11), i.e., (2.12), we have the following difference equations
emi1(t) — (E+2)en(t) +em1(t) =0 and o0p1(t) — (E+2)0p(t) + 0m_1(t) =0,
as well as the ones for derivatives

el (f) — (t+2)el) (6) + el () = vel 1 (t)

m

and
ol () — (£ +2)0) () + 0l 1 (£) = voly D (0),

where v =1,2,....In particular, we are interested only in solutions of these difference equations for t = 4/3. Since the char-
acteristic equation 42 — (10/4)4 + 1 = 0 (with roots 4; = 3 and 4, = 1/3) is the same for each of these equations, we obtain
the general solutions

em(4/3) =C13" + 3™ and  0p(4/3) = D;3™ + D37,
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where C,,C;,Dq,D, are arbitrary constants. Taking the starting values e;(4/3)=-2/3,e,(4/3)=-2/9,01(4/3) =
1/3,02(4/3) =1/9, we get C; =D, =0,C; = -2, and D, = 1, so that

1

en(4/3) = 731,,1 and op,(4/3) = gm, M > 1. (3.4)
For v = 1, the corresponding difference equations are
10 , 2
emi1(4/3) — g em(4/3) +en 1(4/3) = —3m
and
10 , 1
Omi1(4/3) = 7 0m(4/3) + 05, _1(4/3) = 3

and then, with starting values e} (4/3) = 1,e,(4/3) = 8/3,e4(4/3) = 23/3 and 0}(4/3) = 1,04,(4/3) = 11/3,05(4/3) = 34/3,
we obtain

3

€(4/3) = 35 [3'”“ (8m73)3’m} and 0,(4/3) = [3'"*2 (8m+9)3””].

64

In a similar way, with starting values e{(4/3)=0,e,(4/3) =2,e5(4/3)=12,e;(4/3) =160/3  and
07(4/3) = 0,05(4/3) = 2,04(4/3) = 14,04(4/3) = 202/3, we obtain the solutions of the following dlfference equations

10 v 9 ., 24m-9

m+1(4/3) ——en(4/3) +€;;171(4/3) =16 JFTB*"‘

and
10 " 17 27 m 24m+27 _m

Oni1(4/3) = 00(4/3) + 07, 1 (4/3) = 353" - =553
in the form

” 9 m+1 2 —m

en(4/3) = 1072 [(Sm 7)3™ — (32m2 + 16m — 21)3 ]
and

0/,(4/3) = 20948 [(f;m—11)3m+2 (32m? +112m+99)3-m],

respectively. O

Proof of Theorem 2.6. Since e;,(4/3) = —2/3™ < 0 we have that ¢, > 4/3. Also, because of 5 < & < ¢, (see (2.13)) and
e’ (4/3) = 0,m > 1, it is clear that e’ (t) > e/,(4/3) > e/ (&%) =0 for t > 4/3. Applying Taylor’s formula

m(t
4 4\ 4
em(t) = en(4/3) +€,,(4/3) ( —§> < §> , §<‘E<t,
for t = &, we conclude that
0=-en(&n) >em(4/3)+e€,(4/3) < —),

ie.,

.4 end)3) 2/3"
0<cn—3<-5 @3 S em o3

which gives (2.14).
In order to prove (2.15) we note that 7, <4/3, because of on(4/3)=1/3" > 0. Under similar arguments,
r],(f) < n,(,l) <Nn <4/3 and 0},(4/3) = oj,(Nym) > 0;1’1(175,?) =0, an application of Taylor’s formula gives

2
0= 0ul1) = 0n(4/3) + 044/3) (Mo ~3) + 300 (1 —3) <75,

3 ™7 0.(4/3) 63_4 {3m+2 B (8m+9)3_’"] 3 g ] 7?%19.
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On the other side, using a secant method at the points t = 0 and t = 4/3, we obtain a lower bound for #,,. Namely, the line
between the points (0, —(2m — 1)) and (4/3,1/3™) crosses the apscisa at
_4 _22m-1
"3 2m-1+3"™
so that X,, < 1,,. Combining it with the previous upper bound we obtain (2.15). O
Finally, we can prove the result on the zero distribution of polynomials B, (x).

Xm

Proof of Theorem 2.3. Let &, and #,, be unique positive zeros of ep(t) and on,(t), respectively. Then, according to (2.10), we
conclude that i/, (but also —i\/&,) is an imaginary zero of By, (x), so that y,,,, in (2.9) must be y,,, = &,. In a quite similar
way, we prove that ), 1 = ;.

The other m — 1 negative zeros of en(t) (see Remark 2.1) generate 2m — 2 real zeros of By, (x) symmetrically distributed
on (—2,2). Similarly, negative zeros of o, (t) generate 2m — 2 real zeros of By;;41(x) symmetrically distributed also on (-2, 2).
Thus, the representations (2.9) hold.

Using inequalities (2.14) and (2.15) from Theorem 2.6, we have

. 4

so that lim,_, .y, =4/3. O

4. Applications

As we mentioned in Section 1, the polynomials {B4n,(X)} play an important role in applications. These polynomials satisfy
the relation (1.1). However, if we need all even polynomials B, (x), then the corresponding recurrence relation is

Bymy2(X) = (X2 — am)Bam(X) — bnBam_2(X), m = 0, (4.1)

where a,, and b,, are recursive coefficients defined in Theorem 2.2.
Recently, Kumar [11] has presented a method for obtaining an analytical solution of Love’s integral equation (see [13,14])

1 /! d
R A e SR RS (42)
for a particular electrostatical system, based on the Boubaker polynomials expansion scheme (BPES). However, a mistake has
appeared in his approach. Our goal in this section is to correct this Kumar’s approach and give a much better approximation
of the solution of Love’s integral equation.

In 1949 Love (1912-2001) described the electrostatic potential in space, generated by a condenser consisting of two par-
allel equal circular plates of the radius R, separated by a distance h (see Fig. 4.1). Taking a normalization so that h = Rd, it can
be considered with dimensionless variables as two unit disks, where d is a distance between them. Supposing the equal and
opposite potentials at these disks, e.g., the upper at V = +1 and the lower one at V = —1, and the potential at infinity being
taken as zero, Love [13, Theorem 1] used a coaxial symmetry of this electrostatical system and proved that the potential in an
arbitrary point M(r,0,z) € R?, outside the circular plates, is given by

Z
A M(1,6,2)

Fig. 4.1. Electrostatical system od two parallel equal circular plates.
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1 /! 1 1
V(rz) =— - fx) dx, (4.3)
n/-l \/rz-s-(z—%dJrix)2 \/rZ-s-(z-ir%dﬁ-ix)2

where both square roots in this integral have positive real part and f is the unique solution of the Fredholm integral equation
of the second kind (4.2). He also proved that there exists a unique, continuous, real and even solution f of the Eq. (4.2) on the
closed interval [—-1,1].

In the case when the potentials of the plates are equal in magnitude and sign, then the corresponding integral equation
(4.2) becomes

1 /! d
f<x>+E/_lmf<y>dy:1, ~1<x<1. (44)

Also, in that case the — sign between two terms on the right-hand side in (4.3) becomes a + sign.
Recently, Norgren and Jonsson [19] have calculated the capacitance of the circular parallel plate capacitor by expanding
the solution to the Love integral equation (4.2) into a Fourier cosine series. For some other approaches see [8,5,25,4,22].
Love’s integral equations have the so-called difference kernel

1 d

k(xd’):k("*J’):%'m’ d>0, (4.5)

which has two complex conjugate poles x + id. We can see these poles approach the real axis when d — 0%, and therefore the
kernel is quasi-singular.
Letting

1 /! d
Kf)(x) == / _— dy,
KX =7 | 7+ (xfyff(y) y,
the operator form of Love’s integral Egs. (4.2) and (4.4) are
fFKf =(IFKf =g, (4.6)

where I denotes the identity operator, and K is compact with (cf. [18]).

2 41
K| = tan i< 1.
There are many numerical methods for solving integral equations (cf. [1,6,7,12,21,23]). Sometimes, they are developed for
specific type of kernels. Numerical methods for linear integral equations of the form (4.6) lead to algebraic systems of linear
equations and sometimes the conditional number of the corresponding matrices are large. The solution of an integral equa-
tion can be done in a polynomial form, as a peacewise polynomial, spline, etc.
An approximation to the solution of (4.2), in the case d = 1, was given by Love [14],

f(x) ~ fi(x) = 1.919200 — 0.311717x* 4 0.015676x* 4 0.019682x° — 0.000373x%. (4.7)

In this section we give a correction and extensions of Kumar’s method [11], using Boubaker polynomials. In this approach we
need to compute the integrals

1
Jonl.8) = (B = [ Bt

for different values of d and x, which can be done numerically for specific values of these parameters. But, we give here an analytic
(symbolic) form, using the recurrence relation (4.1). In fact, these integrals J,,, are moments of the (weight) functiony — k(x,y),
given by (4.5), with respect to the Boubaker polynomial sequence. For J,,, we can prove the following recurrence relation:

Lemma 4.1. We have
E3

2 241 —x)?
Jomea + (@ & — ) + Do > = 2l + X0 By(1)10g S T2 e, L (4.8)
T d>+(1-x)

where

Jo(x,d) :% {tan*1 (%) +tan~! ()%1” Jo(x,d)
1
T

{2d+ (2 ~d +x2> tan™' C%l) —2xd tanh™ <(1227)§]> T (dZ _ 2) tan-! <X; 1) ¥ tan! <1 ;x)}
+x2+

and
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om = / Bon(y) dy,  Kom = Kom(x,d) = / log % Bn(y) dy. (49)

The value of the first integral in (4.9) can be done in the form

| 6sin(Z(4m+1)) 2cos(2(2m+1))
meTToam -1 2m+1

and the second integral can be expressed as a linear combination of the integrals

Sk = Se(x,d) = /l x+y) Sy*ldy, keN.
*+(x—y)?

Their values are

2 2
Sk(x,d) = Py 1(x;d) + (ﬁ + Qak(X; d)> IOg% + R (x;d) (tan“ (T) —tan! <7ld+ ")) :

where Py, ;1 (x;d) and Ry,_1(x; d) are odd polynomials of degree 2k — 1 in x, and Ry(x; d) is an even polynomial of degree 2k in
x. Moreover, their forms are

K [kev
Py (x;d) = Z(Z d21>X2V1,

v=1

L

k

1 2 1 2j+1 _2j—

Q2k X d Z )j+ dJXZk 2] Rz,(,1( )j+ )d j+ ka 2j-1
Jj= j

k)

Iy
o

,c, respectively, for which there is a symmetry b\, = b and ¢, | =, so that

with coefﬁc1entsa 7b J

(k
J
Qu(x:d) = (=1)*Qu(d;x) and Ry 1(%;d) = (=1)* "Ryye_1 (d; x).

For example, for k = 1,k = 2, and k = 3, we have

Pi(x;d) =2x, Q(x;d) :%d2 f%xz, Ri(x;d) = —2dx, P3(x;d) = (%73d2>x+x3,
Qu(x;d) = —%x +2d*x? }ld“, Ry(x;d) = —2dx* + 2d°x

and
Ps(x;d) = (%——dz d4>x+ (é—@f) X %xs,

Quixid) =L d® —2d% 12— 136, Re(xd) = —2d + 0 #x — 2d¢,
6 2 2 6
respectively. The integrals S, can be obtained in a symbolic form in the matHEmATIcA Package by the command

intS[k_]:=Assuming[-1<=x<=1&&d>0,Integrate[Log[(d?+(x+y)?) | (d®+(x-y)?)]y* D),

{v.0,1}1]
Simplify

As an approximate solution of Love’s equation (4.2) or (4.4) in the set of polynomials of degree at most 4n (in notation
P4y), Kumar [11] used a linear combination of polynomials B4(x),Bs(x), ..., Baa(x), i.e., the expansion

9 (x Zcm&m (4.10)

but his approach contained a serious mistake. The corrected version of this method leads to the equation

1 1
zcm&m i) 7 zzcmmm ydy=1,
1
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. 1 (' dBun(y)
B (X :F_/ _Banl) g, — 1.
m1<4() Ty

The indices in fif (x) indicate to minimal and maximal degrees of basis polynomials in (4.10).

Since the solution of Love’s equation is an even function on [-1, 1], we can take n mutually different nonnegative points in
[0, 1] as collocation points T4,k =1,...,n.

Thus, for x = 74,k = 1,...,n, we get a system of linear equations for determining the coefficients c,,, m=1,...,n,

(11C1 + A12C2 + -+ - + A1pCr = 1,
(31C1 + A€y + -+ -+ AopCy = 1,

(4.11)
am €1 + naCo + -+ + AunCo = 1,
with the matrix A" = @]}, ,._;, Where
1 ! dB4m(Y)
Axm = Bam (T :Ff/ - —dy, km=1,...,n 412
k 4m( /) /), d2+(‘ck—y)2 y ( )

and the signs F correspond to the ones in (4.6). The upper index in A,ﬁ” indicates the starting value for m in the expansion
(4.10).

4.1. Love’s integral equation (4.2)

As we have mentioned above, Kumar [11] obtained a wrong system of Egs. (4.11) and then used an equidistant system of
collocation points on [0, 1]. A better condition number of the corresponding matrix A'" can be obtained, for example, using
the positive zeros or positive extremal points of the Chebyshev polynomials of the first kind as collocation points. All com-
putations were performed in MATHEMATICA, Ver. 9.0, on MacBook Pro Retina, OS X 10.8.2.

Taking collocation points as the positive zeros of T,,(x), in the same case considered by Love [14], i.e., when d = 1, from
the system of Eqgs. (4.11) for n = 1 and n = 2, we obtain the corresponding solutions

f¥(x) = —=1.01362B4(x) = 2.02725 — 1.01362x*
and
fi(x) = —1.01062B4(x) + 0.140162B5(x) = 1.74091 + 1.1213x* — 1.01062x* — 0.560649x° + 0.140162x°,

respectively.
However, we can get some better solutions taking the constant term in the corresponding expansion (By(x) = 1) of the
approximate polynomial solution. Namely, if we take

90 =3 cnBan()
m=0

instead of (4.10), then using the positive zeros of T,,.2(x) as collocation points, we obtain the following approximative
solutions

F9(x) = 1.32192By(x) — 0.279362B,(x) = 1.88064 — 0.279362x*

and
féo) (x) = 1.63647By(x) — 0.106254B4(x) — 0.0339144Bs(x)
=1.91681 — 0.271315x% — 0.106254x* + 0.135658x° — 0.0339144x%.
Here,
B 2k+1)m B
Tk _C0574(n+1) , k=0,1,....n

nn

and the matrix Aff” = [@gm] o m_o Of the corresponding system of equations is of order n + 1.
Moreover, in the previous set of polynomials (of degree at most 4n) we can get much better results if we take the com-
plete basis of all even polynomials. Thus, in order to find an approximate solution in the set #,,, we put

fOx) = zn:cmBZm(x). (4.13)
m=0

In this case, the matrix of the corresponding system of equations is Ay’ = [@m]}" o, Where
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Table 4.1
Condition numbers of the matrix A, n = 2(2)12, for different systems of collocation points.
n 2 4 6 8 10 12
Chebyshev zeros 1.46(2) 1.08(4) 8.98(5) 1.26(8) 2.06(10) 3.75(12)
Chebyshev extremal points 1.06(2) 8.55(3) 5.76(5) 8.24(7) 1.37(10) 2.41(12)
equidistant points 1.31(2) 3.19(4) 1.04(7) 5.64(9) 3.89(12) 2.53(15)
Table 4.2
Maximal relative errors of the approximate solutions.
Approximate solution Maximal relative errors
n=1 n=2 n=3 n=4
fi(®) 1.69(-3)
‘g?(x) 3.82(-1) 1.27(-1) 3.57(-2) 1.22(-2)
lg) x) 2.34(-2) 1.16(-3) 1.52(-4) 1.07(-5)
“i&) x) 2.43(-4) 1.37(-6) 9.65(-9) 2.41(-10)
0.0015+
12x107°0F
1L.x1070F
0.0010+
8.x 1077}
6.x1077F
4x107L 0.0005 |
2.x1077F
0:2 0:4 0?() 0:8 1:0 0.0 0?2 0?4 0?() 0f8 lf()

Fig. 4.2. (left) Relative errors of the approximate solutions of degree eight, fg)’ (x) (left) and f;(x) (right).

~ 1 /' dByn
Qe = Bom (Tk) — Jom (T, d) = Bam(Tk) : /1 W(y)y)z dy, km=0,1,...,n,
_ « —

with collocation points, for example,
k=0,1,...,n

We use Lemma 4.1 for calculating integrals J,,,.

The condition number of the matrix A (in the 1-norm) for n = 2(2)12 is given in Table 4.1. Numbers in parentheses indi-
cate decimal exponents. We can see that for these values of n we have cond(A”) ~ 10", which means that the corresponding
system of linear equations for determining the coefficients c,, in (4.13) becomes ill-conditioned when n increases. It causes a
loss of about n decimal digits in the coefficients c,,. A recent progress in symbolic computation and variable-precision arith-
metic enables overcoming of this numerical instability, by seting WorkingPrecision to be sufficiently large.

Taking nonnegative extremal points of the Chebyshev polynomial T,,(x) as collocation points, i.e.,
Ty = cos’;—;‘ ,k=0,1,...,n, as well as equidistant points 7, = %,k =0,1,...,n, the corresponding condition numbers are also
presented in the same Table 4.1. As we can see the condition number in the case of equidistant collocation points is much
bigger that the ones for Chebyshev points (zeros or extremal points)!

In the sequel we use Chebyshev zeros as collocation points. Using the previous procedure, for n = 2 and n = 4, we find

fﬁlo) (x) = 2.63989B(x) — 0.32014B,(x) + 0.0400543B4(x) = 1.919498 — 0.320140x> + 0.0400543x*
and

FO(x) = 2.46662B, (x) — 0.264159B, (x) + 0.0160255B4(x) + 0.000730762B5(x) — 0.00565549Bs (x)
=1.91903 — 0.311595x% + 0.014564x* + 0.0233527x° — 0.00565549x%.
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Fig. 4.3. (left) The solutions of Love’s Equation (4.2) as log-plots for d = 10 (dashed line), d = 1 (dotted line), d = 1/10 (solid line), and d = 1/100 (dot-
dashed line); (right) The solutions of Love’s equation (4.4) for d = 1 (dashed line), d = 1/10 (dotted line) and d = 1/100 (solid line).

2 04T T T .
1F 1 o2} 4
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Fig. 4.4. Equipotential lines for +V = 0.1(0.1)0.9 when d = 1 (left) and for +V = 0.3(0.2)0.9 when d = 1/10 (right).

Maximal relative errors of the previous approximate solutions, including Love’s solution (4.7), are presented in Table 4.2,
where we used as the exact solution the one obtained by an efficient method for solving Fredholm integral equations of
the second kind [16]). Alternatively, we can use f (x) as f(x).

Also, graphs of the relative errors |(fé°) (x) —f(x))/f(x)] and |(f.(x) — f(x))/f (x)| are displayed in Fig. 4.2. Notice that the both
approximate solutions fg” (x) and f1(x) are polynomials of the same degree eight.

The solutions féo) (x) for different values of the distance d (d = 0.01,d =0.1,d = 1, and d = 10) are presented in Fig. 4.3
(left). In the case when d — oo the solution of the Love’s equation (4.2) tends to the constant f(x) = 1. For example for
d = 10, the corresponding solutions f;?f (x) forn=1and n=2 are

f2(x) = 1.067734116 — 0.00065980x?,

f2(x) = 1.067734911236 — 0.00066617763x> + 6.3737080810 - 10 °x*,

with maximal relative errors on [—1, 1],7.40(—7) and 1.79(-9), respectively. Now, using (4.3), we can calculate and plot the
equipotential lines (see Fig. 4.4 for two cases d =1 and d = 1/10).

4.2. Love’s integral equation (4.4)

Finally, we give some results for Love’s integral equation (4.4), for which the matrix of the corresponding system of equa-
tions is given by [},,],", ,_o» Where
! dBZm (Y)

_ 1
Gy = Ban (%) + Jon(T1,) = Ban() + . [

—————dy, km=0,1,....n,
ad e+ (ne—y)

with collocation points,

(2k+hm

A1) k=0,1,...,n.

Ty = COS
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The solutions for different values of the distance d (d = 1,d = 1/10, and d = 1/100) are presented in Fig. 4.3 (right). A prob-
lem in approximation can appear when d — 0*. Namely, in that case we have

1
K0 =7 [ oy W o

which means that for —1 < x < 1, the solution f(x) of the Eq. (4.4) is nearly equal to 1/2, but at the endpoints f(£1) ~ 3/4.
Thus, in this case with small parameter d some difficulties in approximation, especially by polynomials, have appeared. An
efficient procedure for a very small value of the parameter d in the Eq. (4.4) has recently been introduced by Pastore in [20].
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