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Abstract: Polynomials {πRk } orthogonal on a circular arc with respect to the complex inner product

(f, g) =
∫ π−ϕ
ϕ

f1(θ)g1(θ)w1(θ) dθ, where ϕ ∈ (0, π/2), and for f(z) the function f1(θ) is defined

by f1(θ) = f(−iR+ eiθ
√
R2 + 1), R = tanϕ, have been introduced by M. G. de Bruin [1]. In this

paper the functions of the second kind, as well as the corresponding associated polynomials, are

introduced. Some recurrence relations and identities of Christoffel-Darboux type are proved. Also,
the corresponding Stieltjes’ polynomials which are orthogonal to all lower-degree polynomials with

respect to a complex measure on ΓR = {z ∈ C : z = −iR+eiθ
√
R2 + 1, ϕ ≤ θ ≤ π−ϕ, tanϕ = R}

are investigated. A class of polynomials orthogonal on a symmetrical circular arc in the down half
plane is also introduced. Finally, in the Jacobi case w(z) = (1− z)α(1 + z)β , α, β > −1, a linear

second-order differential equation for πRn (z) is obtained.

Keywords: Complex orthogonal polynomials, recurrence relations, differential equation.

1. Introduction

Polynomials orthogonal on the semicircle Γ0 = {z ∈ C : z = eiθ, 0 ≤ θ ≤ π}
have been introduced by Gautschi and Milovanović [5], [6]. The inner product is
given by

(1.1) (f, g) =

∫
Γ

f(z)g(z)(iz)−1 dz,

where Γ is the semicircle Γ = {z ∈ C : z = eiθ, 0 ≤ θ ≤ π}. Alternatively,

(1.2) (f, g) =

∫ π

0

f(eiθ)g(eiθ) dθ.

This inner product is not Hermitian, but the corresponding (monic) orthogonal
polynomials {πk} exist uniquely and satisfy a three-term recurrence relation of the
form

πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, 2, . . . ,(1.3)

π−1(z) = 0, π0(z) = 1.

* This work was supported in part by Science Fund of Serbia, grant number 0401.
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Notice that the inner product (1.1) possesses the property (zf, g) = (f, zg).

Later, Gautschi, Landau and Milovanović [7] considered a general case of complex
polynomials orthogonal with respect to a complex weight function. Namely, let
w : (−1, 1) 7→ R+ be a weight function which can be extended to a function w(z)
holomorphic in the half disc D+ = {z ∈ C : |z| < 1, Im z > 0}, and

(1.4) (f, g) =

∫
Γ

f(z)g(z)w(z)(iz)−1 dz =

∫ π

0

f(eiθ)g(eiθ)w(eiθ) dθ.

Under the assumption

(1.5) Re (1, 1) = Re

∫ π

0

w(eiθ) dθ 6= 0,

the monic, complex polynomials {πk} orthogonal with respect to the inner product
(1.4) exist and satisfy a recurrence relation like (1.3).

Several interesting properties of such polynomials and some applications in nu-
merical integration were given in [6] and [9]. Also, differentiation formulas for
higher derivatives of analytic functions, using quadratures on the semicircle, were
considered in [2].

Recently M. G. de Bruin [1] has given a generalization of such orthogonal poly-
nomials. Namely, he considered the polynomials {πRk } orthogonal on a circular arc
with respect to the complex inner product

(1.6) (f, g) =

∫ π−ϕ

ϕ

f1(θ)g1(θ)w1(θ) dθ,

where ϕ ∈ (0, π/2), and for f(z) the function f1(θ) is defined by

f1(θ) = f
(
−iR+ eiθ

√
R2 + 1

)
, R = tanϕ.

Alternatively, the inner product (1.6) can be expressed in the form

(1.7) (f, g) =

∫
ΓR

f(z)g(z)w(z)(iz −R)−1 dz,

where ΓR = {z ∈ C : z = −iR+ eiθ
√
R2 + 1, ϕ ≤ θ ≤ π − ϕ, tanϕ = R}.

For R = 0 the arc ΓR reduces to the semicircle Γ .

Another type of orthogonality of these polynomials, so-called Geronimus’ version
of orthogonality on a contour with respect to a complex weight, was investigated in
[10].

For polynomials {πRk } orthogonal on a circular arc with respect to the complex
inner product (1.6), in this paper, we introduce the functions of the second kind, as

2



well as the corresponding associated polynomials, and prove some recurrence rela-
tions and identities of Christoffel-Darboux type. Also, we study the corresponding
Stieltjes’ polynomials which are orthogonal on ΓR to all lower-degree polynomials
with respect to a complex measure. In Section 3 we consider a class of polynomi-
als orthogonal on a symmetrical circular arc in the down half plane. Sometimes,
these dual polynomials can be used to shorten certain proofs for polynomials {πRk }
(see Theorem 3.6). Finally, in Section 4 we obtain a linear second-order differential
equation for πRn (z), when w(z) = (1− z)α(1 + z)β , α, β > −1,

2. Functions of the second kind, Stieltjes’ polynomials
and associated polynomials

Let the inner product (·, ·) be given by (1.6), i.e., (1.7). Under suitable integra-
bility conditions on w and assuming the existence of an analytic continuation to the
moon-shaped region M+ = {z ∈ C : |z + iR| <

√
R2 + 1, Im z > 0}, where R > 0,

the orthogonal polynomials {πRk } always exist, because (see [1, Lemma 2.2])

µ0 = (1, 1) = R

∫ 1

−1

w(x)

x2 +R2
dx+ i

∫ 1

−1

xw(x)

x2 +R2
dx 6= 0.

In connection with polynomials {πRk } orthogonal with respect to (·, ·) on ΓR, we
can introduce the functions, so-called functions of the second kind ,

(2.1) %Rk (z) =

∫
ΓR

πRk (ζ)

z − ζ
· w(ζ)

iζ −R
dζ, k = 0, 1, 2, . . . .

It is easily seen that they also satisfy the same recurrence relation as the poly-
nomials πRk . Indeed, from recurrence relation (1.3) for z = ζ, multiplying by
w(ζ)/((iζ −R)(z − ζ)) and integrating, we obtain

%Rk+1(z) = (z − iαk)%Rk (z)−
∫
ΓR

πRk (ζ)
w(ζ)

iζ −R
dζ − βk%Rk−1(z).

By orthogonality, the integral on the right side in the above equality vanishes if
k ≥ 1, and equals µ0 if k = 0. If we define %R−1(z) = 1 (and β0 = µ0), we have

(2.2) %Rk+1(z) = (z − iαk)%Rk (z)− βk%Rk−1(z), k = 0, 1, 2, . . . .

Theorem 2.1. For |z| sufficiently large, we have

(2.3) %Rn (z) =
‖πRn ‖

2

zn+1

(
1 +O

(1

z

))
,

where ‖πRn ‖
2

= (πRn , π
R
n ).
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Proof. Let ζ ∈ ΓR and z ∈ C, such that |z| > 1. Since

1

z − ζ
=

1

z
· 1

1− ζ/z
=

1

z

n∑
k=0

(
ζ

z

)k
+

ζn+1

(z − ζ)zn+1
(n ∈ N),

we have

%Rn (z) =

n∑
k=0

1

zk+1

∫
ΓR

ζkπRn (ζ)
w(ζ)

iζ −R
dζ +

1

zn+1
en(z),

where

en(z) =

∫
ΓR

ζn+1πRn (ζ)

z − ζ
· w(ζ)

iζ −R
dζ.

For |z| sufficiently large, there exists a constant C > 0 such that |en(z)| < C/|z|
and en(z)→ 0, when |z| → ∞.

Because of orthogonality (ζk, πRn (ζ)) = 0, k < n, we obtain

%Rn (z) =
‖πRn ‖

2

zn+1
+

1

zn+1
en(z),

i.e., (2.3). �

Based on an idea by Stieltjes (see Monegato [11], Gautschi [4]) we can consider
an expansion of 1/%Rn (z) into descending powers of z. So, using (2.3) we have

1

%Rn (z)
=

zn+1

‖πRn ‖
2

(
1 + c1z

−1 + c2z
−2 + · · ·

)
= ERn+1(z) + d1z

−1 + d2z
−2 + · · · ,

where

ERn+1(z) =
1

‖πRn ‖
2

(
zn+1 + c1z

n + · · ·+ cn+1

)
and dk = cn+k+1/‖πRn ‖

2
, k = 1, 2, . . . .

We call ERn+1 the Stieltjes polynomial associated with polynomials {πRk } orthog-
onal with respect to (·, ·) on ΓR. By a residue calculation, this polynomial of exact
degree n+ 1, can be expressed in the form

(2.4) ERn+1(z) =
1

2πi

∮
C

dζ

(ζ − z)%Rn (ζ)
,

where C is a sufficiently large contour with z in its interior.

Multiplying (2.4) by zkπRn (z)w(z)(iz − R)−1dz, k = 0, 1, . . . , n, and integrating
over ΓR, we obtain

In,k =

∫
ΓR

ERn+1(z)zkπRn (z)
w(z)

iz −R
dz =

1

2πi

∮
C

dζ

%Rn (ζ)

∫
ΓR

πRn (z)
zk

ζ − z
· w(z)

iz −R
dz,
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i.e,

In,k =
1

2πi

∮
C

dζ

%Rn (ζ)

∫
ΓR

πRn (z)
ζk − (ζk − zk)

ζ − z
· w(z)

iz −R
dz.

Because of orthogonality∫
ΓR

πRn (z)
ζk − zk

ζ − z
· w(z)

iz −R
dz = 0, k = 0, 1, . . . , n,

we have

In,k =
1

2πi

∮
C

ζkdζ

%Rn (ζ)

∫
ΓR

πRn (z)

ζ − z
· w(z)

iz −R
dz =

1

2πi

∮
C

ζk dζ = 0,

for k = 0, 1, . . . , n.

Thus, we have proved:

Theorem 2.2. Stieltjes’ polynomial ERn+1 is orthogonal to all lower-degree polyno-

mials with respect to the complex measure dλ(z) = πRn (z)w(z)(iz −R)−1dz, i.e.,∫
ΓR

ERn+1(z)p(z)πRn (z)
w(z)

iz −R
dz = 0, ∀p ∈ Pn,

where Pn is the set of all polynomials of degree at most n.

The quantities ρRn (z)/πRn (z), |z| > 1, are important in getting error bounds for
Gaussian quadrature formulas over ΓR, applied to analytic functions (cf. Gautschi
and Varga [8]). Stieltjes’ polynomials appear in quadrature formulas of Gauss-
Kronrod’s type (cf. Gautschi [4]).

We can also introduce the polynomials

σRk (z) =

∫
ΓR

πRk (z)− πRk (ζ)

z − ζ
· w(ζ)

iζ −R
dζ, k = 0, 1, 2, . . . ,

which are called the polynomials associated with the orthogonal polynomials πRk . It
is easy to see that

%Rk (z) = πRk (z)%R0 (z)− σRk (z).

The polynomials {σRk } satisfy the same three-term recurrence relation

σRk+1(z) = (z − iαk)σRk (z)− βkσRk−1(z), k = 0, 1, 2, . . . ,(2.5)

σR0 (z) = 0, σR1 (z) = µ0.

If we define σR−1(z) = −1 and β0 = µ0, we can note that (2.5) also holds for
k = 0 (see Gautschi [3]).

Using the recurrence relations for {πRk }, {%Rk }, and {σRk } ((1.3), (2.2), and (2.5),
respectively), where

1◦ πR−1(z) = 0, πR0 (z) = 1 ;

2◦ %R−1(z) = 1, %R0 (z) = F (z) (defined by (2.1));

3◦ σR−1(z) = −1, σR0 (z) = 0 ,

we can prove the following identity of Christoffel-Darboux type:
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Theorem 2.3. Let {fk} and {gk} satisfy the three-term recurrence relation of the
form (2.5), and

Sk(z, w) = fk+1(z)gk(w)− gk+1(w)fk(z).

Then the identity

(2.6) (z − w)
n∑
k=0

fk(z)gk(w)

β0β1 · · ·βk
=

Sn(z, w)

β0β1 · · ·βn
− S−1(z, w)

holds, where βk (k = 0, 1, 2, . . . ) are the recursion coefficients in (2.5). Under
conditions 1◦– 3◦, we have the following special cases

(a) fk := πRk , gk := πRk , S−1 = 0 ;

(b) fk := πRk , gk := %Rk , S−1 = 1 ;

(c) fk := πRk , gk := σRk , S−1 = −1 ;

(d) fk := %Rk , gk := %Rk , S−1 = F (z)− F (w) ;

(e) fk := %Rk , gk := σRk , S−1 = −F (z) ;

(f) fk := σRk , gk := σRk , S−1 = 0 .

Proof. Multiplying

fk+1(z) = (z − iαk)fk(z)− βkfk−1(z), k = 0, 1, 2, . . . ,

by gk(w), and

gk+1(w) = (w − iαk)gk(w)− βkgk−1(w), k = 0, 1, 2, . . . ,

by fk(z), and substracting we obtain

Sk(z, w)− βkSk−1(z, w) = (z − w)fk(z)gk(w).

Dividing this equality by β0β1 · · ·βk and summing over k = 0, 1, . . . , n, we find

n∑
k=0

(
Sk(z, w)

β0β1 . . . βk
− Sk−1(z, w)

β0β1 · · ·βk−1

)
= (z − w)

n∑
k=0

fk(z)gk(w)

β0β1 · · ·βk
,

i.e., (2.6). The first term in the sum on the left-hand side of the above equality (for
k = 0) is equal to S0(z, w)/β0 − S−1(z, w).

Since S−1(z, w) = f0(z)g−1(w) − g0(w)f−1(z), using the conditions 1◦– 3◦, we
prove the cases (a)–(f). �
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3. Dual orthogonal polynomials

Let {πn} be the set of polynomials orthogonal on the circular arc ΓR, with respect
to the inner product (1.6), i.e., (1.7) (The upper index R is omitted). In this section
we introduce the polynomials {π∗n} orthogonal on the symmetric down circular arc
Γ ∗R with respect to the inner product defined by

(3.1) (f, g)∗ =

∫
Γ∗
R

f(z)g(z)w(z)(iz +R)−1 dz,

where Γ ∗R = {z ∈ C : z = iR + e−iθ
√
R2 + 1, ϕ ≤ θ ≤ π − ϕ, tanϕ = R}. Such

polynomials we will call dual orthogonal polynomials with respect to polynomials
{πn}.

Also, we use the inner product

(3.2) [f, g] =

∫ 1

−1
f(x)g(x)w(x) dx.

Let M be a lentil-shaped region with the boundary ∂M = ΓR ∪ Γ ∗R, i.e.,

M =
{
z ∈ C : |z ± iR| <

√
R2 + 1

}
,

where R > 0.

We assume that w is a weight function, positive on (−1, 1), holomorphic in M ,
and such that the integrals in (1.7), (3.1), and (3.2) exist for smooth functions f
and g (possibly) as improper integrals. Under the same additional conditions on w
and f , like in [7] and [1], we have

(3.3) 0 =

∫
Γ

f(z)w(z) dz +

∫ 1

−1
f(x)w(x) dx,

where Γ = ΓR or Γ ∗R. Then both systems of the orthogonal polynomials {πn} and
{π∗n} exist uniquely.

The inner products in (1.7) and (3.1) define the moment functionals

(3.4) Lzk = µk, µk = (zk, 1) =

∫
ΓR

zkw(z)(iz −R)−1 dz

and

(3.5) L∗zk = µ∗k, µ∗k = (zk, 1)∗ =

∫
Γ∗
R

zkw(z)(iz +R)−1 dz,

respectively.
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Using the moment determinants, we can express the (monic) polynomials πn and
π∗n as

πn(z) =
1

∆n

∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ1 µ2 µn+1

...
µn−1 µn µ2n−1

1 z zn

∣∣∣∣∣∣∣∣∣∣
, π∗n(z) =

1

∆∗n

∣∣∣∣∣∣∣∣∣∣∣

µ∗0 µ∗1 · · · µ∗n
µ∗1 µ∗2 µ∗n+1

...
µ∗n−1 µ∗n µ∗2n−1

1 z zn

∣∣∣∣∣∣∣∣∣∣∣
,

respectively, where

∆n =

∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn−1
µ1 µ2 µn
...

µn−1 µn µ2n−2

∣∣∣∣∣∣∣∣ , ∆∗n =

∣∣∣∣∣∣∣∣
µ∗0 µ∗1 · · · µ∗n−1
µ∗1 µ∗2 µ∗n
...

µ∗n−1 µ∗n µ∗2n−2

∣∣∣∣∣∣∣∣ .

Lemma 3.1. For the moments µk and µ∗k the following equality

(3.6) µ∗k = −µ̄k , k ≥ 0,

holds.

Proof. Inserting f(z) = zk(iz ± R)−1 into (3.3), the integrals (3.4) and (3.5)
reduce to integrals on [−1, 1], implying (3.6). �

Theorem 3.2. We have

(3.7) π∗n(z) = πn(z).

Proof. Conjugating πn(z) and using (3.6), we get

πn(z) =
1

∆n

∣∣∣∣∣∣∣∣∣∣∣

−µ∗0 −µ∗1 · · · −µ∗n
−µ∗1 −µ∗2 −µ∗n+1

...
−µ∗n−1 −µ∗n −µ∗2n−1

1 z zn

∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n

∆n

∆∗nπ
∗
n(z) .

Since ∆n = (−1)n∆∗n, we obtain (3.7). �

In the same way as in [1] we can prove a representation of the dual polynomials
in terms of the monic real polynomials {pn} orthogonal with respect to the inner
product (3.2).

8



Theorem 3.3. We have

(3.8) π∗n(z) = pn(z)− iθ∗n−1pn−1(z), n = 0, 1, 2, . . . ,

where

θ∗n−1 =
(π∗n, π

∗
n)∗

[pn−1, pn−1]
, n = 1, 2, . . . , θ∗−1 = µ∗0.

Theorem 3.4. We have

(3.9) θ∗n−1 = −θn−1,
where θn−1 is the corresponding coefficient in the polynomial πn.

Proof. Conjugating (3.7) and using (3.8) we find

πn(z) = π∗n(z) = pn(z)− iθ∗n−1pn−1(z),

i.e.,
πn(z) = pn(z) + i θ∗n−1 pn−1(z) = pn(z) + i θ∗n−1pn−1(z).

Comparing with πn(z) = pn(z)− iθn−1pn−1(z) we obtain (3.9). �

Also, we can prove:

Theorem 3.5. The dual (monic) orthogonal polynomials {π∗n} satisfy the three-
term recurence relation

π∗n+1(z) = (z − iα∗n)π∗n(z)− β∗nπ∗n−1(z), n = 0, 1, 2, . . . ,

π∗−1(z) = 0, π∗0(z) = 1,

with
α∗n = −αn and β∗n = βn,

where αn and βn are the coefficients in the corresponding recurrence relation for the
polynomials {πn}.

At the end of this section we will give a short proof of Theorem 4.1 from [1] using
dual polynomials.

Theorem 3.6. Let w(z) = w(−z). Then θn−1 > 0, for n ≥ 0.

Proof. Since (πn, πn) = θn−1[pn−1, pn−1] it is enough to prove inequality

(πn, πn) > 0.

In this symmetric case, θn−1 is real and we have θ∗n−1 = −θn−1 and

(πn, πn) = (πn, π
∗
n) =

∫
ΓR

G(z)w(z)(iz −R)−1 dz = −
∫ 1

−1
G(x)

w(x)

ix−R
dx,

where G(z) = pn(z)2 + θ2n−1pn−1(z)2. Then

(πn, πn) = R

∫ 1

−1
G(x)

w(x)

R2 + x2
dx+ i

∫ 1

−1
xG(x)

w(x)

R2 + x2
dx.

Since x 7→ G(x) is an even positive function, the second integral on the right-hand
side vanishes and (πn, πn) > 0. �
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4. Differential equation

We consider the Jacobi weight function

w(z) = wα,β(z) = (1− z)α(1 + z)β , α, β > −1,

where fractional powers are understood in terms of their principal branches.

The corresponding (monic) polynomials {πRn } orthogonal on the circular arc ΓR,
with respect to the inner product (1.6), i.e., (1.7), where w(z) = wα,β(z), can be
expressed (see [1, Thm. 2.1]) in the form

(4.1) πRn (z) = πn(z) = pn(z)− iθn−1pn−1(z),

where pk(z) = P̂α,βk (z) are the monic Jacobi polynomials and θn−1 = θα,βn−1 is given
by

θn−1 =
1

i

%n(−iR)

%n−1(−iR)
, n ≥ 1,

where

%n(z) =

∫ 1

−1

pn(x)

z − x
w(x) dx, n ≥ 0.

The monic polynomials pk(z) satisfy Jacobi’s differential equation

(4.2) A(z)u′′ +B(z)u′ + λku = 0,

and differentiation formula

(4.3) A(z)p′k(z) = [(k + α+ β + 1)z + vk]pk(z)− (2k + α+ β + 1)pk+1(z),

where

A(z) = 1− z2, B(z) = β − α− (α+ β + 2)z, λk = k(k + α+ β + 1),

and

vk = (α− β)
k + α+ β + 1

2k + α+ β + 2
.

Now, we consider the following problem: Find a function z 7→ Ω(z) such that

(4.4) G(z) ≡ (z2 − 1)[Ω(z)u(z)]′ = Ω(z)v(z),

for u(z) = pn−1(z) and v(z) = γnπn(z), where γn is a constant.

We will suppose that Ω(z) has the following form

Ω(z) = (z − 1)rn−itn(z + 1)sn+itn ,
10



where rn, sn, and tn are some real constants.

Putting this expression for Ω(z) into (4.4) and using (4.3), for k = n − 1, we
obtain

G(z) = (z2 − 1)
{

Ω′(z)u(z) + Ω(z)u′(z)
}

= Ω(z)(z2 − 1)p′n−1(z) +
{

(rn − itn)(z + 1) + (sn + itn)(z − 1)
}

Ω(z)pn−1(z),

i.e.,

G(z) = Ω(z)
{

[rn + sn − (n+ α+ β)]zpn−1(z)

+ [(rn − sn − 2itn)− vn−1]pn−1(z) + (2n+ α+ β − 1)pn(z)
}
.

In order to make the coefficient of zpn−1(z) vanish on the right side in the last
equality, we put

(4.5) rn + sn = n+ α+ β.

So we find

(4.6) G(z) = Ω(z)
{

(rn−sn−vn−1)pn−1(z)+(2n+α+β−1)pn(z)−2itnpn−1(z)
}
.

Because of further reduction of G(z) to the form Ω(z)v(z), we take

(4.7) rn − sn = vn−1.

Therefore, from (4.5) and (4.7) follows

(4.8) rn =
1

2
(n+ α+ β + vn−1) and sn =

1

2
(n+ α+ β − vn−1) .

Finally, if we take

(4.9) tn =
1

2
(2n+ α+ β − 1)θn−1,

(4.6) reduces to the form (4.4), where γn = 2n+ α+ β − 1, i.e.,

v(z) = (2n+ α+ β − 1)πn(z).

Now, from (4.4) follows

u =
1

Ω

∫
Ω

z2 − 1
v dz,

u′ =

(
1

Ω

)′ ∫
Ω

z2 − 1
v dz +

1

z2 − 1
v,

u′′ =

(
1

Ω

)′′ ∫
Ω

z2 − 1
v dz +

(
1

Ω

)′
Ω

z2 − 1
v +

(
1

z2 − 1

)′
v +

1

z2 − 1
v′.
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Substituting u, u′, u′′ into Jacobi’s differential equation (4.2), for k = n− 1, we
obtain

(4.10) v′ + a(z)v + b(z)

∫
Ω

z2 − 1
v dz = 0,

where

(4.11)

a(z) =
1

A(z)
(g(z) +B(z)−A′(z)),

b(z) = − 1

A(z)Ω(z)

(
(λn−1 + g′(z))A(z) + g(z)(g(z) +B(z)−A′(z))

)
,

and

g(z) = (n+ α+ β)z + cn−1, cn−1 = vn−1 − i(2n+ α+ β − 1)θn−1.

The parameters rn, sn, and tn in the function z 7→ Ω(z) are given by (4.8) and
(4.9).

Theorem 4.1. The polynomial πRn (z) in (4.1) satisfies the differential equation

(4.12) P (z)y′′ +Q(z)y′ +R(z)y = 0,

with polynomial coefficients

(4.13)

P (z) = −A(z)2Ω(z)b(z),

Q(z) = A(z)2Ω(z)
(
b′(z)− a(z)b(z)

)
,

R(z) = A(z)
[
A(z)Ω(z)

(
a(z)b′(z)− a′(z)b(z)

)
+ Ω(z)2b(z)2

]
,

where a(z) and b(z) are given by (4.11).

Proof. Differentiating (4.10) and eliminating the integral term, we get (4.12) and
(4.13) after some computation. �

Remark. All coefficients in (4.13) have the factor A(z)Ω(z), but it is because of this
factor that the coefficients turn out to be polynomials.

Using (4.13) and (4.11) we find P (z) = (1 − z2)C(z), where z 7→ C(z) is the
following polynomial of the first degree

C(z) = n(n+ α+ β) + (β − α+ cn−1)cn−1 − i(2n+ α+ β)(2n+ α+ β − 1)θn−1z,

where

cn−1 = (α− β)
n+ α+ β

2n+ α+ β
− i(2n+ α+ β − 1)θn−1.
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After some calculation, C(z) can be expressed in the form

(4.14) C(z) = γ0 + iγ1θn−1 + γ2θ
2
n−1 − ηnz,

where

γ0 =
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β)2
, γ1 = (β2 − α2)

2n+ α+ β − 1

2n+ α+ β
,

γ2 = −(2n+ α+ β − 1)2, ηn = (2n+ α+ β)(2n+ α+ β − 1)iθn−1.

We remark that the differential equation (4.12) has regular singular points at 1,
−1,∞, and an additional regular singular point ζn which depends on n and is given
by

ζn =
γ1 − i(γ2θn−1 + γ0/θn−1)

(2n+ α+ β)(2n+ α+ β − 1)
.

The polynomials P , Q, and R in (4.13) can be expressed by the the coefficients
A(z), B(z), and λk in differential equation (4.2). Namely,

(4.15)

P (z) = A(z)C(z),

Q(z) = B(z)C(z) +A(z)ηn,

R(z) = λnC(z) +A(z)a(z)ηn,

where

a(z) =
1

A(z)

(
nz +

n(β − α)

2n+ α+ β
− i(2n+ α+ β − 1)θn−1

)
and C(z) is given by (4.14).

We can see that Q and R are the complex polynomials of degree two and one,
respectively.

When α = β = λ − 1/2 (λ > −1/2) we obtain the Gegenbauer case, which is
considered for R = 0 in [7].

It is interesting to consider a case when R → +∞, i.e., when ΓR reduces to the
interval [−1, 1]. Since

lim
R→+∞

θn−1 = 0,

we have

lim
R→+∞

ηn = 0, lim
R→+∞

C(z) = γ0, lim
R→+∞

a(z) =
1

A(z)

(
nz +

n(β − α)

2n+ α+ β

)
.

Thus, the limit case of (4.15) gives

lim
R→+∞

P (z) = γ0A(z), lim
R→+∞

Q(z) = γ0B(z), lim
R→+∞

R(z) = γ0λn.

In that case, dividing (4.12) by γ0 we obtain Jacobi’s differential equation, which
is, in fact, the result expected.
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semicircle, II, Constr. Approx. 3 (1987), 389–404.

[8] W. Gautschi and R.S. Varga, Error bounds for Gaussian quadrature of analytic func-
tions, SIAM J. Numer. Anal. 20 (1983), 1170–1186.
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