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several functional relationships involving various multivariable hypergeometric polynomials and the Gauss
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1 INTRODUCTION AND PRELIMINARIES

In terms of a bounded multiple sequence {Q(ky,..., k.)} of essentially arbitrary (real or
complex) parameters, let

[n1/mi] [n,/m;] xkl
Z [CTT) IUARRRY G WA Q(kl’.__,kr)_l'...
= k!

Xk
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mi,...,m . r
®Vl11... n,r(xls--.,xr) = '
) k!

(1.1)

ki =0

meNg:=NU{0};meN;j=1,...,7),
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where [x] denotes the greatest integer in k¥ € R and (1), is the Pochhammer symbol (or, more
precisely, the shiffed factorial, since (1), = k! (k € Ny)) defined, in terms of Gamma
functions, by

(A :

_m+k)_{1 (k = 0; 2 # 0) 12

TTT0) |G+ D-(G+k=1) (keN;1e0),

N being the set of positive integers.
For different choices of the multiple sequence {Q(ki,..., k.)} and with

m=1 (j=1,...,7),

the multivariable polynomials [cf. Eq. (1.1)]

would readily yield, as special cases, various classes of orthogonal and biorthogonal polyno-
mials associated with hypergeometric functions of two and more variables [see, for details,
Refs. 1,6,7,12-18].

Motivated essentially by these and sundry other occurrences of special multivariable
hypergeometric polynomials in the mathematical and physical sciences literature, we first
propose to derive here a family of finite summation formulas involving the polynomials
defined by (1.1) and then show how this general result can be applied in order to deduce
several functional relationships between various multivariable hypergeometric polynomials
and the Gauss hypergeometric function which corresponds to the familiar special case

p—1=g=1

of the generalized hypergeometric ,F, function with p numerator and ¢ denominator para-
meters, defined by

(o)
pFal(op); (By); 2] = pF, z

q ;

e (o) (Ofp)kik

= 1.3
2B (B K (13)

(p,geNip<g+1l;p<gand |zl <oco;p=g+1and 7| < I;
p=q+1 Izl =1, and RE) > 0),

where (and throughout this paper) we find it to be convenient to abbreviate the p-parameter
array:

o, ..., (peN)
by (o), the array being empty when p = 0, with similar interpretations for (8,), etc., and
q

== Zﬁj—zaj (B¢ Zy = {0, —1,=2,...}).

Jj=1 Jj=1
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2 FINITE SUMMATION FORMULAS

We begin by recalling the multinomial theorem in the form [cf, e.g., Ref. 3, p. 13,
Eq. 2.39)1:

Z ( : )x'f‘ cexr =+ X)) 2.1
Aiy..., N,

ny+-+n,=n

(m,njeNg;j=1,...,r;r e N\{1}),

where, and in what follows,

n n!
<n17"'snr>._n1!"'nr!- (22)

Since

Al .
(e = (— 1y — (o <k < [ﬁ]J —1 r), 23)

(nj — myk;)! ]

by virtue of the definition (1.2), we can make use of the multinomial theorem (2.1) in con-
junction with the definition (1.1) to show that

n
my,...,m, n n,
E @nll ..... " (TP ) S
nytetn=n \ 15 - - -5 Ny

myky4---+m k. <n my ki m,\ k,
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A S A R 24)
ki, skr=0 1: ”

T:=t+-+tsnneNymeN;j=1,...,7r).

With a view to applying the general finite summation formula (2.4) to the following famil-
iar special case of the (Srivastava—Daoust) generalized Lauricella functions, defined by [cf.,
e.g., Ref. 9, p. 38, Eq. 1.4(24)]
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whenever the multiple hypergeometric series in (2.5) converges or terminates, we conveni-
ently set

mp=---=m =1,
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and we find from (2.4) that

n
§ : prl-s-l;-..; +1
a:q1+1;..59,+1
ny4tn=n \ s+ Ny

@) =1, (s 3= (G0);
Xiyoos Xp [0 80
B @i GO
=1, (%): (7)s -5 (U9

_ gnp+lpi.py
=T'F 4:q15--34r T’ T

(S L (SN
B): B, i3 (B0;
T=t+--FtsnneN;j=1,...,r).

(2.6)

Next, by appealing appropriately to the multiple series identity [cf. Ref. 8; see also
Ref. 9, p. 39]:

00 4 - -
Z oy + -+ n)(A),, - (), PR Z oM+ -+ A4), o (2.7)
MYyl = : re n=0 :

and its multivariable hypergeometric form:

(A S (0p)y A1+ v+ A
1.1
Ff;:O;“.;O ZyeeenZ | = p-HFq z [, (2.8)

the second members of (2.4) and (2.6) can be simplified considerably in the special cases:

Qlki, .oy k) = Gy - Gy, @y +---+ k), my=m, and xj:G) 2.9)
]

meN;keNyeCj=1,...,r
and

pi—l=q¢=00Y=2% ad xt=1 (j=1,...,n), (2.10)

J
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respectively. We thus find from (2.4) that

h ) T T

Alyeeish . Yoo

§ (Dm ,,,,, nZ(m’t >ttt t)tl tr’
ni+-4n=n \ P15+ By 1 r

[n/m] mk
n ) ) (T/T)
=T" Y (=) + - + 4y (k) @.11)
k=0
T=t1+--+tusmeN;nneNy;LeCji=1,...,r),
where [cf. Eq. (1.1)]
[n1/m] [ny/m]
O ms X x) = Z Z (=0t Gty =+ (1), (g,
kl xkr
k) + - +k) O 2.12)

(meNy; 4 eCj=1,...,r,meN)

in terms of a bounded sequence {w(n)}oc,, of essentially arbitrary (real or complex) para-
meters.

Furthermore, under the constraints given by (2.10), the finite summation formula (2.6)
similarly yields

(Otp):_nla ll; cees TNy, ir;

h p:2;5..52 1 1 gl ny
Fq:O;N.;O 0Tt AR
ni4-tn=n \ 015 ..., Np 1 r

B —5 —;
=1, Ay A A ();

=T",.,F, (2.13)

N -

By

T=ti+--+tsnneNy;leCj=1..r.

3 APPLICATIONS TO LAURICELLA POLYNOMIALS IN SEVERAL
VARIABLES

The various finite summation formulas, which we presented in the preceding section, can
indeed be applied in order to derive the corresponding results for many of the orthogonal
and biorthogonal multivariable hypergeometric polynomials which were referred to in
Section 1. We leave the details involved in the derivations of these consequences of our
results as an exercise for the interested reader. We turn instead to some multivariable
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hypergeometric polynomials which are associated, in particular, with the Lauricella functions
Fg), Fg), F(Cr), and Fg) of r variables, where [cf. Ref. 1, p. 114; see also Ref. 9, p. 33]

a:by;...; b,

1:1;..51
F/(lr)[a, bi,....bc1,...,¢521,...,2] = F0:1;4..;1 AT

—iCl;- 5 Crs
k )
SN (@ oih, D) - (B 2 2P
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c v; b v’
k
B N O YR CATE 52
ST -ty ko kit
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a, b: ) s
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N A
k
= i @ oty O e 21 27 (3.3)
Kty k=0 (cl)k1 e (Cr)k, kl' kr'
(2?4 + 12 < LgeZgj=1,...,7),
and
a: bl;' > bra
F(Dr)[a, bi,....,bscz1,...,z] = Fllfé;; AAAAA 6 Zlye s 2y
cl—3 s
X (a G A
Z ( )k1+--+kr( 1)k1 ( r)k,i_'_ r (3‘4)

Kokr=0 (7 — k! k!

(max {|z1],..., lz:|} < 1;c¢Zy).
First of all, in its special case when

p—1=qg=0 (1 =a) and pj=¢q —1=0 <§;j)zcj;j=1,~~-,7’),
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our summation formula (2.6) yields

n
() . . ny 1y
E Fylla, —ni, ..., =15 C1,.. ., G Xty .o, X ]t oo 1)
njt+tm=n \ 5.5 N

X1hH X1,
:T”F(r)[—n,a;c,...,c;—,..., ]
C 1 r T T

(3.5)
T =t1 4+ +tsnneNycgé¢ly;j=1,...,7).
In the case of the Lauricella hypergeometric polynomials associated with F’ g) , (2.13) with
p=q—1=0(f,=c) and Li—>b (j=1,...,7)

leads us immediately to the functional relationship:

n
(r) . e T Tlm N
E Fy —nl,...,—n,,bl,...,br,c,t—,...,t—tll'ntr”
nyt-tn=n \ s« - o5 Hy 1 r

= T",F, (—n, b+ + by c; %) (3.6)

T =t14+---+tynneNyj=1,...,rnc¢Z;).

(r)

For the Lauricella hypergeometric polynomials associated with F,’, we similarly find from

(2.6) with
p=q=1(=af=c) and pj=¢g;=0 (j=1,...,7)
that
" ")
Z Fplla, —ni, ..., =0 ¢ X1, .o, X0 - 10
nytn=n \ s -5 Ny
t o
=T",F, (—n, a; c; M) 3.7
T
T=t+FtsnneNyj=1,...,rc¢ly).
Since
FP=F, FY=F;, F?=F, and F =F, (3.8)

each of the functional relationships (3.5), (3.6), and (3.7) (with » = 2) can immediately be
rewritten in terms of one or the other of Appell’s hypergeometric functions Fy, F;, Fj3,
and Fy of two variables [cf. Ref. 1, p. 14; see also Ref. 9, pp. 22-23].
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Next, for the second set of the Carlitz—Srivastava polynomials defined by [2, Part II, p. 143,

Eq. 27)]

FOl 9): (=npy my); (72 @,); x1, -, %]

(i /mi] [ne/my

=0

(nj eNosmj eN; 95, 0, e RY j=1,..., 7€ 2y),

the general result (2.4) readily yields

n
> FOUe 9): (—nj my); (2 @) X1, x40 £
ni4Fn=n \ M- -, Np

miky+--+m k. <n

(0,9, 4449,
=T Z (_n)m|k|+---+m,kr R —

ki, ko= (N/)kl o1 +thep,
/DM /T
ki! k!

T=t+-FtsnneNgymeN;j=1,...,rny¢Z)).
In the particular case when
mi=m, 9;=p, and @, =0 (m,p,0€N),

(3.10) would reduce to the form:

n
> ( )fg’[(oc: P): (=njy m); (72 )3 X1y, X -
n+-tn=n \ s« oy Ay

A(m;—n), A(p; 2);

=Tnm+pFa
A(a; y);
T=t+-+tsnneNyj=1,....,rnmp, oceN;y¢7Z;),

where A(m; A) abbreviates the array of m parameters:

RN )‘+n’”1_1 (m € N).

A
)
m m

ki
: k9, +-4k9, X' X
Z (=11, "'(—nr)m,k,( ) ol rl
k=0 Vo ++kop, €1° r

(3.9)

(3.10)

@3.11)

O_fp {xl(%l)m+ s +x(%>} (3.12)

Form = p = ¢ = 1, (3.12) would obviously correspond to the functional relationship (3.7).
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Lastly, for Erdélyi’s multivariable extension of the classical Laguerre polynomials defined
by [cf., e.g., Ref. 2, Part II, p. 144, Eq. (29)]

(@4 Dy goin,
""" n!---n,!

CFY0 XX |, (3.13)

,,,,,,

it is easily seen from (2.6) with
p=q—-1=0 (@ =a+1) and p;=¢;=0 (j=1,...,7)

that

,,,,,

ny+-+n,=n

o+n t 1
_ ( )T” 1F1(—n;fx+1; W) (3.14)
n

T=t+-+tsnneNyj=1,...,naeZ :=7,\{0}).
Clearly, since [cf. Egs. (3.4) and (3.13)]

[P (... %)= lim {F,g”[z, —nl,...,—n,;oc+1;ﬂ,...,ﬁ]}, (3.15)
nyse.050y |A]—o00 A A

our last functional relationship (3.14) can be deduced as a limit case of (3.7) when

c=o+1, xj|—>ﬁ (j=1,...,r), and |a|] — oo.
a

4 FURTHER EXTENSIONS AND CONSEQUENCES

The multinomial theorem (2.1), which provided one of the tools used in our present
investigation, is itself a limit case of the following well-known multiple sum [Ref. 3, p. 13,
Eq. 2.3(5)]:

Z <n| " n )(/ll)nl "'()“V)n,. :()“1 ++)“V)n (41)

ny+--+n.=n

(m,meNyLeCj=1,...,r),
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which, for » = 2, is equivalent to the Chu-Vandermonde summation theorem:

Z(nik)(l;):()j;”) (n € No; 2, u € ©). 4.2)

k=0

In fact, since

lim [(;)(%)} — 7= lim {(“Z)n} (n € No; |2] < 00), 4.3)

4= 00 lul—o00 | (1),

upon setting 4, = Ax; (j = 1,..., r), dividing both sides by A", and letting |1| — oo, (4.1)
yields the multinomial theorem (2.1).

If we apply the general result (4.1) in place of the multinomial theorem (2.1), we find from
the definition (1.1) that

n
§ (jvl)n] e (}“r)n,GZII,j:i;;ZI"(xl’ ] xl‘)
ni4etn=n \ 015+« Oy

kit tmyk, <
e e (_n)m1k1+~-+m,.k,.(il)mlkl o (/’Lr)m,k,.

koo =0 (A4 + j"‘)mlk1+~--+mrk,

= ()“1 + - +;“r)n

ky xk
~Q(k1,...,k,)z—i'mr (momeNgmeN; JyeCj=1,...,r), (44)

which provides a seemingly interesting extension of (2.4).
Finally, in order to give a conveniently simple hypergeometric form of (4.4), we set

A=li+---+4 and m=1 (j=1,...,r),

and choose the multiple sequence {Q(kq,..., &)} as in the definition (2.5). We thus obtain

n
E (A0, =+ (A,
n4-An=n \ 0155 Ny

@p):=n1, (7))s - -5 =1 (F);

. FPI171+1;...; 41 oy
o : e ). r
B @) @D
1, (0 Ay ()i s ()
+1:p1+1;.5p+1 P1 Pr
= (A)n Fv{;-‘,—l:pl qI;.“;Z, Xlseoes Xy (45)

. . . (AW
ABY @G @G
A=0++AsnnmeNyj=1,...,7),
provided that each side of (4.5) exists. In its special case when

p=q=0 and p,=¢g; =1 (yé{)zuj;ég)zvj;jz1,...,r),
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the hypergeometric summation formula (4.5) reduces immediately to the elegant form:

n
> (A0, === (), - 2F1(=nisptys vis x1) - 2 F i (=nys 5 Ve Xy)
nytetn=n \ s« o5 Ay

| T AL M5 Ay
= (N), Fi73 : Xiyeens Xy (4.6)
o A: Vi V)
AN=Ah+-F+lsnneNgAvi¢gZ,;j=1,...,r).

A further special case of (4.6) when

V]:;L/ (jzl,...,l")
was proven, in a markedly different way, by Toscano [11, p. 241, Eq. (11.4)]; indeed, in
this special case, the right-hand side of (4.6) would involve the Lauricella function Fg)
defined by (3.4).

For the Lauricella hypergeometric function F/(f) defined by (3.1), our summation formula
(4.5) with

p—1=g=0 (@ =0) and pj=¢q¢—1=0 (5;f):uj;j:1,...,r)

would readily yield

n
( )(;Ll)nl ...(/’{r)ny .F,E;)[OC) T T By s X - '5'xr]
Ny, ..., Ny

ni+--+n.=n

N Flil —n, 0 Al A i
- n 11551 Xlgeoos Xp ( . )
Ay s

AN=Mh+-+AsnneNgA LeZy,j=1,...,r),
which, in the special case when
w=42x (=1,...,7),

reduces at once to the form:

n
( )(}V])nl o '()”V)n, 'FIE;)[OCJ I PP {2 ;Ll" R} )“r; X1 - ~~:xr]
ni+-Fn=n \ P55 Ny
=(A), 2F1(—=n, o5 A; x1 + -+ +x,) (4.8)
AN=Mh+-F+AsnneNgA L¢EZy;j=1,...,r).

Lastly, we consider the basic multivariable Appell polynomials

En1 ..... nr(asbla"'sbr;x15'~'3xr)
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defined by [cf. Ref. 4, p. 26; see also Ref. 5]

(bl)nl e (br)n,
@+b1+-+b+n),

E}’Ll,m,l’lp(aa bl: crts br: X], cets xl‘) = (_1)"

FOladbi 4+ 4bo4n,—ni,...,—ns by, bxi,. .., x] (4.9)

m=m4+---+n;nneNyj=1,...,r

or, equivalently, by

En, n(a, b, ... by x1,. .. x) =x]" o xl
~Fg)|:—n1,...,—nr,l—b1 —ny,..., 1 —b,—n
1 1
| —a—by— e — by — 21—, . — (4.10)
X1 Xy

(m=n+--+nsnneNyj=1,...,r).

Indeed these basic multivariable Appell polynomials are orthogonal over the simplex
Ty ={C1,....,x)x1+-+x<1x>0,=1,...,r} (4.11)
with the weight function
WXy, ..., X)) 1= xll’“1 ~-xf’_](1 —x; — - —x) (4.12)

Making use of the definition (4.10), it is not difficult to deduce the following summation
formula from the functional relationship (3.6):

n h 1,
Z Enh.“,n,‘(a"'l;bl_n1+ls~~-sbr_nr+l; 7""’7>
nyi+---+n,=n Hlyeoo, Ny T T
-1
a+B+r+n 2T
_ ( ) platra-n) <_ N 1) (4.13)
n T

(momeNyj=1,....,nB:=bj+---+b;T:=t+ - +1),

where Pﬁl“’ﬁ)(x) denotes the classical Jacobi polynomials defined by [cf., e.g., Ref. 10, p. 68]

n k n—k
PP () :Z(Zi_;t)(n—]tﬁ)(x;l) <x42rl> “.14)

k=0

or, in terms of the Gauss hypergeometric function, by

Pﬁf"/”)(x) = (oc +'[i+ 2”)()%1)nzF1 <—n, —f—n; —oo—f —2n x—i 1). (4.15)

Many other interesting corollaries and consequences of our main summation formulas can
be deduced in a similar manner.
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