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Abstract

In this paper we consider an application of Gaussian quadrature rules to numerical series. Beside
the general properties of orthogonal polynomials related to linear functionals L (complex discrete
measures µ), we study the convergence of the corresponding Gaussian-type quadrature rules and
present some numerical examples.

1 Introduction

Define linear functional L, acting on the space of all polynomials P, using some complex discrete
measure µ, supported at the complex points λν , ν ∈ N0, with complex masses wν , ν ∈ N0, i.e.,

L(p) =
∫

pdµ =
+∞∑

ν=0

wνp(λν), wν , λν ∈ C\{0}, lim
i→+∞

λν = 0. (1.1)

We assume that the measure µ is such that all polynomials are absolutely µ-integrable, i.e., for all
n-series

µn =
∫

xndµ =
+∞∑

ν=0

wνλ
n
ν , (1.2)

is absolutely convergent.
Since sequence {λν}ν∈N0 , converging to zero, for an absolute convergence of the series representing

moments, it is enough to have an absolute summability of the sequence of masses {wν}ν∈N0 . Hence,
we assume that

+∞∑

ν=0

|wν | = W < +∞. (1.3)

As a second condition we suppose a regularity of the linear functional L (or complex discrete
measure µ), i.e., we assume that the sequence of orthogonal polynomials {pn}n∈N0 exists (uniquely)
and that the following three term recurrence relation

xpn(x) = βn+1pn+1(x) + αnpn(x) + βnpn−1(x), p0(x) = 1, p−1(x) = 0, (1.4)
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holds, which is provided by βn 6= 0 for each n ∈ N0. The monic version of the polynomial pn is
denoted by Pn.

The second linearly independent solution of (1.4) is denoted by qn, n ∈ N0, and it satisfies the
initial conditions q−1 = −1 and q0 = 0 (cf. [5], [2]). The monic version of this solution is denoted
by Qn. We also refer to this polynomials as numerator polynomials of the sequence pn. Note that
deg(qn) = n− 1.

Let the measure µ be normalized such that β0 = 1, i.e.,
∑

ν∈N0
wν = 1.

We assume also that three term recurrence coefficients have the following limits

lim
n→+∞αn = 0, lim

n→+∞βn = 0. (1.5)

Following [2], we give the following definition:

Definition 1.1 For every two uniformly bounded sequences of complex numbers {αk}k∈N0 and {βk}k∈N0

we associate an infinite tridiagonal complex Jacobi matrix

J =




α0 β1

β1 α1 β2

β2 α2
. . .

. . . . . .




. (1.6)

This Jacobi matrix can be interpreted as a linear operator acting on the Hilbert space `2 of all
complex square-summable sequences with usual scalar product 〈u, v〉 =

∑
ν∈N0

uνvν . The value of the
operator can be defined as a result of matrix multiplication of the infinite matrix given in (1.6) with
an infinite vector representing an element from `2. We refer to Jacobi matrix when we mean to refer
to associated linear operator and vice versa.

Definition 1.2 For a linear functional L, the symbol J represents a complex Jacobi matrix and the
corresponding linear operator acting on `2 constructed from sequences given in (1.4).

It is known (cf. [2], [1]) that the condition (1.5) is sufficient for the related Jacobi operator to be
compact. Even more, under assumption that J is compact, the condition (1.5) holds.

In the sequel we assume that the linear functional L (or complex discrete measure µ) is such that
the conditions given in (1.3), (1.4) and (1.5) are satisfied.

Under the assumption that the measure µ is positive, i.e., the sequences {λν}ν∈N0 and {wν}ν∈N0

are real and positive, respectively, it is known that the corresponding Jacobi operator is compact,
i.e., three term recurrence coefficients satisfy the condition (1.5). Even more, under condition that
the compact Jacobi operator is self-adjoint, the measure of orthogonality can be obtained from the
spectral representation theorem (see [8]). This means that set of linear functionals L, satisfying the
previous conditions (1.3), (1.4) and (1.5), is not empty.

According to [12], the linear functional Lp,q
a , given by

Lp,q
a (f) =

p− 1
p

+∞∑

ν=0

1
pν

f

(
a

qν

)
, |p| > 1, |q| > 1, (1.7)

is regular, has absolutely summable masses and three term recurrence coefficients are given by

αk = aqk p + q − 2pqk(1 + q) + pq2k(p + q)
(pq2k−1 − 1)(pq2k+1 − 1)

, k ≥ 0,

β2
0 = 1, (1.8)

β2
k = a2p q2k (qk − 1)2(pqk−1 − 1)2

(pq2k−2 − 1)(pq2k−1 − 1)2(pq2k − 1)
, k ≥ 1.
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Hence, the related Jacobi operator is compact.
That the set of complex discrete measures satisfying all three conditions is not empty was noted by

Carlitz (see [4]). At the end of his paper [4], there is a short note explaining that results are true also
for all real α, except for negative integers or zero1. The following linear functional has been studied

Lα(p) =
∫

p dµ =
αe−α

2

∑

k∈N0

e−k (k + α)k−1

k!

(
p((k + α)−1/2) + p(−(k + α)−1/2)

)
. (1.9)

It can be proved that under condition α is not negative integer or zero, the orthogonal polynomials
exists (uniquely), i.e., the functional Lα is regular. It is easy to check that masses are absolutely
summable, and also that related Jacobi operator is compact, since the coefficients in the three-term
recurrence relation (1.4) are

αk = 0 (k ∈ N0), β2
0 = 1, β2

k =
k

(k + α)(k + α− 1)
(k ∈ N).

There are also several other examples in this direction.
This paper is organized as follows. Section 2 is devoted to general properties of orthogonal poly-

nomials related to the linear functionals L (complex discrete measures µ), which satisfy all three
conditions mentioned before. The convergence results of Gaussian-type quadrature rules are pre-
sented in Section 3. Finally, some numerical examples are given in Section 4.

2 General properties of polynomials orthogonal w.r.t.

linear functional L (complex discrete measure µ)

In this section we need a general result from [2], which states that all zeros of all orthogonal polynomials
are contained if the closure of the numerical range of Jacobi operator J . The numerical range of J is
defined as the set {〈Jx, x〉 | x ∈ `2, ||x|| = 1}. Following [2] we refer to its closure as Γ(J). We can
express the mentioned statement as all zeros of all orthogonal polynomials are contained in Γ(J).

It is easy to check (see [11]) that the set Γ(J) is bounded, provided Jacobi operator J is bounded
and has the property diam(Γ(J)) ≤ 2||J ||. This means all zeros of all orthogonal polynomials are
bounded in their modulus by ||J ||.

Since we are interested only in compact Jacobi operators, we know their spectrum is at most
countable set with zero as the only accumulation point (see [8]), also all points except zero, contained
in the spectrum, are eigenvalues of Jacobi operator J . Under three conditions imposed on L, (1.3),
(1.4) and (1.5), we can state the following result:

Theorem 2.1 The spectrum σ(J) of the Jacobi operator J and supp(µ) (the support of the related
measure µ ), satisfy the following equality σ(J) = supp(µ) ∪ {0}.

Proof . It is known that the Weyl function, given by

φ(z) = 〈(zI − J)−1e0, e0〉 =
1
z

+∞∑

ν=0

〈Jνe0, e0〉
zν

, |z| > ||J ||,

is analytic on the set C\σ(J) and on no larger set. Since the quantities 〈Jνe0, e0〉, ν ∈ N0, represent
the moments (see [1], [2]), the Weyl function φ coincides with the function

φ̂(x) =
∫

dµ

z − x
=

1
z

+∞∑

ν=0

µν

zν
,

1The paper has an error introduced in masses wk. Instead of 1
2αe−α k+αk−1

k! it should be 1
2αe−α−k k+αk−1

k! .
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on the open set defined by |z| > ||J ||. However, the function φ̂ can be calculated from

φ̂ =
∫

dµ

z − x
=

+∞∑

ν=0

wν

z − λν
, z ∈ C\{λν | ν ∈ N0}.

It is easy to check that the series, representing function φ̂, is absolutely convergent on any compact
C ⊂ C\{λν | ν ∈ N0}, since for any z ∈ C

∣∣∣∣
wν

z − λν

∣∣∣∣ ≤
|wν |

dist(C, supp(µ))
,

and, as we know from (1.3), the sequence {wν}ν∈N0 is absolutely convergent. The previous means
that, using Weierstrass theorem, the functional series is uniformly convergent on any compact C ⊂
C\{λν | ν ∈ N0} and hence, it represents an analytic function. This means that the function φ̂ is an
analytic continuation of the Weyl function φ.

It remains to prove that this analytic continuation is unique. For any given point a /∈ {λν | ν ∈ N0}
we can construct an open set containing a and which intersection with {λν | ν ∈ N0} is empty, such
that the intersection with |z| > ||J || is not empty. The previous is true, because there are only finitely
many points λν with the property |λν | > |a| 6= 0. The mentioned set can be constructed to be an
open neighborhood of half line originating in a and tending to infinity, which intersection with the set
|z| < |a| is empty. This open set has nonempty intersection with the region |z| > ||J ||. Thus, using
Weierstrass theorem of analytic continuation, we know that there is unique analytic continuation in
a and that continuation is φ̂.

It is known that the Weyl function has singularities at the points which are spectrum of J . Even
more, if a singularity ζ of φ is isolated and is a pole of multiplicity m, related Jacobi operator has
at ζ an eigenvalue of multiplicity m. If the point ζ is an essential singularity of φ, then the point
ζ belongs to the essential spectrum of the corresponding Jacobi operator2 (see [2]). Since our Weyl
function has simple poles at λν , ν ∈ N0, they are eigenvalues of multiplicity 1 of J . The only point
which belongs to the essential spectrum of J is zero. ¤

Since the spectrum is point with eigenvalues λν , ν ∈ N0, it is clear that respected eigenvectors
are made of the values of the orthonormal polynomials pn, n ∈ N0, at points λν as their components.
Denote by p(x) the infinite vector (pn(x))n∈N0 . Taking n = 0, 1, . . . in (1.4) we get an equivalent
operator equation

Jp(x) = xp(x).

Choosing for x the values λν , ν ∈ N0, it is clear that p(λν), ν ∈ N0, are eigenvectors. Hence, p(λν)
belongs to `2. As a consequence, they are square-summable 〈p(λν), p(λν)〉 < +∞ and lim

n→+∞ pn(λν) =

0, which implies

Pn(λν) = o(||pn||) = o

(
n∏

k=0

βk

)
.

It means that at the points λν we have the convergence

lim
n→+∞

Pn+1(λν)
Pn(λν)

= lim
n→+∞βn = 0.

For other points in the complex plane, we have:

Lemma 2.1 For every z ∈ C\σ(J), we have

lim
n→+∞

Pn+1(z)
Pn(z)

= z.

2The essential spectrum of Jacobi operator is the set σess(J) = {z | range of zI − J is not closed} (cf. [8], [2]).
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Proof . From Poincare theorem (see [10]), there are two possibilities

lim
n→+∞

Pn+1(z)
Pn(z)

=

{
0,

z,

under condition z 6= 0, since the condition (1.5) holds.
Suppose that this limit is 0 for some z ∈ C\σ(J). Then, from

Pn+1(z)
Pn(z)

= z − αn − β2
n

Pn−1(z)
Pn(z)

,

we can conclude that
Pn(z)

Pn−1(z)
= O

(
β2

n

z

)
,

from where

Pn(z) = O

(
z−n

n∏

k=0

β2
k

)
or pn(z) = O

(
z−n

n∏

k=0

βk

)
.

Now, we find that p(z) is square-summable, since |pn(z)|1/n = O(|z|−1|βn|) → 0 < 1. This means
z is an eigenvalue of J , which is a contradiction. ¤

Denote by (x, y) the bilinear functional 〈x, Cy〉, where C is the conjugation operator, i.e.,

C(xn)n∈N0 = (xn)n∈N0 and (x, y) = 〈x, Cy〉.

If vectors x and Cy are orthogonal in `2, we say that x and y are weakly orthogonal or orthogonal with
respect to ( · , · ).

Lemma 2.2 There holds

(p(λi), p(λj)) =
+∞∑

n=0

pn(λi)pn(λj) =
δi,j

wi
, (2.10)

i.e., the vectors p(λi), i ∈ N0, are weakly orthogonal.

Proof . Using Christoffel-Dabroux identity we have

n∑

k=0

pk(λj)pk(λi) = βn+1
pn+1(λj)pn(λi)− pn+1(λi)pn(λj)

λj − λi
,

provided i 6= j. For the absolute value of the left side in this equality we get
∣∣∣∣∣

n∑

k=0

pk(λi)pk(λj)

∣∣∣∣∣ ≤ |βn+1| |pn+1(λj)| |pn(λi)|+ |pn+1(λi)| |pn(λj)|
|λj − λi| .

Taking the limit it can be seen that

(p(λj), p(λi)) = 〈p(λj), Cp(λi)〉 =
+∞∑

n=0

pn(λj)pn(λi) = 0.

Now, we consider the function

K(x, y) = (p(x), p(y)) =
+∞∑

n=0

pn(x)pn(y), x, y ∈ {λi | i ∈ N0},
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for which is clear that ∫
K(x, y)dµ(x) =

∫
p2
0(x)dµ(x) = 1.

On the other hand

∫
K(x, λj)dµ(x) =

+∞∑

i=0

wiK(λi, λj) = wj(p(λj), p(λj)) = 1,

and the weak orthogonality condition holds. ¤
Consider now the case in which only a compact Jacobi operator J is given, with infinitely many

complex eigenvalues λi, i ∈ N0. We are interested in a construction of the measure of orthogonality.
At first we note that the proof on weak orthogonality of vectors p(λi), i ∈ N0, still holds. For this
general case we can prove the following auxiliary result:

Lemma 2.3 Let J be a Jacobi operator with infinitely many eigenvectors p(λi), i ∈ N0, and let X be
the set X = {x | (x, pi) = 0, i ∈ N0}. Then, J(X) ⊂ X, X = X and X is a (closed) linear subspace
of `2.

Proof . If x, y ∈ X, then obviously

(αx + βy, p(λi)) = α(x, p(λi)) + β(y, p(λi)) = 0.

It means X is a linear subspace of `2. By continuity of ( · , · ), since both 〈 · , · 〉 and C are continuous,
it is easy to conclude that if xn ∈ X tends to some x, then also (xn, p(λi)) → 0 and (x, p(λi)) = 0. It
means x ∈ X and X is closed.

If x ∈ X then (Jx, p(λi)) = (x, J(p(λi)) = λi(x, p(λi)) = 0, which means Jx ∈ X and J(X) ⊂ X.
¤

However, we cannot conclude that subspace X of `2 is free of eigenvectors, since we have no
argument against the case (p(λi), p(λi)) = 0, for some (possibly for all) i ∈ N0. Hence, obvious
solution with masses wi = 1/(p(λi), p(λi)), i ∈ N0, cannot be used safely.

Also note that even under assumption (p(λi), p(λi)) 6= 0, i ∈ N0, set X need not be the trivial
subspace {0}, since constructive argument for eigenvectors, which can be successfully applied to self-
adjoint J cannot be applied in a general case. We recall, for example, the Bessel polynomials having
compact associated Jacobi operator without eigenvalues.

Denote by J (k) Jacobi matrix obtained from J by deleting first k columns and rows, i.e., an
operator which matrix is created from delayed sequences α

(k)
n = αn+k, β

(k)
n = βn+k. Denote by

Γess(J) the following intersection

Γess(J) =
+∞⋂

k=0

Γ(J (k)).

For our compact operator, we have

Lemma 2.4 Γess(J) = {0}.

The previous can be understood easily since sequences of recursive coefficients are decreasing and
since (using bound for example given in [2] and [8])

Γ(J (k)) ≤ ||J (k)|| ≤ sup
n≥k

(
|βn+1|+ |αn|+ |βn|

)
,

which gives limk→+∞ ||J (k)|| = 0, with a direct consequence diam(Γ(J (k))) → 0 as k → +∞.
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Denote by Ω(J) = C\σ(J), i.e., Ω(J) is the resolvent set of J . There is a result proved in [2],
which states that for any compact set C ⊂ Ω(J)\Γess(J), there exists N(C) ∈ N such that there are
no zeros of pn, n > N(C), in C.

From [13], it is know that some zeros of orthogonal polynomials need not be connected to the
spectrum of J for a general complex Jacobi operator J . This can be true even for self-adjoint operators.
It is enough to consider the measure dµ = χ[−2,−1]χ[1,2]dx to conclude, by the symmetry argument,
that polynomials of odd degree must have zero at the origin. This sequence of zeros at the origin is
not connected with the spectrum of the corresponding Jacobi operator, since its spectrum must be
[−2,−1] ∪ [1, 2].

For bounded Jacobi operator, we can give the following definition:

Definition 2.3 Suppose there exists a sequence of zeros {xn}n∈N ′, where N ′ is an infinite subset of
N0 and xn is a zero of pn, such that

lim
n→+∞, n∈N ′

xn = ζ /∈ σ(J).

The point ζ is called the spurious zero for a sequence of orthogonal polynomials {pn}n∈N0.

Lemma 2.5 If a Jacobi operator J is compact, there are no spurious zeros of the sequence {pn}n∈N0.
In another words, if a complex measure of orthogonality µ, given by (1.1), is such that the correspond-
ing Jacobi operator is compact, the sequence of orthonormal polynomials {pn}n∈N0, does not have
spurious zeros.

Proof . Suppose there exists a spurious zero ζ and consider compact set F defined by

F = {z | |z − ζ| ≤ dist(ζ, σ(J))/2} ⊂ Ω(J)\Γess(J).

¿From the previous it is clear that there is N(F ) ∈ N, such that there are no zeros of pn, n > N(F ),
in F , which is a contradiction. ¤

One consequence is that zeros of orthogonal polynomials related with a compact Jacobi operator
are asymptotically simple.

Theorem 2.2 Zeros of orthonormal polynomials pn, n ∈ N0, are asymptotically simple in the neigh-
borhood of each λi, i ∈ N0.

Proof . Since a sequence of Pade approximants Qn/Pn is converging uniformly on any compact
Ω(J)\Γess(J) (see [2]), and the Weyl function has simple poles at points λi, i ∈ N0 (see Theorem 2.1),
it is clear that Qn/Pn, in a limit, must have a simple pole at every λi.

Qn/Pn can have simple pole at λi, as n → +∞, under a condition that there is one zero more in
Pn than in Qn near λi. In another words, if Pn has k + 1 zeros near λi, then Qn must have k zeros
near λi, and obviously all zeros must converge to λi. Denote zeros of Qn near λi by xn,i

j , j = 1, . . . , k.
It is clear that lim

n→∞xn,i
j = λi.

Since the matrix J (1) is compact and the sequence of related orthonormal polynomials is given by
{qn}n∈N0 , it is clear that since it does not have spurious zeros, the sequence xn,i

j , which is convergent,
must converge to the spectral point of J (1). The previous means that λi is an eigenvalue of J (1)

and the respected eigenvector is q(λi). Thus, the both vectors p(λi) and q(λi) are elements of `2

and J is indeterminate (see [14], [2], [3], [11]), but this is impossible since J is bounded and hence
determinate. ¤

The previous argument means that qn cannot have zeros converging to any of the points λi, i ∈ N0,
and that pn must have only one zero in the neighborhood of every λi, i ∈ N0, provided n is sufficiently
large integer.
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3 Convergence of Gaussian quadrature rules

Since it cannot be claimed that zeros of orthonormal polynomials pn, n ∈ N0, are simple, the related
Gaussian quadrature rules have to be of the form

Gn(f) =
N∑

k=1

Mk−1∑

i=0

wn
i,kf

(i)(xn
k), (3.11)

where xn
k are zeros of pn, with multiplicities Mk, with

∑N
i=1 Mk = n. The weights wn

i,k can be found
from the fractional decomposition

Qn(z)
Pn(z)

=
N∑

k=1

Mk∑

i=0

i!wn
i,k

(z − xn
k)j+1

.

The following result holds (cf. [7], [11]):

Theorem 3.3 Gaussian quadrature rule of the form (3.11), has algebraic degree of exactness 2n− 1,
i.e., it is exact on the space of all algebraic polynomials of degree at most 2n− 1, denoted by P2n−1.

Since orthogonality of polynomials pn can be established on the contour C = {z | |z| = R > ||J ||}
(see [11], [7], [13]), it can be easily verified that

∮

C
φ(z) Pn(z)zk dz =

{
0, 0 ≤ k < n,

||Pn||2, k = n,

where φ is the Weyl function mentioned already in Section 2. The previous is due to the well-known
result for the Pade approximation, which states (see [9], [13])

φ(z)− Qn(z)
Pn(z)

= O
(
z−2n−1

)
, z →∞,

which can be also restated in the following form

φ(z)Pn(z)−Qn(z) = O(z−n−1), z →∞.

Using this property it can be easily checked that
∮

C

(
φ− Qn

Pn

)
p dz = 0, p ∈ P2n−1,

from which it is clear that
∮

C
φ p dz =

∮

C

Qn

Pn
p dz = Gn(p), p ∈ P2n−1.

Consider now an analytic function f , which is µ-integrable, analytic in connected open set D, with
rectifiable bound C, which contains σ(J). We assume f is continuous on C. In [11] the following
error bound can be found (see also [7] for a similar formula)

∣∣∣∣
∫

fdµ−Gn(f)
∣∣∣∣ ≤

`(C)||f ||C
∫ |Pn|2d|µ|

2πd min
z∈C

|Pn(z)|2 , (3.12)

where C = ∂D, `(C) is the length of the curve C, ||f ||C is the usual sup norm on the compact set C,
|µ| is the measure supported on supp(µ) with masses |wi|, i ∈ N0, and d = dist(C, σ(J)).
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In the sequel it is assumed points λi, i ∈ N0, are ordered such that |λi| ≥ |λi+1|, i ∈ N0. We
construct a curve Cρ in the following way. Choose ρ > 0 and ρ 6= |λi|, i ∈ N0. Denote by Kρ circle
|z| = ρ. If ρ > max{|λi| | i ∈ N0}, we have Cρ = Kρ. Suppose the previous is not true. Then, there
are k, k ∈ N, points from σ(J) such that ρ < |λi|. Denote by M the minimal distance between points
λi, i < k, i.e., M = mini,j<k, i6=j |λi−λj | and construct the circles Ci

ρ = {z | |z−λi| = Mρ/3}, i < k.
Finally connect the circle Ci

ρ with Kρ by some (rectifiable) arc `i
ρ and denote by `i

ρ,+ arc oriented
form Kρ to Ci

ρ and by `i
ρ,− arc oriented from Ci

ρ to Kρ. Curve Cρ is positive oriented curve given by

Cρ = Kρ

⋃ (⋃

i<k

(
Ci

ρ ∪ `i
ρ,+ ∪ `i

ρ,−
)
)

. (3.13)

Theorem 3.4 Suppose function f is analytic in int(Cr) for some r > 0 and continuous on Cr. For
every ρ > 0, ρ 6= |λi|, i ∈ N0, there exists n0(ρ) ∈ N, such that for every n > n0(ρ)

∣∣∣∣
∫

fdµ−Gn(f)
∣∣∣∣
1/2n

≈ an
2ρ

r
, (3.14)

where an > 0 and an → 1 as n → +∞.

Proof . For any given ρ we consider the compact set

F =
{

z
∣∣ |z| ≤ 2||J ||

}
\


int(Kρ)

⋃

 ⋃

|λi|>ρ

int(Ci
ρ)





 .

As before there exists N1 = N(F ) ∈ N, such that there are no zeros of orthonormal polynomials pn

in F for n > N1.
Number of zeros of the sequence {pn}n∈N0 , in the set ∪|λi|>ρint(Ci

ρ) is uniformly bounded in n by
some N2 ∈ N.

There exists also N3 ∈ N, such that for |λi| > ρ and n > N3 we have |Pn(λi)| ≈ o
(∏n

j=0 |βj |
)
.

Finally there exists N4 ∈ N such that (2ρ)−2n
∣∣||Pn||2

∣∣ < 1 for n > N4, since
∣∣||Pn||2

∣∣ decreases
faster then exponentially.

Now we suppose n > n0(ρ) = max{N1, N2, N3, N4}. Then we have

∫
|Pn|2d|µ| =

+∞∑

i=k

|wi||Pn(λi)|2 +
k−1∑

i=0

|wi||Pn(λi)|2

≤
+∞∑

i=k

|wi|
n∏

j=1

|λi − xn
j |2 + o

(∣∣||Pn||2
∣∣)

k−1∑

i=0

|wi|

≤
+∞∑

i=k

|wi|
∏

|xj
n|<ρ

|λi − xj
n|2

∏

|xj
n|>ρ

|λi − xj
n|2 + o

(∣∣||Pn||2
∣∣)W

≤
+∞∑

i=k

|wi|(2ρ)2(n−N2)(2||J ||)2N2 + o
(∣∣||Pn||2

∣∣)W

≤
(
(2ρ)2(n−N2)(2||J ||)2N2 + o

(∣∣||Pn||2
∣∣)

)
W

= (2ρ)2(n−N2)(2||J ||)2N2

(
1 + o

(
(2ρ)−2(n−N2)

∣∣||Pn||2
∣∣
))

W,

which gives the upper bound for the integral
∫ |Pn|2d|µ|.
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We adopt the following short notation

B =
`(Cr)||f ||CrW

2πd

Applying (3.12) to C = Cr with D = int(Cr), using lemma 2.1, we get

∣∣∣∣
∫

fdµ−Gn(f)
∣∣∣∣
1/2n

≤
(
B(1 + o((2ρ)−2(n−N2)

∣∣||Pn||2
∣∣))

)1/2n
×

×
( ||J ||

ρ

)N2/n 2ρ

min
z∈Cr

|Pn(z)|1/n
≈ an

2ρ

r
,

where

an = B1/2n(1 + o((2ρ)−2(n−N2)
∣∣||Pn||2

∣∣)
( ||J ||

ρ

)N2/n

> 0.

It is obvious an → 1 as n → +∞. ¤

4 Numerical examples

Example 4.1 We consider a positive definite case which appears for linear functional Lp,q
a given by

(1.7) for p, q > 1, a = 1. We take p = q = 2 and

f(x) =
1

x− 3−20

The corresponding quadrature rules can be constructed using QR-algorithm (cf. [6]). Gaussian
approximations Gn(f) and the corresponding relative errors (r. err.) are given in Table 4.1 (m.p.
stands for machine precision ≈ 10−16 in double precision).

The same behavior we get for the choice a = 1, p = q = 2i, i =
√−1, when the quadrature rule

is applied for integration of the same function f . Table 4.2 displays the corresponding results for this
case.

The behavior of the relative errors can be fully understood using Theorem 3.4. While zeros of
orthogonal polynomials have modulus grater then 3−20, the convergence of our quadrature rules is
bad since ρ/r is greater then 1. In this case it can be rather said that quadrature rules are diverging.
When some zeros drop below 3−20, ρ can also be improved and hence ρ/r is smaller then 1, having
as a consequence very fast convergence. For example, the smallest modulus of zeros for n = 40 is of
order 10−13 and for n = 30 is of order 10−10. Note that 3−20 ≈ 3× 10−10.

n Gn r. err.
10 6.605719151641912 0.54
20 11.60759673863332 0.20
30 18.19943971672188 0.26
40 14.46129284956265 m.p.

Table 4.1: Gaussian approximations Gn and relative errors for L2,2
1 (1/(.− 3−20))
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n Gn r.err.
10 9.577889690630307 + 4.0332355954016054i 0.66
20 19.57775686236893 + 9.0341888460741501i 0.30
30 29.71613796045620 + 14.066446517362046i 0.07
40 27.52570186363645 + 13.689702133806741i m.p.

Table 4.2: Gaussian approximations Gn and relative errors for L2i,2i
1 (1/(.− 3−20))

Example 4.2 Consider the functional of the form

L(p) = − 1
ζ(2)

∑

k∈Z\{0}

(−1)k

k2
p

(
1
k

)
. (4.15)

The moments are given by

µ2k = 2−2k(22k+1 − 1)
ζ(2k + 2)

ζ(2)
, µ2k+1 = 0, k ∈ N0.

Numerical examples shows that (note that αk = 0, k ∈ N0, by the symmetry) β coefficients in
three term recurrence relation (1.4) are such that condition (1.5) holds. However, the convergence of
{βk}k∈N0 to zero is much slower then it is for three term recurrence coefficients for a linear functional
given by (1.7).

In the case of entire function, the convergence is rather fast and not disrupted. An application
to the function cos(x) gives result with machine precision with only 10 nodes in Gn. However, when
some singularities in the integrand are introduced, more numerical work is needed. We use this case to
illustrate an example when the exact result is really unreachable. In order to show this phenomenon,
we integrate the function

f(x) =
1

x− 3−20/2
,

with respect to L. It is clear f is µ-integrable. However, the value of the sum is unreachable, since
zeros of orthogonal polynomials (nodes of the quadrature rules) have asymptotic behavior as 1/k, and
it is clear that we need roughly 320/2 nodes in quadrature rule in order to achieve ρ/r < 1. For the
present state of hardware this is unreachable.

More drastic example can be given in the case we are trying to integrate a function as in Example
4.1, having singularity at 3−20, with respect to the functional L. It is obvious that this function is
not integrable, since term with k = 320 is not determined in this case, however quadrature rules with
say n ≤ 50 converge.

We can state that quadrature rules can be safely applied, without encountering unreachable phe-
nomenon, for functions with singularities which are greater then |λn| with n less then for example few
hounders.

Example 4.3 In the case of the functional Lα given by (1.9), we have that λ sequence is decreasing
even more slower then for the functional L from previous example, which means that absolute value
of the singularity, in order to be reachable, has to be even smaller. In Table 4.3 an illustration of this
fact is given. Quadrature rules are constructed for α = i =

√−1 and applied to the function

f(x) =
1

x− 20−1/3
.

Note that in this case we have very slow convergence of the zeros to the values λi, which is creating
significant errors in the quadrature rules.
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n Gn r. err.
10 −0.8558888269296514 + 0.2466457390261486i 0.21
20 −0.9848001824924506 + 0.01584612614940328i 0.07
30 −0.9534034679656761 + 0.07406429506233932i 0.01
40 −0.9483952773180323 + 0.06708359861933309i 3(−6)
50 −0.9483979586973889 + 0.06708279145101483i 5(−12)
60 −0.9483979587018742 + 0.06708279145343425i m.p

Table 4.3: Gaussian approximation Gn and relative errors for Li(1/(.− 20−1/3))
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[4] L. Carlitz, On some polynomials of Tricomi, Boll. Un. Mat. Ital. (3) 13 (1958), 58-64.

[5] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York,
1962.

[6] W. Gautschi, Algorithm 726: ORTHPOL – A package of routines for generating orthogonal
polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 10 (1994), 21–
62.

[7] P. Gonzales-Vera, G. Lopez, R.Orive, J.C. Santos, On the convergence of quadrature formula
for complex weight functions, J. Math. Anal. Appl., 189 (1995), 514–532.

[8] P.D. Lax, Functional Analysis, Wiley-Interscience, 2002.

[9] A.P. Magnus, Toeplitz matrix techniques and convergence of complex weight Pade approxi-
mation, J. Comput. Appl. Math. 19 (1987), 23–28.

[10] A. Mate, P. Nevai, A Generalization of Poincare Theorem for Recurrence Equations, J.
Approx. Theory, 63 (1990), 92–97.
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