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Abstract

Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-
preserving approximation by defective splines are considered. An account on power orthogonality (s- and �-orthogonal
polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical con-
struction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev
weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are
discussed. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

More than 100 years after Gauss published his famous method of approximate integration, which
was enriched by signi�cant contributions of Jacobi and Christo�el, there appeared the idea of nu-
merical integration involving multiple nodes. Taking any system of n distinct points {�1; : : : ; �n} and
n nonnegative integers m1; : : : ; mn, and starting from the Hermite the interpolation formula, Chakalov
(Tschakalo� in German transliteration) [8] in 1948 obtained the quadrature formula∫ 1

−1
f(t) dt=

n∑
�= 1

[A0; �f(��) + A1; �f′(��) + : : :+ Am�−1;�f
(m�−1)(��)]; (1.1)
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which is exact for all polynomials of degree at most m1 + : : : + mn − 1. Precisely, he gave a
method for computing the coe�cients Ai;� in (1.1). Such coe�cients (Cotes numbers of higher order)
are evidently Ai;�=

∫ 1
−1 ‘i; �(t) dt (�=1; : : : ; n; i=0; 1; : : : ; m� − 1), where ‘i; �(t) are the fundamental

functions of Hermite interpolation.
In 1950, specializing m1 = : : : =mn= k in (1.1), Tur�an [90] studied numerical quadratures of the

form ∫ 1

−1
f(t) dt=

k−1∑
i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn;k(f): (1.2)

Let Pm be the set of all algebraic polynomials of degree at most m. It is clear that formula (1.2)
can be made exact for f ∈ Pkn−1, for any given points −16 �16 : : : 6 �n6 1. However, for k =1
formula (1.2), i.e.,∫ 1

−1
f(t) dt=

n∑
�= 1

A0; �f(��) + Rn;1(f)

is exact for all polynomials of degree at most 2n− 1 if the nodes �� are the zeros of the Legendre
polynomial Pn, and it is the well-known Gauss–Legendre quadrature rule.
Because of Gauss’s result it is natural to ask whether nodes �� can be chosen so that the quadrature

formula (1.2) will be exact for algebraic polynomials of degree not exceeding (k + 1)n− 1. Tur�an
[90] showed that the answer is negative for k =2, and for k =3 it is positive. He proved that the
nodes �� should be chosen as the zeros of the monic polynomial �∗n(t)= t

n + : : : which minimizes
the integral

∫ 1
−1 [�n(t)]

4 dt, where �n(t)= tn + an−1tn−1 + : : :+ a1t + a0.
In the general case, the answer is negative for even, and positive for odd k, and then �� must be

the zeros of the polynomial minimizing
∫ 1
−1 [�n(t)]

k+1 dt. When k =1, then �n is the monic Legendre
polynomial P̂n.
Because of the above, we assume that k =2s+ 1, s¿ 0. Instead of (1.2), it is also interesting to

consider a more general Gauss–Tur�an-type quadrature formula∫
R
f(t) d�(t)=

2s∑
i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn;2s(f); (1.3)

where d�(t) is a given nonnegative measure on the real line R, with compact or unbounded support,
for which all moments �k =

∫
R t

k d�(t) (k =0; 1; : : :) exist and are �nite, and �0¿ 0. It is known that
formula (1.3) is exact for all polynomials of degree not exceeding 2(s + 1)n − 1, i.e., Rn;2s(f)= 0
for f ∈ P2(s+1)n−1. The nodes �� (�=1; : : : ; n) in (1.3) are the zeros of the monic polynomial �n;s(t),
which minimizes the integral

F(a0; a1; : : : ; an−1)=
∫
R
[�n(t)]

2s+2 d�(t); (1.4)

where �n(t)= tn + an−1tn−1 + : : :+ a1t + a0. This minimization leads to the conditions
1

2s+ 2
@F
@ak

=
∫
R
[�n(t)]

2s+1tk d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.5)

These polynomials �n= �n;s are known as s-orthogonal (or s-self associated) polynomials on R
with respect to the measure d�(t) (for more details see [15,62,65,66]. For s=0 they reduce to the
standard orthogonal polynomials and (1.3) becomes the well-known Gauss–Christo�el formula.
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Using some facts about monosplines, Micchelli [47] investigated the sign of the Cotes coe�cients
Ai;� in the Tur�an quadrature.
A generalization of the Tur�an quadrature formula (1.3) (for d�(t)= dt on (a; b)) to rules having

nodes with arbitrary multiplicities was derived independently by Chakalov [9,10] and Popoviciu [74].
Important theoretical progress on this subject was made by Stancu [82,84] (see also [88]).
In this case, it is important to assume that the nodes �� are ordered, say

�1¡�2¡: : :¡ �n; (1.6)

with multiplicities m1, m2, : : : , mn, respectively. A permutation of the multiplicities m1, m2, : : : , mn,
with the nodes held �xed, in general yields a new quadrature rule.
It can be shown that the quadrature formula (1.1) is exact for all polynomials of degree less

than 2
∑n

�= 1 [(m� + 1)=2]. Thus, the multiplicities m� that are even do not contribute toward an
increase in the degree of exactness, so that it is reasonable to assume that all m� be odd integers,
m�=2s�+1 (�=1; 2; : : : ; n). Therefore, for a given sequence of nonnegative integers �=(s1; s2; : : : ; sn)
the corresponding quadrature formula∫

R
f(t) d�(t)=

n∑
�= 1

2s�∑
i= 0

Ai;�f(i)(��) + R(f) (1.7)

has maximum degree of exactness

dmax = 2
n∑

�= 1

s� + 2n− 1 (1.8)

if and only if∫
R

n∏
�= 1

(t − ��)2s�+1tk d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.9)

The last orthogonality conditions correspond to (1.5) and they could be obtained by the minimization
of the integral∫

R

n∏
�= 1

(t − ��)2s�+2 d�(t):

The existence of such quadrature rules was proved by Chakalov [9], Popoviciu [74], Morelli and
Verna [57], and existence and uniqueness (subject to (1.6)) by Ghizzetti and Ossicini [27].
Conditions (1.9) de�ne a sequence of polynomials {�n;�}n∈N0 ,

�n;�(t)=
n∏

�= 1

(t − �(n;�)� ); �(n;�)1 ¡�(n;�)2 ¡: : :¡ �(n;�)n ;

such that∫
R
�k;�(t)

n∏
�= 1

(t − �(n;�)� )2s�+1 d�(t)= 0 (k =0; 1; : : : ; n− 1): (1.10)

Thus, we get now a general type of power orthogonality. These polynomials �k;� are called �-
orthogonal polynomials, and they correspond to the sequence �=(s1; s2; : : :). We will often write
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simple �� or �(n)� instead of �(n;�)� . If we have �=(s; s; : : :), the above polynomials reduce to the
s-orthogonal polynomials.
This paper is devoted to quadrature formulas with multiple nodes, power orthogonality, and some

applications of such quadrature formulas to moment-preserving approximation by defective splines.
In Section 2, we give an account on power orthogonality, which includes some properties of s-
and �-orthogonal polynomials and their construction. Section 3 is devoted to some methods for
constructing generalized Gaussian formulas with multiple nodes. The important case of Chebyshev
weight is analyzed in Section 4. Finally, some applications to moment-preserving approximation by
defective splines are discussed in Section 5.

2. Power orthogonality

This section is devoted to power-orthogonal polynomials. We give an account on theoretical results
on this subject, and we also consider methods for numerical construction of such polynomials.

2.1. Properties of s- and �-orthogonal polynomials

The orthogonality conditions for s-orthogonal polynomials �n;s= �n;s( · ; d�) are given by (1.5) i.e.,∫
R
[�n;s(t)]

2s+1�k; s(t) d�(t)= 0 (k =0; 1; : : : ; n− 1): (2.1)

These polynomials were investigated mainly by Italian mathematicians, especially the case d�(t)=
w(t) dt on [a; b] (e.g., Ossicini [62,63], Ghizzetti and Ossicini [23–27], Guerra [37,38], Ossicini and
Rosati [67–69], Gori [29], Gori and Lo Cascio [30]). The basic result concerns related to zero
distribution.

Theorem 2.1. There exists a unique monic polynomial �n;s for which (2:1) is satis�ed; and �n;s has
n distinct real zeros which are all contained in the open interval (a; b).

This result was proved by Tur�an [90] for d�(t)= dt on [− 1; 1]. It was also proved by Ossicini
[62] (see also the book [24, pp. 74–75]) using di�erent methods.
Usually, we assume that the zeros ��= �(n; s)� (�=1; 2; : : : ; n) of �n;s are ordered as in (1.6).
In the symmetric case w(−t)=w(t) on [−b; b] (b¿ 0), it is easy to see that �n;s(−t)= (−1)n�n; s(t).

In the simplest case of Legendre s-orthogonal polynomials Pn;s(t)= an
∏n
�= 1 (t − ��), where the nor-

malization factor an is taken to have Pn;s(1)= 1, Ghizzetti and Ossicini [23] proved that |Pn;s(t)|6 1,
when −16 t6 1. Also, they determined the minimum in (1.4) in this case,

Fn;s=
∫ 1

−1
[Pn;s(t)]

2s+2 dt=
2

1 + (2s+ 2)n
:

Indeed, integration by parts gives

Fn;s= [tPn; s(t)2s+2]
1
−1 − (2s+ 2)

∫ 1

−1
tPn; s(t)2s+1P′

n; s(t) dt=2− (2s+ 2)nFn;s
because tP′

n; s(t)= nPn;s(t) + Q(t) (Q ∈ Pn−2 in this symmetric case). It would be interesting to
determine this minimum for other classical weights.
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Fig. 1. Nonnegative zeros of Pn;s(t) for s=1 and n=1(1)20 (left); Positive zeros of Pn;s(t) for n=8 and s=0(1)10
(right).

Fig. 2. Nonnegative zeros of Hn;s(t) for s=1 and n=1(1)20 (left); Positive zeros of Hn;s(t) for n=8 and s=0(1)10
(right).

Fig. 3. Zeros of Ln;s(t) for s=1 and n=1(1)10 (left) and for n=4 and s=0(1)10 (right).

In Fig. 1 we display the distribution of nonnegative zeros for Legendre s-orthogonal polynomials,
taking s=1 and n=1; 2; : : : ; 20. Also, we present graphics when n is �xed (n=8) and s runs up to
10. The corresponding graphics for Hermite s-orthogonal polynomials Hn;s are given in Fig. 2.
In Fig. 3 we present all zeros of Laguerre s-orthogonal polynomials for s=1 and n6 10, and

also for n=4 and s6 10. Also, we give the corresponding zero distribution of generalized Laguerre
s-orthogonal polynomial L(�)n; s , when � ∈ (−1; 5] (n=4, s=1) (see Fig. 4). Numerical experimentation
suggests the following result.
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Fig. 4. Zero distribution of L�n; s(t) for n=4, s=1 and −1¡�6 5.

Theorem 2.2. For every s ∈ N0; the zeros of �n;s and �n+1; s mutually separate each other.

This interlacing property is well-known when s=0 (cf. [89, p. 46], [11, p. 28]). The proof of
Theorem 2.2 can be obtained by applying a general result on interlacing properties of the zeros
of the error functions in best Lp-approximations, given by Pinkus and Ziegler [73, Theorem 1:1].
Precisely, we put u�(t)= t�−1 (�=1; : : : ; n + 2), p=2s + 2, and then use Corollary 1:1 from [73].
In the notation of this paper, qn;p= �n;s and qn+1;p= �n+1; s, and their zeros strictly interlace for each
s¿ 0.
A particularly interesting case is the Chebyshev measure

d�1(t)= (1− t2)−1=2dt:
In 1930, Bernstein [3] showed that the monic Chebyshev polynomial T̂ n(t)=Tn(t)=2n−1 minimizes
all integrals of the form∫ 1

−1

|�n(t)|k+1√
1− t2 dt (k¿ 0):

Thus, the Chebyshev polynomials Tn are s-orthogonal on [−1; 1] for each s¿ 0. Ossicini and Rosati
[65] found three other measures d�k(t) (k =2; 3; 4) for which the s-orthogonal polynomials can be
identi�ed as Chebyshev polynomials of the second, third, and fourth kind: Sn, Vn, and Wn, which
are de�ned by

Sn(cos �)=
sin(n+ 1)�
sin �

; Vn(cos �)=
cos(n+ 1

2)�
cos 12�

; Wn(cos �)=
sin(n+ 1

2)�
sin 1

2�
;

respectively (cf. [18]). However, these measures depend on s,

d�2(t)= (1− t2)1=2+sdt; d�3(t)=
(1 + t)1=2+s

(1− t)1=2 dt; d�4(t)=
(1− t)1=2+s
(1 + t)1=2

dt:

Notice that Wn(−t)= (−1)nVn(t).
Considering the set of Jacobi polynomials P(�;�)n , Ossicini and Rosati [69] showed that the only

Jacobi polynomials which are s-orthogonal for a positive integer s are the Chebyshev polynomials
of the �rst kind, which occur when �= �= − 1

2 . Recently, Shi [77] (see also [78]) has proved that
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the Chebyshev weight w(t)= (1− t2)−1=2 is the only weight (up to a linear transformation) having
the property: For each �xed n; the solutions of the extremal problem

∫ 1

−1

(
n∏

�= 1

(t − ��)
)m
w(t) dt= min

�(t) = tn+···

∫ 1

−1
[�(t)]mw(t) dt (2.2)

for every even m are the same. Precisely, he proved the following result.

Theorem 2.3. Let w be a weight supported on [− 1; 1] such that ∫ 1−1 w(t) dt=1. If (2:2) holds for
the following pairs (m; n):

m=m1; m2; : : : ; if n=1; 2; 4; and m=2; 4; if n=3; 5; 6; : : : ;

where {mk}k∈N is a strictly increasing sequence of even natural numbers such that m1 = 2 and∑+∞
k = 1 (1=mk)= +∞; then there exist two numbers � and � such that w= v�;�; where

v�;�(t)=




1
�
√
(t − �)(� − t) ; t ∈ (�; �);

0; t 6∈ (�; �):

Recently, Gori and Micchelli [33] have introduced for each n a class of weight functions Wn

de�ned on [− 1; 1] for which explicit n-point Gauss–Tur�an quadrature formulas of all orders can be
found. In other words, these classes of weight functions have the peculiarity that the corresponding
s-orthogonal polynomials, of the same degree, are independent of s. The class Wn includes certain
generalized Jacobi weight functions wn;�(t)= |Sn−1(t)=n|2�+1(1− t2)�, where Sn−1(cos �)= sin n�=sin �
(Chebyshev polynomial of the second kind) and �¿− 1. In this case, the Chebyshev polynomials
Tn appear as s-orthogonal polynomials. For n=2 the previous weight function reduces to the weight
w2; �(t)= |t|2�+1(1− t2)�, which was studied in [30,31,36].
Very little is known about �-orthogonal polynomials. Except for Rodrigues’ formula, which has an

analogue for these polynomials (see [25,26]), no general theory is available. Some particular results
on zeros of �-orthogonal polynomials and their asymptotic behavior are known (cf. [59–61]). The
Legendre case with �=(0; s) was considered by Morelli and Verna [59], and they proved that

lim
s→+∞ �1 = − 1 and lim

s→+∞ �2 = 0:

2.2. Numerical construction of power-orthogonal polynomials

An iterative process for computing the coe�cients of s-orthogonal polynomials in a special case,
when the interval [a; b] is symmetric with respect to the origin and the weight w is an even function,
was proposed by Vincenti [93]. He applied his process to the Legendre case. When n and s increase,
the process becomes numerically unstable.
At the Third Conference on Numerical Methods and Approximation Theory (Ni�s, August 18–21,

1987) (see [51]) we presented a stable method for numerically constructing s-orthogonal polynomials
and their zeros. It uses an iterative method with quadratic convergence based on a discretized Stieltjes
procedure and the Newton–Kantorovi�c method.
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Table 1

n d�(n; s)(t) Orthogonal polynomials

0 (�(0; s)0 (t))2sd�(t) �(0; s)0

1 (�(1; s)1 (t))2sd�(t) �(1; s)0 �(1; s)1

2 (�(2; s)2 (t))2sd�(t) �(2; s)0 �(2; s)1 �(2; s)2

3 (�(3; s)3 (t))2sd�(t) �(3; s)0 �(3; s)1 �(3; s)2 �(3; s)3

...

The basic idea for our method to numerically construct s-orthogonal polynomials with respect to
the measure d�(t) on the real line R is a reinterpretation of the “orthogonality conditions” (2.1).
For given n and s, we put d�(t)= d�(n; s)(t)= (�n;s(t))2sd�(t). The conditions can then be written as∫

R
�(n; s)k (t)t�d�(t)= 0 (�=0; 1; : : : ; k − 1);

where {�(n; s)k } is a sequence of monic orthogonal polynomials with respect to the new measure
d�(t). Of course, �n;s( · )= �(n; s)n ( · ). As we can see, the polynomials �(n; s)k (k =0; 1; : : :) are implicitly
de�ned, because the measure d�(t) depends of �(n; s)n (t). A general class of such polynomials was
introduced and studied by Engels (cf. [12, pp. 214–226]). We will write simply �k( · ) instead of
�(n; s)k ( · ). These polynomials satisfy a three-term recurrence relation

��+1(t)= (t − ��)��(t)− ����−1(t); �=0; 1; : : : ;

�−1(t)= 0; �0(t)= 1; (2.3)

where because of orthogonality

��= ��(n; s)=
(t��; ��)
(��; ��)

=
∫
R t�

2
�(t) d�(t)∫

R �
2
�(t) d�(t)

;

��= ��(n; s)=
(��; ��)

(��−1; ��−1)
=

∫
R �

2
�(t) d�(t)∫

R �
2
�−1(t) d�(t)

(2.4)

and by convention, �0 =
∫
R d�(t).

The coe�cients �� and �� are the fundamental quantities in the constructive theory of orthogonal
polynomials. They provide a compact way of representing orthogonal polynomials, requiring only
a linear array of parameters. The coe�cients of orthogonal polynomials, or their zeros, in contrast
need two-dimensional arrays. Knowing the coe�cients ��, �� (�=0; 1; : : : ; n− 1) gives us access to
the �rst n+1 orthogonal polynomials �0, �1; : : : ; �n. Of course, for a given n, we are interested only
in the last of them, i.e., �n≡ �(n; s)n . Thus, for n=0; 1; : : : ; the diagonal (boxed) elements in Table 1
are our s-orthogonal polynomials �(n; s)n .
A stable procedure for �nding the coe�cients ��, �� is the discretized Stieltjes procedure, espe-

cially for in�nite intervals of orthogonality (see [15,16,20]). Unfortunately, in our case this pro-
cedure cannot be applied directly, because the measure d�(t) involves an unknown polynomial
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�(n; s)n . Consequently, we consider the system of nonlinear equations in the unknowns �0; �1; : : : ; �n−1,
�0; �1; : : : ; �n−1

f0≡ �0 −
∫
R
�2sn (t) d�(t)= 0;

f2�+1≡
∫
R
(�� − t)�2�(t)�2sn (t) d�(t)= 0 (�=0; 1; : : : ; n− 1);

f2�≡
∫
R
(���2�−1(t)− �2�(t))�2sn (t) d�(t)= 0 (�=1; : : : ; n− 1);

(2.5)

which follows from (2.4), and then we apply the Newton–Kantorovi�c method for determining the
coe�cients of the recurrence relation (2.3) (see [51,22]). If su�ciently good starting approximations
are chosen, the convergence of this method is quadratic. The elements of the Jacobian can be easily
computed using the recurrence relation (2.3), but with other (delayed) initial values (see [51,22]).
All integrals in (2.5), as well as the integrals in the elements of the Jacobian, can be computed
exactly, except for rounding errors, by using a Gauss–Christo�el quadrature formula with respect to
the measure d�(t):

∫
R
g(t) d�(t)=

N∑
�= 1

A(N )� g(�
(N )
� ) + RN (g); (2.6)

taking N =(s+1)n nodes. This formula is exact for all polynomials of degree at most 2N−1=2(s+
1)n− 1=2(n− 1) + 2ns+ 1.
Thus, all calculations in this method are based on using only the fundamental three-term recurrence

relation (2.3) and the Gauss–Christo�el quadrature formula (2.6). The problem of �nding su�ciently
good starting approximations for �[0]� = �

[0]
� (n; s) and �

[0]
� = �

[0]
� (n; s) is the most serious one. In [51,22]

we proposed to take the values obtained for n−1, i.e., �[0]� = ��(s; n−1), �[0]� = ��(s; n−1), �6 n−2,
and the corresponding extrapolated values for �[0]n−1 and �

[0]
n−1. In the case n=1 we solve the equation

�(�0)=�(�0(s; 1))=
∫
R
(t − �0)2s+1 d�(t)= 0;

and then determine �0 = �0(s; 1)=
∫
R(t − �0)2s d�(t).

The zeros ��= ��(n; s) (�=1; : : : ; n) of �(n; s)n , i.e., the nodes of the Gauss–Tur�an-type quadrature
formula (1.3), can be obtained very easily as eigenvalues of a (symmetric tridiagonal) Jacobi matrix
Jn using the QR algorithm, namely

Jn=




�0
√
�1 O√

�1 �1
√
�2√

�2 �2
. . .

. . . . . .
√
�n−1

O
√
�n−1 �n−1



;

where ��= ��(n; s), ��= ��(n; s) (�=0; 1; : : : ; n− 1).
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Table 2

� (1; 1; 3) (1; 3; 1) (3; 1; 1)

�(3; �)1 −2:30298348189811 −2:26862030544612 −1:57815506119966
�(3; �)2 −0:62210813435576 0 0:62210813435576
�(3; �)3 1:57815506119966 2:26862030544612 2:30298348189811

An iterative method for the construction of �-orthogonal polynomials was developed by Gori et al.
[32]. In this case, the corresponding reinterpretation of the “orthogonality conditions” (1.10) leads
to conditions∫

R
�(n;�)k (t)t� d�(t)= 0 (�=0; 1; : : : ; k − 1);

where

d�(t)= d�(n;�)(t)=
n∏

�= 1

(t − �(n;�)� )2s� d�(t): (2.7)

Therefore, we conclude that {�(n;�)k } is a sequence of (standard) orthogonal polynomials with respect
to the measure d�(t). Evidently, �(n;�)n ( · ) is the desired �-orthogonal polynomial �n;�( · ). Since
d�(t) is given by (2.7), we cannot apply here the same procedure as in the case of s-orthogonal
polynomials. Namely, the determination of the Jacobian requires the partial derivatives of the zeros
�(n;�)� with respect to �k and �k , which is not possible in an analytic form. Because of that, in [32] a
discrete analogue of the Newton–Kantorovi�c method (a version of the secant method) was used. The
convergence of this method is superlinear and strongly depends on the choice of the starting points.
Recently, Milovanovi�c and Spalevi�c [56] have considered an iterative method for determining the
zeros of �-orthogonal polynomials.
As we mentioned in Section 1, �-orthogonal polynomials are unique when (1.6) is imposed,

with corresponding multiplicities m1; m2; : : : ; mn. Otherwise, the number of distinct �-polynomials is
n!=(k1!k2! · · · kq!) for some q (16 q6 n), where ki is the number of nodes of multiplicity mj= i, each
node counted exactly once,

∑q
i= 1 ki= n. For example, in the case n=3, with multiplicities 3; 3; 7,

we have three di�erent Hermite �-polynomials (w(t)= e−t
2
on R), which correspond to �=(1; 1; 3),

(1; 3; 1), and (3; 1; 1) (see Table 2).

3. Generalized Gaussian quadrature with multiple nodes

3.1. A theoretical approach

In order to construct a quadrature formula of form (1.7), with multiple nodes �� (whose mul-
tiplicities are m�=2s� + 1), Stroud and Stancu [88] (see also Stancu [80,84]) considered ‘ dis-
tinct real numbers �1; : : : ; �‘ and assumed that none of these coincide with any of the ��. The
Lagrange–Hermite interpolation polynomial for the function f at simple nodes �� and the multiple
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nodes ��,

L(t;f)≡L
(

�1

2s1 + 1
; : : : ;

�n

2sn + 1;

�1

1
; : : : ;

�‘

1
; f|t

)

can be expressed in the form

L(t;f)=!(t)L

(
�1

2s1 + 1
; : : : ;

�n

2sn + 1
; f1|t

)
+ 
(t)L

(
�1

1
; : : : ;

�‘

1
; f2|t

)
;

where !(t)= (t − �1) · · · (t − �‘), 
(t)= (t − �1)2s1+1 · · · (t − �n)2sn+1, and f1(t)=f(t)=!(t),
f2(t)=f(t)=
(t). Since the remainder r(t;f) of the interpolation formula f(t)=L(t;f) + r(t;f)
can be expressed as a divided di�erence,

r(t;f)=
(t)!(t)

[
�1

2s1 + 1
; : : : ;

�n

2sn + 1
;

�1

1
; : : : ;

�‘

1
;

t

1
;f

]
; (3.1)

we obtain the quadrature formula∫
R
f(t) d�(t)=Q(f) + ’(f) + %(f); (3.2)

where Q(f) is the quadrature sum in (1.7), %(f)=
∫
R r(t;f) d�(t) and ’(f) has the form ’(f)=∑‘

�= 1 B�f(��). Since the divided di�erence in (3.1) is of order M + ‘=
∑n

�= 1(2s� + 1) + ‘, it
follows that the quadrature formula (3.2) has degree of exactness M + ‘ − 1.
For arbitrary �1; : : : ; �‘ it was proved [88] that it is possible to determine the nodes �1; : : : ; �n (with

the m� given) so that B1 = · · · =B‘=0. For this, the necessary and su�cient condition is that 
(t)
be orthogonal to P‘−1 with respect to the measure d�(t), i.e.,∫

R
tk
(t) d�(t)= 0 (k =0; 1; : : : ; ‘ − 1): (3.3)

If ‘= n, system (3.3) has at least one real solution consisting of the n distinct real nodes �1; : : : ; �n.
The case ‘¡n was considered by Stancu [85]. Stancu [81–86] also generalized the previous quadra-
ture formulas using the quadrature sum with multiple Gaussian nodes �� and multiple preassigned
nodes �� in the form

Q(f)=
n∑

�= 1

m�−1∑
i= 0

Ai;�f(i)(��) +
‘∑

�= 1

k�−1∑
j= 0

Bj;�f(j)(��):

A particular case with simple Gaussian nodes and multiple �xed nodes was considered by Stancu
and Stroud [87]. The existence and uniqueness of the previous quadratures exact for an extended
complete Chebyshev (ETC) system were proved by Karlin and Pinkus [41,42] without using a
variational principle. Barrow [2] gave a di�erent proof using the topological degree of a mapping.
On the other hand, Barrar et al. [1] obtained the results entirely via a variational principle. Namely,
they considered the problem of �nding the element of minimal Lp norm (16p¡+∞) from a family
of generalized polynomials, where the multiplicities of the zeros are speci�ed. As an application,
they obtained Gaussian quadrature formulas exact for extended Chebyshev systems. The L1 case was
studied in [4,6] (see also [40]).
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Using a result from [80], Stancu [84] determined the following expression for Cotes coe�cients
in (1.7):

Ai;�=
1

i!(2s� − i)!
[
1


�(t)

∫
R


(t)− 
(x)
t − x d�(x)

](2s�−i)
t = ��

;

where 
�(t)=
(t)=(t − ��)2s�+1. An alternative expression

Ai;�=
1
i!

2s�−i∑
k = 0

1
k!

[
(t − ��)2s�+1

(t)

](k)
t = ��

∫
R


(t)
(t − ��)2s�−i−k+1 d�(t) (3.4)

was obtained in [55].
Some properties of Cotes numbers in the Tur�an quadrature (1.3), as well as some inequalities

related to zeros of s-orthogonal polynomials, were investigated by Ossicini and Rosati [68] (see also
[46]).
The remainder term in formulas with multiple nodes was studied by Chakalov [9], Ionescu [39],

Ossicini [63], Pavel [70–72]. For holomorphic functions f in the Tur�an quadrature (1.3) over a
�nite interval [a; b], Ossicini and Rosati [65] found the contour integral representation

Rn;2s(f)=
1
2�i

∮
�

�n;s(z)
[�n; s(z)]2s+1

f(z) dz; �n; s(z)=
∫ b

a

[�n; s(z)]2s+1

z − t d�(t);

where [a; b]⊂ int� and �n; s= �n; s(·; d�). Taking as � confocal ellipses (having foci at ±1 and
the sum of semiaxes equal to �¿ 1), Ossicini et al. [64] considered two special Chebyshev mea-
sures d�1(t) and d�2(t) (see Section 2.1) and determined estimates for the corresponding remain-
ders Rn;2s(f), from which they proved the convergence and rate of convergence of the quadra-
tures, Rn;s(f)=O(�−n(2s+1)), n→ +∞. Morelli and Verna [58] also investigated the convergence of
quadrature formulas related to �-orthogonal polynomials.

3.2. Numerical construction

A stable method for determining the coe�cients Ai;� in the Gauss–Tur�an quadrature formula (1.3)
was given by Gautschi and Milovanovi�c [22]. Some alternative methods were proposed by Stroud
and Stancu [88] (see also [84]), Golub and Kautsky [28], and Milovanovi�c and Spalevi�c [54]. A
generalization of the method from [22] to the general case when s� ∈ N0 (�=1; : : : ; n) was derived
recently in [55]. Here, we briey present the basic idea of this method.
First, we de�ne as in the previous subsection 
�(t)=

∏
i 6=� (t − �i)2si+1 and use the polynomials

fk;�(t)= (t − ��)k
�(t)= (t − ��)k
∏
i 6=�
(t − �i)2si+1;

where 06 k6 2s� and 16 �6 n. Notice that degfk;�6 2
∑n

i= 1 si + n − 1. This means that the
integration (1.7) is exact for all polynomials fk;�, i.e., R(fk;�)= 0, when 06 k6 2s� and 16 �6 n.
Thus, we have

n∑
j= 1

2sj∑
i= 0

Ai; jf
(i)
k; �(�j)=

∫
R
fk;�(t) d�(t);
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that is,

2s�∑
i= 0

Ai;�f
(i)
k; �(��)= �k;�; (3.5)

because for every j 6= � we have f(i)k; �(�j)= 0 (06 i6 2sj). Here, we have put

�k;�=
∫
R
fk;�(t) d�(t)=

∫
R
(t − ��)k

∏
i 6=�
(t − �i)2si+1 d�(t):

For each � we have in (3.5) a system of 2s�+1 linear equations in the same number of unknowns,
Ai;� (i=0; 1; : : : ; 2s�). It can be shown that each system (3.5) is upper triangular. Thus, once all zeros
of the �-orthogonal polynomial �n;�, i.e., the nodes of the quadrature formula (1.7), are known, the
determination of its weights Ai;� is reduced to solving the n linear systems of 2s� + 1 equations



f0; �(��) f′
0; �(��) : : : f(2s�)0; � (��)

f′
1; �(��) : : : f(2s�)1; � (��)

. . .

f(2s�)2s�;� (��)







A0; �

A1; �
...

A2s�;�



=




�0; �

�1; �
...

�2s�;�



:

Using these systems and the normalized moments

�̂k; �=
�k;�∏

i 6=� (�� − ti)2si+1
=
∫
R
(t − ��)k

∏
i 6=�

(
t − �i
�� − �i

)2si+1
d�(t);

we can prove [55]

Theorem 3.1. For �xed � (16 �6 n) the coe�cients Ai;� in the generalized Gauss–Tur�an quadra-
ture formula (1:7) are given by

b2s�+1 = (2s�)!A2s�;�= �̂2s�;�;

bk =(k − 1)!Ak−1; �= �̂k−1; � −
2s�+1∑
j= k+1

âk; jbj (k =2s�; : : : ; 1);

where

âk; k =1; âk; k+j= − 1
j

j∑
l= 1

ulâl; j; ul=
∑
i 6=�
(2si + 1)(�i − ��)−l:

The normalized moments �̂k; � can be computed exactly, except for rounding errors, by using
the same Gauss–Christo�el formula as in the construction of �-orthogonal polynomials, i.e., (2.6)
with N =

∑n
�= 1 s� + n nodes. A few numerical examples can be found in [22,52,55]. Also, in

[55] an alternative approach to the numerical calculation of the coe�cients Ai;� was given using
expression (3.4).
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4. Some remarks on the Chebyshev measure

From the remarks in Section 2 about s-orthogonal polynomials with Chebyshev measure, it is easy
to see that the Chebyshev–Tur�an formula is given by∫ 1

−1

f(t)√
1− t2 dt=

2s∑
i= 0

n∑
�= 1

Ai;�f(i)(��) + Rn(f); (4.1)

where ��=cos((2� − 1)�=2n) (�=1; : : : ; n). It is exact for all polynomials of degree at most
2(s + 1)n − 1. Tur�an stated the problem of explicit determination of the Ai;� and their behavior
as n → +∞ (see Problem XXVI in [91]). In this regard, Micchelli and Rivlin [49] proved the
following characterization: If f ∈ P2(s+1)n−1 then∫ 1

−1

f(t)√
1− t2 dt=

�
n




n∑
�= 1

f(��) +
s∑

j= 1

�jf′[�2j1 ; : : : ; �
2j
n ]


 ;

where

�j=
(−1) j
2j4(n−1) j

(−1=2
j

)
(j=1; 2; : : :)

and g[yr1; : : : ; y
r
m] denotes the divided di�erence of the function g; where each yj is repeated r

times. In fact, they obtained a quadrature formula of highest algebraic degree of precision for the
Fourier–Chebyshev coe�cients of a given function f, which is based on the divided di�erences of
f′ at the zeros of the Chebyshev polynomial Tn. A Lobatto type of Tur�an quadrature was considered
by Micchelli and Sharma [50]. Recently, Bojanov [5] has given a simple approach to questions of
the previous type and applied it to the coe�cients in arbitrary orthogonal expansions of f. As
an auxiliary result he obtained a new interpolation formula and a new representation of the Tur�an
quadrature formula. Some further results can be found in [79].
For s=1, the solution of the Tur�an problem XXVI is given by

A0; �=
�
n
; A1; �= − ���

4n3
; A2; �=

�
4n3

(1− �2�):
In 1975 Riess [75], and in 1984 Varma [92], using very di�erent methods, obtained the explicit
solution of the Tur�an problem for s=2. One simple answer to Tur�an’s question was given by Kis
[43]. His result can be stated in the following form: If g is an even trigonometric polynomial of
degree at most 2(s+ 1)n− 1, then∫ �

0
g(�) d�=

�
n(s!)2

s∑
j= 0

Sj
4 jn2j

n∑
�= 1

g(2j)
(
2�− 1
2n

�
)
;

where the Ss−j (j=0; 1; : : : ; s) denote the elementary symmetric polynomials with respect to the
numbers 12; 22; : : : ; s2, i.e., Ss=1, Ss−1 = 12 + 22 + · · ·+ s2; : : : ; S0 = 12 · 22 · · · s2. Consequently,∫ 1

−1

f(t)√
1− t2 dt=

�
n(s!)2

s∑
j= 0

Sj
4 jn2j

n∑
�= 1

[D2jf(cos �)]�= ((2�−1)=2n)�:

An explicit expression for the coe�cients Ai;� was recently derived by Shi [76]. The remainder Rn(f)
in (4.1) was studied by Pavel [70].
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5. Some remarks on moment-preserving spline approximation

Solving some problems in computational plasma physics, Calder and Laframboise [7] consid-
ered the problem of approximating the Maxwell velocity distribution by a step function, i.e., by
a “multiple-water-bag distribution” in their terminology, in such a way that as many of the initial
moments as possible of the Maxwell distribution are preserved. They used a classical method of re-
duction to an eigenvalue problem for Hankel matrices, requiring high-precision calculations because
of numerical instability. A similar problem, involving Dirac’s �-function instead of Heaviside’s step
function, was treated earlier by Laframboise and Stau�er [45], using the classical Prony’s method.
A stable procedure for these problems was given by Gautschi [17] (see also [19]), who found the
close connection of these problems with Gaussian quadratures. This work was extended to spline
approximation of arbitrary degree by Gautschi and Milovanovi�c [21]. In this case, a spline sn;m of
degree m with n knots is sought so as to faithfully reproduce the �rst 2n moments of a given function
f. Under suitable assumptions on f, it was shown that the problem has a unique solution if and
only if certain Gauss–Christo�el quadratures exist that correspond to a moment functional or weight
distribution depending on f. Existence, uniqueness, and pointwise convergence of such approxima-
tions were analyzed. Frontini et al. [13] and Frontini and Milovanovi�c [14] considered analogous
problems on an arbitrary �nite interval. If the approximations exist, they can be represented in terms
of generalized Gauss–Lobatto and Gauss–Radau quadrature formulas relative to appropriate measures
depending on f.
At the Singapore Conference on Numerical Mathematics (1988) we presented a moment-preserving

approximation on [0;+∞) by defective splines of degree m, with odd defect (see [53]).
A spline function of degree m¿ 1 on the interval 06 t ¡ +∞, vanishing at t= +∞, with

variable positive knots �� (�=1; : : : ; n) having multiplicities m� (6m) (�=1; : : : ; n; n¿ 1) can be
represented in the form

Sn;m(t)=
n∑

�= 1

m�−1∑
i= 0

��; i(�� − t)m−i+ (06 t ¡+∞); (5.1)

where ��; i are real numbers. Under the conditions

∫ +∞

0
t j+d−1Sn;m(t) dt=

∫ +∞

0
t j+d−1f(t) dt (j=0; 1; : : : ; 2(s+ 1)n− 1)

in [53] we considered the problem of approximating a function f(t) of the radial distance t= ‖x‖ (0
6 t ¡ + ∞) in Rd (d¿ 1) by the spline function (5.1), where m�=2s + 1 (�=1; : : : ; n; s ∈
N0). Under suitable assumptions on f, we showed that the problem has a unique solution if and
only if certain generalized Tur�an quadratures exist corresponding to a measure depending on f. A
more general case with variable defects was considered by Gori and Santi [34] and Kova�cevi�c and
Milovanovi�c [44] (see also [52]). In that case, the approximation problems reduce to quadratures of
form (1.7) and �-orthogonal polynomials.
Following [44], we discuss here two problems of approximating a function f(t), 06 t ¡+∞, by

the defective spline function (5.1). Let N denote the number of the variable knots �� (�=1; : : : ; n)
of the spline function Sn;m(t), counting multiplicities, i.e., N =m1 + · · ·+ mn.
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Problem 5.1. Determine Sn;m in (5:1) such that S (k)n;m(0)=f
(k)(0) (k =0; 1; : : : ; N + n − 1; m¿

N + n− 1).

Problem 5.2. Determine Sn;m in (5:1) such that S (k)n;m(0)=f
(k)(0) (k =0; 1; : : : ; l; l6m) and∫ +∞

0
t jSn;m(t) dt=

∫ +∞

0
t jf(t) dt (j=0; 1; : : : ; N + n− l− 2):

The next theorem gives the solution of Problem 5.2.

Theorem 5.3. Let f ∈ Cm+1[0;+∞) and ∫ +∞0 tN+n−l+m|f(m+1)(t)| dt ¡+∞. Then a spline function
Sn;m of form (5:2); with positive knots ��; that satis�es the conditions of Problem 5:2 exists and is
unique if and only if the measure

d�(t)=
(−1)m+1
m!

tm−lf(m+1)(t) dt

admits a generalized Gauss–Tur�an quadrature∫ +∞

0
g(t) d�(t)=

n∑
�= 1

m�−1∑
k = 0

A(n)�; kg
(k)(�(n)� ) + Rn(g; d�) (5.2)

with n distinct positive nodes �(n)� ; where Rn(g;d�)= 0 for all g ∈ PN+n−1. The knots in (5:1) are
given by ��= �(n)� ; and the coe�cients ��; i by the following triangular system:

A(n)�; k =
m�−i∑
i= k

(m− i)!
m!

(
i

k

)
[Di−k tm−l]t = ����; i (k =0; 1; : : : ; m� − 1):

If we let l=N+n−1, this theorem gives also the solution of Problem 5:1. The case m1 =m2 = · · ·
=mn=1, l= − 1, has been obtained by Gautschi and Milovanovi�c [21]. The error of the spline
approximation can be expressed as the remainder term in (5.2) for a particular function �t(x)=
x−(m−l)(x − t)m+ (see [44]).
Further extensions of the moment-preserving spline approximation on [0; 1] are given by Micchelli

[48]. He relates this approximation to the theory of monosplines. A similar problem by defective
spline functions on the �nite interval [0; 1] has been studied by Gori and Santi [35] and solved by
means of monosplines.
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(1992) 31–40.

[62] A. Ossicini, Costruzione di formule di quadratura di tipo Gaussiano, Ann. Mat. Pura Appl. (4) 72 (1966) 213–237.
[63] A. Ossicini, Le funzioni di inuenza nel problema di Gauss sulle formule di quadratura, Matematiche (Catania) 23

(1968) 7–30.
[64] A. Ossicini, M.R. Martinelli, F. Rosati, Characteristic functions and s-orthogonal polynomials, Rend. Mat. Appl. (7)

14 (1994) 355–366 (in Italian).
[65] A. Ossicini, F. Rosati, Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli, Boll. Un.

Mat. Ital. (4) 11 (1975) 224–237.
[66] A. Ossicini, F. Rosati, Sulla convergenza dei funzionali ipergaussiani, Rend. Mat. (6) 11 (1978) 97–108.
[67] A. Ossicini, F. Rosati, Comparison theorems for the zeros of s-orthogonal polynomials, Calcolo 16 (1979) 371–381

(in Italian).
[68] A. Ossicini, F. Rosati, Numeri di Christo�el e polinomi s-ortogonali, in: P.L. Butzer, F. Feh�er (Eds.), E.B. Christo�el,

Birkh�auser, Basel, 1981, pp. 148–157.
[69] A. Ossicini, F. Rosati, s-orthogonal Jacobi polynomials, Rend. Mat. Appl. (7) 12 (1992) 399–403 (in Italian).
[70] P. Pavel, On the remainder of some Gaussian formulae, Studia Univ. Babe�s-Bolyai Ser. Math.-Phys. 12 (1967)

65–70.
[71] P. Pavel, On some quadrature formulae of Gaussian type, Studia Univ. Babe�s-Bolyai Ser. Math.-Phys. 13 (1968)

51–58 (in Romanian).
[72] P. Pavel, On the remainder of certain quadrature formulae of Gauss–Christo�el type, Studia Univ. Babe�s-Bolyai Ser.

Math.-Phys. 13 (1968) 67–72 (in Romanian).
[73] A. Pinkus, Z. Ziegler, Interlacing properties of the zeros of the error functions in best Lp-approximations, J. Approx.

Theory 27 (1979) 1–18.
[74] T. Popoviciu, Sur une g�en�eralisation de la formule d’int�egration num�erique de Gauss, Acad. R.P. Rom�̂ne Fil. Ia�si

Stud. Cerc. �Sti. 6 (1955) 29–57 (in Romanian).
[75] R.D. Riess, Gauss–Tur�an quadratures of Chebyshev type and error formulae, Computing 15 (1975) 173–179.
[76] Y.G. Shi, A solution of problem 26 of P. Tur�an, Sci. China, Ser. A 38 (1995) 1313–1319.
[77] Y.G. Shi, On Tur�an quadrature formulas for the Chebyshev weight, J. Approx. Theory 96 (1999) 101–110.
[78] Y.G. Shi, On Gaussian quadrature formulas for the Chebyshev weight, J. Approx. Theory 98 (1999) 183–195.
[79] Y.G. Shi, On some problems of P. Tur�an concerning Lm extremal polynomials and quadrature formulas, J. Approx.

Theory 100 (1999) 203–220.
[80] D.D. Stancu, On the interpolation formula of Hermite and some applications of it, Acad. R.P. Rom�̂ne Fil. Cluj Stud.

Cerc. Mat. 8 (1957) 339–355 (in Romanian).
[81] D.D. Stancu, Generalization of the quadrature formula of Gauss–Christo�el, Acad. R.P. Rom�̂ne Fil. Ia�si Stud. Cerc.

�Sti. Mat. 8 (1957) 1–18 (in Romanian).
[82] D.D. Stancu, On a class of orthogonal polynomials and on some general quadrature formulas with minimum number

of terms, Bull. Math. Soc. Sci. Math. Phys. R.P. Rom�̂ne (N.S) 1 (49) (1957) 479–498.
[83] D.D. Stancu, A method for constructing quadrature formulas of higher degree of exactness, Com. Acad. R.P. Rom�̂ne

8 (1958) 349–358 (in Romanian).
[84] D.D. Stancu, On certain general numerical integration formulas, Acad. R.P. Rom�̂ne. Stud. Cerc. Mat. 9 (1958)

209–216 (in Romanian).
[85] D.D. Stancu, Sur quelques formules g�en�erales de quadrature du type Gauss–Christo�el, Mathematica (Cluj) 1 (24)

(1959) 167–182.
[86] D.D. Stancu, An extremal problem in the theory of numerical quadratures with multiple nodes, Proceedings of

the Third Colloquium on Operations Research Cluj-Napoca, 1978, Univ. “Babe�s-Bolyai”, Cluj-Napoca, 1979, pp.
257–262.



286 G.V. Milovanovi�c / Journal of Computational and Applied Mathematics 127 (2001) 267–286

[87] D.D. Stancu, A.H. Stroud, Quadrature formulas with simple Gaussian nodes and multiple �xed nodes, Math. Comp.
17 (1963) 384–394.

[88] A.H. Stroud, D.D. Stancu, Quadrature formulas with multiple Gaussian nodes, J. SIAM Numer. Anal. Ser. B 2
(1965) 129–143.
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