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Abstract

The Marchenko–Pastur probability measure, of interest in the asymp-
totic theory of random matrices, is generalized in what appears to be
a natural way. The orthogonal polynomials and their three-term re-
currence relation for this generalized Marchenko–Pastur measure are
obtained in explicit form, analytically as well as symbolically using
Mathematica. Special cases involve Chebyshev polynomials of all four
kinds. Supporting Matlab software is provided.
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1 Introduction

In 1967 (see [9]), the Ukrainian mathematicians Vladimir Alexandrovich
Marchenko (b. 1922) and Leonid Andreevich Pastur (b. 1937), working on the
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asymptotic theory of large random matrices, came to consider a probability
measure now known as the Marchenko–Pastur measure or the Marchenko–
Pastur law. Here, entirely out of curiosity and without any applications in
mind, we generalize the measure in the same way as Jacobi polynomials are
a generalization of Chebyshev polynomials (of the second kind). We are in-
terested in the orthogonal polynomials relative to this generalized measure
and in their three-term recurrence relation. Both are obtained explicitly in
Sections 3 and 4. In special cases the orthogonal polynomials are identified
in Section 5 in terms of Chebyshev polynomials of all four kinds. Double-
precision and variable-precision Matlab routines for generating the recurrence
coefficients of the generalized Marchenko–Pastur measure are also provided.

2 The generalizedMarchenko–Pastur measure

The Marchenko–Pastur measure, as formulated in [1], [8], [10], is supported
on the interval [a, b], where

(2.1) a = (
√
c− 1)2, b = (

√
c+ 1)2, c > 0,

and defined, if c > 1, by the density function

(2.2) w(x) =
1

2πc
x−1[(b− x)(x− a)]1/2 +

(

1− 1

c

)

δ0, a ≤ x ≤ b,

where δ0 is the Dirac delta function at x = 0 with mass 1, and, if c < 1, by

(2.3) w(x) =
1

2πc
x−1[(b− x)(x− a)]1/2, a ≤ x ≤ b.

A natural generalization is to replace the exponent 1/2 of b−x and x− a by
α and β, respectively, as in the case of Jacobi measures, assuming α > −1,
β > −1. The constant (2π)−1 multiplying x−1[(b − x)(x − a)]1/2 in (2.2)
happens to be a normalization factor when c > 1. Likewise, (2πc)−1 is the
normalization factor when c < 1 (cf. (5.5).) Thus, our generalization of the
Marchenko–Pastur measure is
(2.4)

w(x;α, β, c) =















1

c µ0
x−1 (b− x)α(x− a)β +

(

1− 1

c

)

δ0 if c > 1,

1

µ0

x−1 (b− x)α(x− a)β if c < 1,

a ≤ x ≤ b,

2



where

(2.5) µ0 = µ0(α, β, c) =

∫ b

a

x−1 (b− x)α(x− a)β dx, c > 0.

The weight function w in (2.4) is clearly a probability measure, for 0 < c < 1

as well as for c > 1, in the sense that
∫ b

a
w(x;α, β, c)dx = 1. The case c = 1

can be transformed to a Jacobi weight function with Jacobi parameters α,
β− 1 (if β > 0). This case is classical and well known, and therefore will not
be considered any further.

The monic polynomials orthogonal with respect to the weight function
(2.4) will be denoted by πk(x), k = 0, 1, 2, . . . . As is well known, they satisfy
a three-term recurrence relation,

(2.6)
πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k = 0, 1, 2, . . . ,

π−1(x) = 0, π0(x) = 1.

Our interest is in the coefficients αk, βk. We use the convention β0 =
∫ b

a
w(x; ;α, β, c)dx.
Notice that, when c < 1, the factor 1/µ0 in (2.4) is unimportant, as

regards orthogonal polynomials, since it has no effect on them whatsoever.
Not so when c > 1, where the constant 1/(cµ0) multiplies only the continuous
part of the measure. A change of that constant will therefore also change the
orthogonal polynomials.

3 Orthogonal polynomials and recurrence co-

efficients for (2.4) when c > 1

3.1 Orthogonal polynomials on [−1, 1]

Associated with the weight function (2.4) is the inner product

(3.1) (u, v) =

∫ b

a

[

1

cµ0

x−1(b− x)α(x− a)β +

(

1− 1

c

)

δ0

]

u(x)v(x)dx,

where µ0 is given by (2.5). Changing variables,

(3.2) x = 2
√
c t+ c+ 1,
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mapping the interval [−1, 1] onto [a, b], the constant µ0 and inner product
(3.1) become

(3.3) µ0 = (2
√
c)α+β

∫ 1

−1

w(α,β)(t)

t+ g
dt,

respectively

(3.4) (u, v)∗ =
1

c

∫ 1

−1

u(t)v(t)

t + g
w(α,β)(t)dt

∫ 1

−1

w(α,β)(t)

t+ g
dt

+

(

1− 1

c

)

u(−g)v(−g),

where w(α,β)(t) is the Jacobi weight function and

(3.5) g =
c+ 1

2
√
c
.

Note that g is invariant with respect to the transformation c 7→ 1/c and
g > 1 for all c 6= 1.

We denote the monic polynomials orthogonal with respect to the inner
product (3.4) by π∗

k. Inserting (3.2) into (2.6) and using πk(2
√
c t+ c+ 1) =

(2
√
c)k π∗

k(t) yields the recurrence relation for the π∗

k,

(3.6) π∗

k+1(t) = (t− α∗

k)π
∗

k(t)− β∗

kπ
∗

k−1(t),

where

(3.7) α∗

k =
αk − (c+ 1)

2
√
c

, β∗

k =
βk

4c
, k ≥ 0.

For later use, we obtain α∗

0 = α0/(2
√
c)−g in (3.7) more explicitly, noting

that

(3.8) α0 =

∫ b

a

xw(x;α, β, c)dx =
1

cµ0

∫ b

a

(b− x)α(x− a)βdx,

the term with the Dirac function being zero because of the factor x in the
first integral of (3.8). Applying the change of variables (3.2) to the second
integral in (3.8) as well as to the integral in (2.5) representing µ0 gives

(3.9) α0 =
2α+β+2

√
c

Γ(α + 1)Γ(β + 1)

Γ(α+ β + 2)

(
∫ 1

−1

w(α,β)(t)

t+ g
dt

)−1

.
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The integral in large parentheses can be identified with Mathematica to be
(3.10)
∫ 1

−1

w(α,β)(t)

t+ g
dt =

2α+β+1

g − 1
B(α+1, β+1) 2F1(1, β+1;α+β+2;−2/(g−1)),

where B is Euler’s beta integral and 2F1 the hypergeometric function. There-
fore, by (3.7) for k = 0,

(3.11) α∗

0 =
g − 1

c

1

2F1(1, β + 1;α + β + 2;−2/(g − 1))
− g, g =

c + 1

2
√
c
.

Since π∗

k is orthogonal with respect to the inner product (3.4) to all poly-
nomials of degree k − 1, putting u(t) = π∗

k(t) and v(t) = vj(t) = (t + g)j in
(3.4) gives

(3.12)

(π∗

k, vj)
∗ =

1

c

∫ 1

−1

π∗

k(t)(t+ g)j−1w(α,β)(t)dt

∫ 1

−1

w(α,β)(t)

t+ g
dt

+

(

1− 1

c

)

π∗

k(−g)δj,0 = 0,

j = 0, 1, 2, . . . , k − 1,

where δj,0 is the Kronecker delta. The relations for j = 1, 2, . . . , k − 1 imply
that

∫ 1

−1

π∗

k(t)(t + g)j−1w(α,β)(t)dt = 0, j = 1, 2, . . . , k − 1,

that is, π∗

k is orthogonal with respect to the Jacobi weight function to all
polynomials of degree ≤ k − 2, hence

Theorem 1 The monic orthogonal polynomials π∗

k relative to the inner prod-

uct (3.4) are

(3.13) π∗

k(t) =
◦

P
(α,β)
k (t) + γk

◦

P
(α,β)
k−1 (t), k ≥ 1,

where
◦

P
(α,β)
k (t) denote the monic Jacobi polynomials and γk are constants

depending on α, β, c.
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The constants γk can be determined from the orthogonality relation (3.12)
with j = 0,

(3.14)

∫ 1

−1

π∗

k(t)

t+ g
w(α,β)(t) dt + (c− 1)π∗

k(−g)

∫ 1

−1

w(α,β)(t)

t + g
dt = 0,

as will be shown in the next subsection.

3.2 Determination of the coefficients γk

Let αJ
k , β

J
k be the recurrence coefficients for the monic Jacobi polynomials,

(3.15)

◦

P
(α,β)
k+1 (t) = (t− αJ

k )
◦

P
(α,β)
k (t)− βJ

k

◦

P
(α,β)
k−1 (t). k = 0, 1, 2, . . . ,

◦

P
(α,β)
0 (t) = 1,

◦

P
(α,β)
−1 (t) = 0,

where [5, Table 1.1]1

(3.16)

αJ
k =

β2 − α2

(2k + α + β)(2k + α + β + 2)
, k ≥ 0,

βJ
0 =

2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α+ β + 2)
, βJ

k =
4k(k + α)(k + β)(k + α + β)

(2k + α + β)2((2k + α + β)2 − 1)
,

k ≥ 1,

except in the case k = 0 and α + β = 0, when αJ
0 = −α, and in the case

k = 1 and α + β + 1 = 0, when βJ
1 = −2α(α + 1).

Theorem 2 The recurrence coefficients α∗

k, β
∗

k in (3.6), expressed in terms

of the γk and the recurrence coefficients in (3.16), are

(3.17)
α∗

0 = αJ
0 − γ1, α∗

k = αJ
k + γk − γk+1, k ≥ 1,

β∗

k = βJ
k + γk(α

J
k−1 − αJ

k )− γk(γk − γk+1), k ≥ 1.

Alternatively, for k ≥ 2,

(3.18) β∗

k =
γk
γk−1

βJ
k−1.

1In the formula for βJ
0
at the bottom of Table 1.1 of [5], the denominator should read

Γ(α+ β + 2) instead of Γ(α+ β + 1).
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Proof. Using (3.13) in (3.6), we have

(3.19)

◦

P
(α,β)
k+1 (t) + γk+1

◦

P
(α,β)
k (t) = (t− α∗

k)

[

◦

P
(α,β)
k (t) + γk

◦

P
(α,β)
k−1 (t)

]

−β∗

k

[

◦

P
(α,β)
k−1 (t) + γk−1

◦

P
(α,β)
k−2 (t)

]

.

Expressing t
◦

P
(α,β)
k and t

◦

P
(α,β)
k−1 from (3.15) in terms of the monic Jacobi

polynomials and putting the results into (3.19) yields
(3.20)

[

αJ
k − α∗

k + γk − γk+1

]
◦

P
(α,β)
k (t) +

[

βJ
k − β∗

k + γk(α
J
k−1 − α∗

k)
]

◦

P
(α,β)
k−1 (t)

+
[

γkβ
J
k−1 − γk−1β

∗

k

]
◦

P
(α,β)
k−2 (t) ≡ 0.

Since orthogonal polynomials are linearly independent, all coefficients in
(3.20) must vanish, that is,
(3.21)

α∗

k = αJ
k + γk − γk+1,

β∗

k = βJ
k + γk(α

J
k−1 − α∗

k) = βJ
k + γk(α

J
k−1 − αJ

k − γk + γk+1)







k ≥ 1

β∗

k =
γk
γk−1

βJ
k−1, k ≥ 2.

This proves (3.17) for k ≥ 1 and (3.18).

Noting that by (3.13) there holds π∗

1(t) =
o

P 1
(α,β)(t) + γ1 and

o

P 1
(α,β)(t) =

t − αJ
0 by (3.15), we get π∗

1(t) = t − αJ
0 + γ1. On the other hand, by (3.6),

π∗

1(t) = t− α∗

0, so that α∗

0 = αJ
0 − γ1, which is the first relation in (3.17).

�

Now the first relation in (3.17), together with (3.11) and (3.16) for k = 0,
yields
(3.22)

γ1 =
β − α

α + β + 2
− g − 1

c

1

2F1(1, β + 1;α+ β + 2;−2/(g − 1))
+g, g =

c+ 1

2
√
c
.
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Let

(3.23)
pk =

∫ 1

−1

◦

P
(α,β)
k (t)

t+ g
w(α,β)(t)dt+ (c− 1)

◦

P
(α,β)
k (−g)

∫ 1

−1

w(α,β)(t)

t + g
dt,

k = 0, 1, 2, . . . , c > 1,

where the integral on the far right is known; see (3.10). If in (3.12) with
j = 0 we replace π∗

k by (3.13) and then solve for γk yields the remaining γ’s,

(3.24) γk = − pk
pk−1

, k = 2, 3, . . . .

To obtain a recurrence relation for the pk, note first of all that from (3.23)
we have

(3.25) p0 = c I, I =

∫ 1

−1

w(α,β(t)

t+ g
dt, c > 1.

Next, divide both sides of (3.15) by t + g and integrate from −1 to 1 with
weight function w(α,β). We obtain, using (3.23) with k replaced by k − 1, k,
k + 1, and (3.15) with t = −g,

pk+1 =

∫ 1

−1

t
◦

P
(α,β)
k (t)

t+ g
w(α,β)(t)dt− αJ

kpk − βJ
k pk−1

+(c− 1)I [
◦

P
(α,β)
k+1 (−g) + αJ

k

◦

P
(α,β)
k (−g) + βJ

k

◦

P
(α,β)
k−1 (−g)]

=

∫ 1

−1

t
◦

P
(α,β)
k (t)

t+ g
w(α,β)(t)dt− αJ

kpk − βJ
k pk−1 − (c− 1)I g

◦

P
(α,β)
k (−g)

or, writing t/(t+ g) = 1− g/(t+ g),

pk+1 =

∫ 1

−1

◦

P
(α,β)
k (t)w(α,β)(t)dt− (g + αJ

k )pk − βJ
k pk−1.

Therefore, by orthogonality,
(3.26)

pk+1 =
2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α+ β + 2)
δk,0− (g+αJ

k )pk −βJ
k pk−1, k = 0, 1, 2, . . . ,

where δk,0 is the Kronecker delta and p−1 = 0. If we restrict k to k ≥ 1, the
inhomogeneous term in (3.26) disappears, and we have

(3.27) pk+1 + (g + αJ
k )pk + βJ

k pk−1 = 0, k = 1, 2, 3, . . . .
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3.3 The three-term recurrence relation (3.27)

In this subsection it doesn’t matter whether c > 1 or c < 1 since the param-
eter g in (3.27) is invariant with respect to the transformation c 7→ 1/c.

The difference equation (3.27) is of Poincaré type, i.e., its coefficients

g + αJ
k → g, βJ

k → 1/4

have finite limits as k → ∞, and the characteristic polynomial is

(3.28) z2 +
c + 1

2
√
c
z +

1

4
.

The two zeros

z1 =
−1

2
√
c
, z2 =

−√
c

2
,

having different moduli, implies (cf. [4, Theorem 2.2]) that there are two

linearly independent solutions p
(1)
k , p

(2)
k of (3.27) such that

(3.29)
p
1)
k+1

p
(1)
k

→ −1

2
√
c
,

p
(2)
k+1

p
(2)
k

→ −√
c

2
as k → ∞.

One is dominant and the other minimal (see [4, p. 25] for terminology).

Theorem 3 Let

(3.30) fk =

∫ 1

−1

◦

P
(α,β)
k (t)

t + g
w(α,β)(t)dt, gk =

◦

P
(α,β)
k (−g), k = 0, 1, 2, . . . .

Both fk and gk are solutions of the difference equation (3.27), the first being

minimal and the other dominant.

Proof. The fact that fk and gk are solutions of (3.27) is readily verified. To
show minimality of fk, it suffices to show that

(3.31) lim
k→∞

rk = 0,

where

(3.32) rk =
1

◦

P
(α,β)
k (−g)

∫ 1

−1

◦

P
(α,β)
k (t)

t + g
w(α,β)(t)dt.
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Since normalization of the Jacobi polynomials in (3.32) is irrelevant, we may
drop the circle on top of the P ’s. Using the Cauchy–Schwarz inequality, we
then have

|rk| =
1

|P (α,β)
k (−g)|

∣

∣

∣

∣

∣

∫ 1

−1

P
(α,β)
k (t)

t+ g
w(α,β)(t)dt

∣

∣

∣

∣

∣

≤ 1

|P (α,β)
k (−g)|

||P (α,β)
k || ||( · + g)−1||,

where ||u|| =
√

∫ 1

−1
u2(t)w(α,β)(t)dt. Since ||P (α,β)

k || = O(1/
√
k) (cf. [11,

p. 132]), ||( ·+g)−1|| is a positive constant not depending on k, and |P (α,β)
k (−g)| =

P
(β,α)
k (g) → ∞ if g > 1 (cf.[16, Theorem 8.21.7]), there indeed holds (3.31).

�

3.4 Recurrence coefficients

The three-term recurrence relation (2.6) of interest can now be obtained from
(3.7),

(3.33)
αk = 2

√
c α∗

k + c+ 1, k ≥ 0,

β0 = 1, βk = 4 c β∗

k, k ≥ 1,

with α∗

0 given by (3.11) and α∗

k, β
∗

k , k ≥ 1, by (3.21).

Theorem 4 The recurrence coefficients αk, βk satisfy

(3.34) lim
k→∞

αk = 1 + c, lim
k→∞

βk = c.

Proof. The coefficients α∗

k, β
∗

k in (3.6) have limits 0 resp. 1/4 as k → ∞ (see
[15], [13], [3, Theorem 4]). Therefore, letting k → ∞ in (3.33) yields (3.34).

�
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4 Orthogonal polynomials and recurrence co-

efficients for (2.4) when c < 1

The analysis is essentially the same as in the previous section, once the delta
function as well as the factor 1/c in (2.4) have been removed. This requires,
however, a few adjustments. Specifically, delete the factor c multipying 2F1

both in (3.22) and (3.11). Moreover, replace pk in (3.23) by

(4.1) pk =

∫ 1

−1

◦

P
(α,β)
k (t)

t + g
w(α,β)(t)dt, k = 0, 1, 2, . . . , c < 1,

which, as shown in Theorem 3, is a minimal solution of (3.27).
The coefficients γk, k ≥ 2, in Theorem 1 are again determined by (3.24),

but now with pk given in (4.1).

Theorem 5 The coefficients γk in Theorem 1 satisfy

(4.2) lim
k→∞

γk =
√
c/2, c 6= 1.

Proof. If c > 1, the limit (4.2), by (3.24), is the limit

(4.3) − lim
k→∞

pk+1

pk

for the dominant solution pk of (3.27) in (3.23), that is,
√
c/2, and if c < 1,

the limit (4.3) for the minimal solution in (4.1), that is, again
√
c/2.

�

Remarks to Theorem 5.
1. When α = β = 1/2 and both c > 1 and c < 1, the limit in (4.2) is

attained instantaneously, that is, γ1 = γ2 = γ3 = · · · . The same is true if
α = −β = ±1/2 and c < 1.

2. When α = β = −1/2 and c < 1, the limit in (4.2) is attained almost
instantaneously, that is, γ2 = γ3 = · · · . (High-precision computation may
be required to make this visible.)

Computation of the minimal solution pk of the recurrence relation (3.27)
in forward direction is unstable, more so the smaller c. A stable algorithm to
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compute pk for 0 ≤ k ≤ N is as follows (cf. [4, Eqs. (3.9)]). Select an integer
ν > N and apply the following backward/forward recursion,

(4.4)
r(ν)ν = −

√
c/2, r

(ν)
k−1 =

−βJ
k

g + αJ
k + r

(ν)
k

, k = ν, ν − 1, . . . 1,

f
(ν)
0 = p0, f

(ν)
k = r

(ν)
k−1f

(ν)
k−1, k = 1, 2, 3, . . . , N,

where (cf. [4, Eq. (30)]) r
(ν)
ν is taken to be the right-hand limit in (3.29).

Moreover (cf. (3.10)),

p0 =
2α+β+1

g − 1

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
2F1(1, β + 1;α+ β + 2;−2/(g − 1)).

Since f
(ν)
k → pk, k = 0, 1, 2, . . . , N , as ν → ∞, one applies (4.4) for a

sequence of increasing ν-values, ν > N , until two successive f
(ν)
k agree to

the desired precision. In the special cases of Chebyshev weight functions of
all four kinds, this is not necessary since the r

(ν)
k−1, owing to the essentially

constant values of αJ
k , β

J
k in these cases do not depend on ν nor on k (except

for the single value of r0 in the case of the Chebyshev weight function of the
first kind). Besides, the pk are explicitly known in this case (cf. §5).

c N ν c N ν c N ν
.01 10 14 .1 10 19 .5 10 40

20 24 20 28 20 49
50 54 50 58 50 78
100 103 100 107 100 126

.05 10 17 .3 10 27 .8 10 103
20 26 20 36 20 112
50 56 50 66 50 140
100 105 100 115 100 187

Table 1: Value of ν required in (4.4) to obtain 13-

digit accuracy when using Matlab double-precision

arithmetic in the case of the Legendre weight func-

tion

When the algorithm (4.4) is run in Matlab double precision, the smallest
value of ν guaranteeing 13-digit accuracy is shown in Table 1 for the case
α = β = 0 and for selected values of c and N .
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In the case of c very close to 1 (hence ν very large), one may get away
with forward recursion and only moderate increase, if any, of the working
precision.

The procedure described in this and the previous section is implemented
in the Matlab functions GMP.m and sGMP.m in double resp. variable precision;
visit https://www.cs.purdue.edu/archives/2002/wxg/codes/GMP.html.

5 Examples

The general results of §§ 3 and 4 are here specialized to the cases α, β = ±1/2
and α = β = 0. In the former case, the desired recurrence coefficients αn, βn

are obtained by the procedures of §§ 3 and 4 in symbolic form as functions
of n and c, making use of the symbolic capabilities of Mathematica. In the
latter case, numerical values are provided for 0 ≤ n ≤ 9, c = 4, and c = 1/4.

5.1 Chebyshev weight function of the first kind

Here, α = β = −1/2. The hypergeometric function needed in (3.10), (3.11),
and (3.22) is [14, Eq. 15.4.6]

2F1(1, 1/2; 1;−x) = 2F1(1/2, 1; 1;−x) = (1 + x)−1/2,

and therefore, since x = 2/(g − 1) = 4
√
c/(

√
c− 1)2,

2F1(1, 1/2, ; 1;−2/(g − 1)) =







(
√
c− 1)/(

√
c+ 1) if c > 1,

(1−√
c)/(1 +

√
c) if c < 1.

Using (3.3) and (3.10), we get

(5.1) µ0 =







π/(c− 1) if c > 1,

π/(1− c) if c < 1.

With regard to the recurrence relation (3.26), we have, by (3.25), (3.10),
and the first paragraph of §4,

p0 =







2 c3/2π/(c− 1) if c > 1,

2
√
c π/(1− c) if c < 1.
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From (3.26) with k = 0 and k = 1, noting that αJ
k = 0, βJ

1 = 1/2, we get

p1 =







−(1 + c2) π/(c− 1) if c > 1,

−2 c π/(1− c) if c < 1,

p2 =







(c3 − c2 + c + 1)π/(2
√
c(c+ 1)) if c > 1,

c3/2π/(1− c), if c < 1.

Finally, since βJ
k = 1/4 for k ≥ 2,

(5.2) pk+1 = −c + 1

2
√
c
pk −

1

4
pk−1, k = 2, 3, . . . ,

which is a three-term recurrence relation with constant coefficients and char-
acteristic polynomial (3.28). This allows us to explicitly obtain the solution
pk of (5.2) with the above starting values p1, p2. The result, when c > 1, is
(5.3)

pk = 2π
√
c (−1)k

[

(√
c

2

)k

+
c+ 1

c− 1

(

1

2
√
c

)k
]

, c > 1, k = 3, 4, . . . ,

and when c < 1,

(5.4) pk =
4π

√
c

1− c
(−1)k

(√
c

2

)k

, c < 1, k = 3, 4, . . . .

Once we have pk, we get all the γk from (3.24) and (3.22), which in turn
gives

α∗

0 =







− (c2 + 1)/(2 c3/2) if c > 1,

−1/
√
c if c < 1

from (3.11) and α∗

k, β
∗

k for k ≥ 1 from (3.21), and thus αk, βk from (3.33).
All this can be done numerically as well as symbolically.

The symbolic results are displayed in Table 2.
It is evident again, as was proved in Theorem 4, that αn and βn have

limits c + 1 resp. c as n → ∞, but what is noteworthy, and follows from
Remark 2 to Theorem 5, is that in the case c < 1 these limits are attained
almost instantaneously.
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n [αn, βn]

c > 1 0

[

c− 1

c
, 1

]

1

[

c+ 2 +
(c− 1)2

c(c2 + 1)
,
(c− 1)(c2 + 1)

c2

]

> 1

[

c+ 1− (c− 1)3(c+ 1)cn−1

(cn − cn−1 + c+ 1)(cn+1 − cn + c+ 1)
,

c
(cn−1 − cn−2 + c+ 1)(cn+1 − cn + c+ 1)

(cn − cn−1 + c+ 1)2

]

c < 1 0 [1− c, 1]

1 [2 c+ 1, 2 c (1− c)]

> 1 [c+ 1, c]

Table 2: Recurrence coefficients for the measure (2.4)

in the case of the Chebyshev weight function of the

first kind

In order to affirm the validity of the data shown in Table 2 and in
the subsequent Tables 3 – 5, we used the modified Chebyshev algorithm
[5, §2.1.7] based on the modified moments mk =

∫ b

a
w(x;α, β, c)(x − a)kdx,

k = 0, 1, 2, . . . , and implemented in the first author’s SOPQ package [6, §2.1] as
well as in the second author’s Mathematica package Orthogonal polynomials

[2], [12]. When run in sufficiently high precision (to combat possible instabil-
ities), they produced results in agreement with those obtained by evaluating
the symbolic expressions in Table 2 for selected values of c, both with c > 1
and c < 1, and for n as large as 100.
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5.2 Chebyshev weight function of the second kind

This is the original case α = β = 1/2. The hypergeometric function needed
here is [14, Eq. 15.4.17]

2F1(1, 3/2; 3;−x) = 4
(

1 +
√
1 + x

)

−2

,

where

x =
2

g − 1
=

4
√
c

(
√
c− 1)2

.

A short calculation yields

2F1(1, 3/2; 3;−2/(g − 1)) =







(
√
c− 1)2/c if c > 1,

(
√
c− 1)2 if c < 1.

Therefore, by (3.3) and (3.10),

(5.5) µ0 =







2π if c > 1,

2π c if c < 1.

The recurrence relation (5.2) in this case is

(5.6) pk+1 = −c + 1

2
√
c
pk −

1

4
pk−1, k = 1, 2, 3, . . . ,

where
p0 =

√
c π, p1 = −c π/2,

both, for c > 1 and c < 1. Hence, similarly as in §5.1,

(5.7) pk = π
√
c (−1)k

(√
c

2

)k

, k = 2, 3, 4, . . . .

The recurrence coefficients α∗

k, β
∗

k , k ≥ 0, and thus also the αk, βk, can
now be obtained as in the previous subsection. Table 3 displays the symbolic
results. Convergence in (3.34) is now truly instantaneous, not only in the
case c < 1, but also when c > 1; cf. Remark 1 to Theorem 5.
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n [αn, βn]
c > 1 0 [1, 1]

> 0 [c+ 1, c]
c < 1 0 [1, 1]

> 0 [c+ 1, c]

Table 3: Recurrence coefficients for the measure (2.4)

in the case of the Chebyshev weight function of the

second kind

5.3 Chebyshev weight function of the third kind

In this case, α = −1/2, β = 1/2, and the relevant hypergeometric function
is [14, Eq. 15.4.18]

2F1(1, 3/2; 2;−x) =
2

1 + x+
√
1 + x

,

which, for x = 2/(g − 1) = 4
√
c/(

√
c− 1)2 becomes

2F1(1, 3/2; 2;−2/(g − 1)) =







(
√
c− 1)2/(

√
c (1 +

√
c)) if c > 1,

(
√
c− 1)2/(1 +

√
c) if c < 1.

Therefore, by (3.3) and (3.10),

(5.8) µ0 =







2π/(1 +
√
c) if c > 1,

2π
√
c/(1 +

√
c) if c < 1.

From (3.25), (3.10), and from (3.26) with k = 0, noting that αJ
0 = 1/2,

we have
(5.9)

p0 =







2π c/(1 +
√
c) if c > 1,

2π
√
c/(1 +

√
c) if c < 1,

p1 =







π (1− c− c3/2)/(1 +
√
c) if c > 1,

−π c/(1 +
√
c) if c < 1,

and

(5.10) pk+1 = −c + 1

2
√
c
pk −

1

4
pk−1, k = 1, 2, 3, . . . .
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When c > 1, the solution of (5.10) with starting values (5.9) is
(5.11)

pk =
2π

√
c

1 +
√
c
(−1)k

[

(1 +
√
c )

(√
c

2

)k

−
(

1

2
√
c

)k
]

, k = 2, 3, 4, . . . ,

while for c < 1 it is

(5.12) pk =
2π

√
c

1 +
√
c
(−1)k

(√
c

2

)k

, k = 2, 3, 4, . . . .

In the same way as before, knowledge of pk eventually yields the recur-
rence coefficients αk, βk. They are shown, as functions of c, in Table 4.

n [αn, βn]

c > 1 0

[√
c+ 1√
c

, 1

]

1

[

c+ 1 +
(
√
c+ 1)(c− 1)2

(
√
c (c3/2 + c− 1)

,
(
√
c+ 1)(c3/2 + c− 1)

c

]

> 1

[

c+ 1 +
(
√
c+ 1)(c− 1)2cn−1

(cn−1/2 + cn−1 − 1)(cn+1/2 + cn − 1)
,

c
(cn−3/2 + cn−2 − 1)(cn+1/2 + cn − 1)

(cn−1/2 + cn−1 − 1)2

]

c < 1 0 [1 +
√
c, 1]

1 [c+ 1, c (1 +
√
c)]

> 1 [c+ 1, c]

Table 4: Recurrence coefficients for the measure (2.4)

in the case of the Chebyshev weight function of the

third kind
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5.4 Chebyshev weight function of the fourth kind

This is the case α = 1/2, β = −1/2, where [14, Eq. 15.4.17]

2F1(1, 1/2; 2;−x) = 2F1(1/2, 1; 2;−x) = 2
(

1 +
√
1 + x

)

−1

,

and, with x = 2/(g − 1) = 4
√
c/(

√
c− 1)2,

2F1(1, 1/2; 2;−2/(g − 1)) =







(
√
c− 1)/

√
c , if c > 1,

1−√
c, if c < 1.

By (3.3) and (3.10), there follows

(5.13) µ0 =







2π/(
√
c− 1), if c > 1,

2π
√
c/(1−√

c), if c < 1.

The recurrence relation (3.26), for k ≥ 1, is

(5.14) pk+1 = −c + 1

2
√
c
pk −

1

4
pk−1, k = 1, 2, 3, . . . ,

where, as in §5.3, but with αJ
0 = −1/2,

p0 =







2π c/(
√
c− 1) if c > 1,

2π
√
c/(1−√

c) if c < 1,
p1 =







−(c3/2 − c+ 1)π/(
√
c− 1) if c > 1,

−c π/(1−√
c) if c < 1.

The explicit solution of (5.14), when c > 1, is

(5.15) pk = 2π
√
c (−1)k

[

(√
c

2

)k

+
1√
c− 1

(

1

2
√
c

)k
]

, k = 2, 3, 4, . . . ,

and when c < 1,

(5.16) pk =
2π

√
c

1−√
c
(−1)k

(√
c

2

)k

, k = 2, 3, 4, . . . .

The desired recurrence coefficients αk, βk can now be obtained as in the three
previous subsections. They are displayed as functions of c in Table 5.
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n [αn, βn]

c > 1 0

[√
c− 1√
c

, 1

]

1

[

c+ 1− (
√
c− 1)(c− 1)2√
c (c3/2 − c+ 1)

,

(
√
c− 1)(c3/2 − c+ 1)

c

]

> 1

[

c+ 1− (
√
c− 1)(c− 1)2 cn−1

(cn−1/2 − cn−1 + 1)(cn+1/2 − cn + 1)
,

c
(cn−3/2 − cn−2 + 1)(cn+1/2 − cn + 1)

(cn−1/2 − cn−1 + 1)2

]

c < 1 0 [1−√
c, 1]

1 [c + 1, c(1−√
c)]

> 1 [c + 1, c]

Table 5: Recurrence coefficients for the measure (2.4)

in the case of the Chebyshev weight function of the

fourth kind

5.5 Legendre weight function

Here, α = β = 0, and by (3.3),

(5.17) µ0 = log

(√
c+ 1√
c− 1

)2

, c 6= 1.

The recurrence relation (3.26), for k ≥ 1, is

(5.18) pk+1 = −c+ 1

2
√
c
pk −

k2

4k2 − 1
p0, k = 1, 2, 3, . . . ,

where

p0 = log

(√
c+ 1√
c− 1

)2

×







c if c > 1,

1 if c < 1,
p1 = 2− (c+ 1)/(2

√
c) p0,
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and the desired recurrence coefficients αk, βk follow as described in §3.4:
first, α∗

0 and α0 are obtained from (3.7) with k = 0 in combination with (3.9)
(where the integral is equal to the above value of µ0); this gives γ1 from the
first relation in (3.17), the remaining γ’s coming from (3.24); finally α∗

k, β
∗

k

for k ≥ 1 are obtained from (3.21), and thus αk, βk from (3.33).
An attempt to generate the recurrence coefficients αn, βn in symbolic

form proved to be unfeasible because of the rapidly increasing complexity
of the symbolic expressions for the αn and βn as n increases. We therefore
restrict ourselves to obtaining numerical values of the first ten recurrence
coefficients for c = 4 and c = 1/4 using the routine GMP.m. Convergence

n αn βn

0 .910239226626837 1.00000000000000
1 5.39383052925145 3.72266068344396
2 4.85035318634382 4.81975085119498
3 4.91545178723217 4.43942238158180
4 4.96405975959264 4.20474171054654
5 4.98480915733151 4.10065191759388
6 4.99299025623952 4.05587961485571
7 4.99635149648618 4.03506402338317
8 4.99786955634723 4.02419082363368
9 4.99863659426219 4.01782940485962

Table 6: Recurrence coefficients for the measure

(2.4), c = 4, in the case of the Legendre weight func-

tion

is seen to be monotone increasing for αn and monotone decreasing for βn,
except at the very beginning.
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n αn βn

0 .910239226626837 1.00000000000000
1 1.32084322743042 .309263583593324
2 1.26054739936794 .263830285912563
3 1.25362002567957 .256207550577421
4 1.25168096856576 .253540027022905
5 1.25091993817511 .252292444551082
6 1.25055903507149 .251607291494291
7 1.25036545798308 .251190105642641
8 1.25025216974473 .250917040883073
9 1.25018139891252 .25072846766016

Table 7: Recurrence coefficients for the measure

(2.4), c = 1/4, in the case of the Legendre weight

function

Here, αn and βn both decrease monotonically.
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