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Abstract 
Milovanovic, G.V., On polynomials orthogonal on the semicircle and applications, Journal of Computational 
and Applied Mathematics 49 (1993) 193-199. 

Polynomials {TV,) orthogonal on the semicircle F = (z E C: z = eis, 0 < 0 < P) with respect to the inner product 
(f, g) = /rf(z)g(z)w(z>(it)-’ dz, where z * W(Z) is a complex weight function, have been introduced in 
1986-1987 by Gautschi, Landau and the author. In this paper we introduce the functions of the second kind, 
as well as the corresponding associated polynomials, and prove some recurrence relations. For Gauss- 
Gegenbauer quadrature formulae over the semicircle, applied to analytic functions, we develop error bounds 
from contour integral representations of the remainder term and give some numerical results. 

Keywords: Complex orthogonal polynomials; recurrence relations; numerical integration; error bound 

1. Introduction 

Using the inner product ( -, * ) given by 

(f, g> = lrf(Z)g(Z)(iZ)-’ dz7 

where r is the semicircle r = (z E @: z = eie, 0 < 8 < ~1, Gautschi and Milovanovic [6] 
introduced a class of polynomials orthogonal on the semicircle r. A more general case with a 
complex weight function was considered by Gautschi, Landau and Milovanovic [5]. Namely, let 
w: (-1,l) H R, be a weight function which can be extended to a function w(z) holomorphic 
in the half disc D+={zEC: lz[<l, Im z>O}, and 

(f, g) = @z)s(z)w(z)(iz)-’ dz, (1.1) 

that is, 

(f, g) = ~Tf(eie)g(ei”)W(ei”) do. (l-2) 
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This inner product is not Hermitian, but it has the property (zf, g) = (f, zg). Under the 
assumption 

Re(1, 1) = Relrw(ei”) de # 0, 
0 

(1.3) 

the manic, complex polynomials (~~1 orthogonal with respect to the inner product (1.1) exist 
and satisfy the three-term recurrence relation 

rrk+l(~)=(z-i~k)7rk(z)-~k7r-1(z), k=O, 1,2,..., (14 

Q(Z) = 0, To(Z) = 1. 

The coefficients ak and Pk are given by 

cyO=O,-icu,, ffk = 0, - 8,_, - ia,, Pk = &,(L -4-r), k> 1, 

and 

8 -1 = (1, I), 8, = ia, + 
4 

-, k>O, 
e (1.5) 

k-l 

where ak and b, are the recursion coefficients in the corresponding three-term recurrence 
relation for real polynomials orthogonal with respect to the measure w(t) dt on (- 1, 1). 

Several interesting properties of such polynomials and some applications in numerical 
integration were given in [6,8]. Also, differentiation formulas for higher derivatives of analytic 
functions, using quadratures on the semicircle, were considered in [l]. 

Recently, de Bruin [3] has given a generalization of the orthogonal polynomials {?rk). He 
considered the polynomials 1~:) orthogonal on a circular arc 

T,=(zE~: z= -iR+e”fi, +<8<rr-4, tan $=R) 

with respect to the complex inner product 

(f, d = &-mfd%++++‘) de, 

where 4 E (0, $r>, and for f(z) the function fr(0) is defined by 

f,(e) =f( -iR + e”\lR2+1), 

(1.6) 

For R = 0 the inner product (1.6) reduces to (1.2) and the arc I” to the semicircle r. 
Another type of orthogonality of these polynomials, so-called Geronimus’ version of orthogo- 

nality on a contour with respect to a complex weight, was investigated in [9]. Namely for manic 
polynomials {rk} orthogonal on the semicircle r, a complex weight function t H x(z) was 
found, with a singularity in z = 0, such that 

bk, ‘L) = &~k(z)"-(z)x(z) dz= (l:,, ; f;; 
where C is any positively oriented simple closed contour surrounding some circle 1 z I= Y > 1. 
The analogous problem for the polynomials (rf) orthogonal on the circular arc r,, R > 0, was 
also solved [9]. 
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This paper is organized as follows. In Section 2 we introduce the functions of the second 
kind, as well as the corresponding associated polynomials, and prove some recurrence relations. 
In Section 3, for Gauss-Gegenbauer quadrature formulae over the semicircle, applied to 
analytic functions, we develop error bounds from contour integral representations of the 
remainder term and give some numerical results. 

2. Functions of the second kind and associated polynomials 

In connection with polynomials {TV} orthogonal with respect to (. , . ) on r, we can introduce 
the so-called functions of the second kind 

dJ’, k=O, 1, 2 ,... . 

It is easily seen that the functions of the second kind also satisfy the same recurrence relation 
as the polynomials rk. Indeed, from the recurrence relation (1.4) for z = 5, multiplying by 
w(f)(i[)-‘/(z - 5) and integrating, we obtain 

By orthogonality, the integral on the right-hand side in the above equality vanishes if k > 1, and 
equals pa if k = 0. If we define p-i(z) = 1 (and &, = CL,,), we have 

F%+i(Z) = (z - ia,)p,(z)-P,Pk_i(Z), k=O, 1, 2,... . 

The following theorem gives an asymptotic form of pk. 

Theorem 2.1. For 1 z 1 sufficiently large, we have 

P,(Z) = $(1+0($ ((~,l12=(%%). 

The quantities ~,(z)/rJz), 1 z I> 1, are important in getting error bounds for Gaussian 
quadrature formulas over r, applied to analytic functions. 

Introducing the polynomials 

which are called the polynomials associated with the orthogonal polynomials rrk, we can see 
that 

Pk(Z) = ~,(-+J(Z) -q/C(z). 
The polynomials {qk) satisfy the same three-term recurrence relation 

qk+i(z) = (z - ia,)&) - Pkqk-i(z), k = 0, 1, 2,. . . , (2.1) 

qlJ(z) = 0, 41(z) = PO. 

If we define q_1(z) = - 1 and PO = po, we can note that (2.1) also holds for k = 0 (see [4]). 



196 G. VI MilovanouiC / Polynomials orthogonal on the semicircle 

3. Error bounds for Gaussian quadrature of analytic functions 

In this section we consider the Gauss-Christoffel quadrature formula over the semicircle 
r=(zEC: z=eie,0<08r): 

(3.1) 

with Gegenbauer weight 

W(2) = (l-zZ)*-“*, A > - ;, 

which is exact for all algebraic polynomials of degree at most 2n - 1. 
In this case, (1.3) reduces to Re(1, 1) = r # 0, so that the corresponding orthogonal polyno- 

mials exist and they can be expressed in terms of manic Gegenbauer polynomials ?L(z> (see 15, 
Section 6.31): 

7rk(2) = C?:(t) - iO,_,~,“_,(z), (3.2) 
where the sequence (0,) is given by 

It was shown [5, Section 6.31 that all zeros of am, it > 2, are simple and contained in the 
upper unit half disc D+= {z E @: 1 z I< 1, Im z > 0). The nodes f; = (in) in (3.1) are precisely 
the zeros of the polynomial TV. It follows from (1.4) that they are the eigenvalues of the Jacobi 
matrix 

ia, 1 0 

PI ia, 1 

J,, = P2 ia * *. 

1 

0 P,L k-i, 

where (~a = e,, (Yk = 8, - e&l7 & = e,i_,, k 2 1. Using the same procedure as in [6], we can 
determine the nodes I&, = l:‘) and the weights a,, = a,‘“). 

Following [7], in this section we give error bounds for the Gaussian quadratures (3.1), applied 
to analytic functions, using a contour integral representation of the remainder term. 

Assume that f is an analytic and regular function in a certain domain G which contains the 
upper unit half disc D+= {z E C: 1 z I< 1, Im z > O] in its interior. Using Cauchy’s integral 
representation of the function f, 

where C is a contour in G surrounding D,, we can express the remainder term R,( f > in the 
following form: 
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where the kernel K, is given by 

Using the orthogonal polynomials on the semicircle r and their functions of the second kind, 
we obtain that 

P,(Z) 
K,(z) = - 

%(Z) * 
(34 

On the other hand, expanding (z - l)-’ in powers of L/z, 1 z I> 1, the kernel K,(z) can be 
expressed also in the form 

K%(z) = c m g, lzJ>l, 
k=2n 

because R,(bk) = 0 for k = 0, 1,. . . ,2n - 1. 
It is interesting to find the first term in (3.4). Starting from 

(3 4 

qJ’n(2)2=Z2n +4(z), 9 E9ZrZn-l, 

we have 

wherefrom, using the quadrature (3.0, 

(I rn II2 = iTei2”“W(ei”) d0 - 2 u,,<,“” = Rn(<2n), 
v=l 

because 0 = TJ&,)~ = fz” + q(&,;), v = 1,. . . , n. Since 

(17i-J2 = p& . . . P, = PO& . . . e,_1)*, P” = (1, 1) = r, 

we get 

R,(52”) = 11~A12 = 
r(+ + l))T(A + $2) 

T(h+n) 

so the first term in (3.4) equals II r,, l12/z2n+ ‘. 
If 1(C) denotes the length of the contour C, an estimate of the error R, can be given by (cf. 

[2,7,101) 

where Ilfll=ma~,EclfC41. 
In this section we will use only a circular contour. If we take C = C, = {z E C: ) z I = r > l}, 

the last estimate becomes 

IMf)l =s Kdwll~ (3.5) 
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Table 3.1 
Numerical values of qU for h = 0 

n r = 1.1 

2 3.39.10-2 
5 1.57.10~2 

10 8.07.10m3 
20 4.36.10-3 

r =I.5 

1.15~10-’ 
7.22.10-* 
3.85.10-2 
2.00~10~* 

r = 2.0 

3.49.1OF’ 
1.34.10-l 
7.06.10p2 
3.63.10p2 

r = 5.0 

1.25.1oo 
4.54.10-l 
2.31.10-l 
1.17.10-’ 

where 

K&-) = _zy<, 1 K,( reip) 1 = 1 K,(rei*O) 1. 
. -. (3 -6) 

Using (3.2), we can prove that K,( -2) = -K,(z) for each z. Because of that, in order to 
find the maximum of 1 K,(reiq) 1 on C,, it is enough to consider the case - $-r < 1v < $T. 
Moreover, numerical experiments show that 1 K,(z) 1 a 1 K,( 2) 1, when Im z > 0. Numerical 
values of !PO in (3.61, for h = 0 (Chebyshev case), Y = 1.1, 1.5, 2.0, 5.0 and II = 2, 5, 10, 20 are 
given in Table 3.1. The corresponding values of K,,(r) are presented in Table 3.2. 

For the numerical computation of K,(z) we use (3.3). Since p,, is a minimal solution of the 
basic three-term recurrence relation, its computation can be accomplished by Gautschi’s 
algorithm [4]. 

Similar results were obtained for A = i and A = 1. Numerical results show that K,,(r) 
decreases when A increases. For example, K,,(r) for n = 10 and r = 2 takes the following 
values: 2.51 . lo-“, 1.14. 10-n, 5.43 . 1oP2, when A = 0, 0.5, 1, respectively. 

Example 3.1. Let f(z) = e* and t E C,, i.e., z = yei’, r > 1, 0 < 0 < 2~. Then, 

If(z)1 = ercose < e’, 2 EC,. 

Using (3.51, we get 

IR,(f)l <B,(Y) =r&(r)e’, r> 1. (3.7) 

The bound on the right of (3.7) may be optimized as a function of Y. Thus, we obtain the 
problem 

Table 3.2 
Numerical values of K,,(r) for A = 0 

n r = 1.1 

2 2.74.10’ 
5 2.30.10-’ 

10 2.75.10-’ 
20 3.84.1OF’ 

r=1.5 

2.23.10-l 
6.70.10-4 
4.36.10-’ 
1.89.10p’6 

r = 2.0 

3.84.10-2 
1.34.10-5 
2.51. lo- l1 
9.06.10-23 

r = 5.0 

2.92.10-4 
2.94.10-lo 
3.18.10-20 
3.86.10-40 
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Table 3.3 
Optimal values of r and B,(r) and actual errors e, 

n 

2 

rOpt 

4.16 

Bn(ropt 1 
2.0.10-’ 

en 
3.4.10-2 

3 
5 
8 

6.09 
10.1 
16.0 

1.9.10-s 
2.8.10-8 
9.7.10-i’ 

2.8.10-4 
3.5.10-9 
m.p. 

Applying the Fibonacci minimizing procedure, we find the optimal values rapt of r and 
corresponding optimal bounds. They are presented in Table 3.3, together with the modulus of 
the actual errors, for y1 = 2, 3, 5, 8. Close to machine precision which is indicated in this table 
as m.p. (= 2.76. lo-l7 on the MICROVAX 3400 using VAX FORTRAN Ver. 5.3 in D-arithmet- 
ics), the actual error may be larger than the bound. 
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