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Abstract

In this survey paper we give a short account on characterizations for very classical
orthogonal polynomials via extremal problems and the corresponding inequalities.
Besides the basic properties of the classical orthogonal polynomials, we consider
polynomial inequalities of Landau and Kolmogoroff type, some weighted polynomial
inequalities in L?>-norm of Markov—Bernstein type, as well as the corresponding con-
nections with the classical orthogonal polynomials. © 2002 Elsevier Science Inc. All
rights reserved.
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1. Introduction

Let 2, be the set of all algebraic polynomials of degree at most n and let 2,
be its subset containing only monic polynomials of degree n, i.e.,

2, ={' +4(2)l4(z) € 2,1}
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A general result on orthogonal polynomials with respect to a given inner
product (-, -) defined by

(f.g) /f duz) (f.g € L2(dp)),

where du is a finite positive Borel measure in the complex plane C, with an
infinite set as its support, can be expressed as an extremal problem.
Let {p,} be a system of orthonormal polynomials, i.e.,

Pa(z) = v,2" + lower degree terms, 1y, > 0,
(prnpm):énma n7m>o7

and 7,(z) = p.(2)/y, = 2" + lower degree terms (n € Ny) be the corresponding
monic orthogonal polynomials.

Theorem 1.1. The polynomial n,(z) = p,(z)/y, =2"+ -+ is the unique monic
polynomial of degree n of the minimal Lz(d,u)-norm, ie.,

min [ e du) = [ [7(2) du(z) =
PEPn Vn

This extremal property is completely equivalent to orthogonality, so that it
characterizes orthogonal polynomials. Many questions regarding orthogonal
polynomials can be answered by using only this extremal property (cf.
[36,40,47]). Notice also that the previous theorem gives the polynomial of the
best approximation to the monomial z" in the class 2, ;. It is evidently ex-
pressed in the form z" — 7, (z).

A survey on characterization theorems for orthogonal polynomials on the
real line was given by Al-Salam [3]. The most important orthogonal poly-
nomials on the real line are the so-called very classical orthogonal polynomials
(cf. [47]). An extension of the very classical orthogonal polynomials using
difference operators and ¢-difference operators is known nowadays as the
classical orthogonal polynomials (see [5-7]). Such a much larger class of or-
thogonal polynomials can be arranged in a table, which is known as the Askey
table and its g-extension (cf. [24]).

In this survey paper we give a short account on characterizations for very
classical orthogonal polynomials via extremal problems and the corresponding
inequalities. In the sequel we will omit the term ‘“very” and call such poly-
nomials the classical orthogonal polynomials. The paper is organized as fol-
lows. In Section 2 we give the basic properties of the classical orthogonal
polynomials. Section 3 is devoted to polynomial inequalities of Landau and
Kolmogoroff type. Finally, some weighted polynomial inequalities in L?-norm
of Markov-Bernstein type and connections with the classical orthogonal
polynomials are studied in Section 4.
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2. The basic properties of the classical orthogonal polynomials

A very important class of orthogonal polynomials on an interval of or-
thogonality (a,b) € R, with respect to the inner product

(f8), = [ wiorgar, @.1)

is constituted by the classical orthogonal polynomials. They are distinguished
by several particular properties.

Since every interval (a,b) can be transformed by a linear transformation to
one of the following intervals: (—1, 1), (0, 4+00), (—o0, +00), it is enough to re-
strict our consideration (without loss of generality) only to these three intervals.

Definition 2.1. The orthogonal polynomials {Q,(¢)} on (a,b) with respect to
the inner product (2.1) are called the classical orthogonal polynomials if their
weight functions ¢+— w(t) satisfy the differential equation

d
£ A@w(0) = Bow(),
where
1 -2 if (a,b) = (—1,1),
Ay =<t if (a,0) = (0, +00),

1 if (a,b) = (—o0, +00),

and B(¢) is a polynomial of the first degree. For such classical weights we will
write w € CW.

We note that if w € CW, then w € C'(a, b), and also the following property:

Theorem 2.2. If w € CW, then for each m = 0,1, ..., we have

lini "A(t)w(t) =0 and lirbn "A()w(t) = 0.
t—a t—b—

Based on the above definition, the classical orthogonal polynomials {Q,(#)}
on (a,b) can be specificated as the Jacobi polynomials PP (t)(a, f > —1) on
(—=1,1), the generalized Laguerre polynomials L(t)(s > —1) on (0,+00), and
finally as the Hermite polynomials H,(t) on (—oo, +00). Their weight functions
t—w(t) and the corresponding polynomials 4(¢) and B(¢) are given in Table 1.

Special cases of the Jacobi polynomials are the Legendre polynomials P,(t)
for a= =0, the Chebyshev polynomials of the first kind T,(t) for
o= pf =—(1/2) and the second kind S,(t) for . = f = 1/2, etc.

There are many characterizations of the classical orthogonal polynomials. In
sequel we give the basic common properties of these polynomials (cf. [32,33]).
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Table 1
The classification of the classical orthogonal polynomials

a,b) w(t) A(r) B(t) I

(

(-1,1) (1=0"1+0) 1-7 B—o—(a+p+2) n(n+o+p+1)
(0, 400) re! t s+1—t n

(—00, +00) e’ 1 -2 2n

Theorem 2.3. The mth derivatives {Q\™(¢)} of the classical orthogonal poly-
nomials {Q,(t)} form also a sequence of the classical orthogonal polynomials on
(a,b) with respect to the weight function t+—w,,(t) = A(t)"w(t). The differential
equation for this weight is (A(t)w, (1)) = B, (t)w,(¢), where B,,(t) = mA' (t)+B(t).

Theorem 2.4. The classical orthogonal polynomial Q,(¢) is a particular solution
of the second-order linear differential equation of hyphergeometric type
Lly] = A(0)y" + B(t)y' + 4y = 0, (2.2)

where

pR—— [;(n — 1)4"(0) +B’(O)] .

Eq. (2.2) can be written in the Sturm-Liouville form
d dy ,
& (A(t)w(t) a) + Aw(t)y =0. (2.3)

The coefficients 4, are also displayed in Table 1.
Similarly, the mth derivative of Q,(¢) satisfies the differential equation

5 (1090 ) + Aty =0,
where
o = —(n —m) {% (n+m—1)4"(0) + B'(0)|. (2.4)

We note that 4,9 = 4,.

The characterization of the classical orthogonal polynomials by differential
equation (2.2), i.e., (2.3), was proved by Lesky [28], and conjectured by Aczél
[1] (see also Bochner [11]). Such a differential equation appears in many
mathematical models in atomic physics, electrodynamics and acoustics. As an
example we mention the well-known Schrodinger equation.

The classical orthogonal polynomials possess a Rodrigues’ type formula (cf.
[8,43-45)):
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Cn dn n
0,(1) = 1 g A" w(0),

where C, are constants different from zero. Its integral form is

0,(1) _ G ﬁMdZ,

w(t) 2mi (z—t)""!

where I' is a closed contour such that ¢ € intI".
The constants C; in the previous formulas can be chosen in different way
(for example, Q,(¢) to be monic, orthonormal, etc.). A historical reason leads to

(;’1”)! for P*P)(1),

C=4q1 for L (1),
(—=1)" for H,(¢).

In addition, the Gegenbauer polynomials C’(¢) and the Chebyshev poly-
nomials 7,(¢) and S,(¢) need

Cll) = G ) (=2 1/2),

T(1) = "o Pl ),

(1/2),""
(m+ D! 1010

5,(1) = U Dl parai gy

=G, Y
where (s), is the standard notation for Pochhammer’s symbol
r
($)=s(s+1)---(s+k—-1)= (Ii?_)k) (I is the gamma function).
S

3. Landau and Kolmogoroff type polynomial inequalities

Consider now the inner product (2.1) with the weight w(z) = exp(—#*) on
(=00, +00) and put

+00
P =00 = | e roso G
Similarly to the well-known inequalities of Landau type [27] and Kolmo-
goroff type [25] for continuously differentiable functions, as well as their gen-
eralizations (see, for example, [16,17,22,25,29,39,41]), it is possible to consider
such kind of inequalities for algebraic polynomials of fixed degree.
For sufficiently smooth functions on R, Kolmogoroff [25] established an
inequality in the uniform norm
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n)nk/n 1—k/n
1B < CarlF PN IANSH (0 < k < ),

with the best possible constant C, ;. Similar inequalities in integral norms have
been also considered (cf. [34, Chapter I]). For example, Kupcov [35] considered
the same inequality in Z?>-norm on the positive half-line and proved that it is
equivalent to

1

2
IR <-
Vi de

where

M2 _L n—k k/n+ k 1—k/n
nk — ,))n’k n n— k .

Similar inequalities in the norm (3.1)

(1 +1715)

IPOIP < AP+ BIPI (0 < k< m<n), (32)

for polynomials from #,, were studied by Varma [48] for m = 2,3,4. For ex-
ample, Varma [48] proved the following inequality:

2n?
2n —1

P[P < 5 171> + 1217, (3.3)

(2n—1)
for all polynomials P(¢) € 2,, with equality case if and only if P(¢) = cH,(¢),
where H,(¢) is the Hermite polynomial of degree n and c¢ is an arbitrary real
constant.

Bojanov and Varma [13] proved the following result.

Theorem 3.1. Let 0 < k < m < n be integers. For every P(t) € 2, and any A such
that

A< k !
Sm2nk (n—k)---(n—m+1)’

the inequality

o <t {2 (3 ) - az( 2 mber (34

Moreover, by choosing P(t) = H,(t) we obtain equality in (3.4).
The proof was based on the following simple fact.

Lemma 3.2. Suppose that inequality (3.2) holds for P(t) = Hi(¢), k =0,1,...,n.
Then it holds for every P(t) € 2,.

Recently, Alves and Dimitrov [4] proved a more general result.
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Theorem 3.3. Let 0 < k < m < n be integers and A and B positive constants.

W 17

_ |
éngm(n m)!  k ’
B n! m—k

then

)12 2
Al[P” + B||P||

1P9” < = =
A2k (n— k) [(n — m)!]” + B27%(n — k)!(n!)

157

for every P(t) € 2,. Moreover, equality is attained if and only if P(t) is a

constant multiple of H,(t).

(i) If
2k A,k
m+Dm—k B ~" mi(m—k)’
then
1PW | < AP | + B||P|?

= A2k (m — k)l + B2 (m — k) (m!) "

(3.5)

for every P(t) € 2,. Moreover, equality is attained if and only if P(t) is a

constant multiple of H,(t).

(i) 1f
A k
Toopm_ %
B~ ml(m—k)’
then
A|P™|* + B||P|?

B2*(m —k — 1)![(m — 1)1

6)

for every P(t) € 2,. Moreover, equality is attained if and only if P(t) is a

constant multiple of H,_(t).

(iv) If 4/B = 27"k /((m — k)m!), then the inequalities (3.5) and (3.6) coincide and
they hold for every P(t) € P,. In this case equality is attained if and only if

P(¢) is any linear combination of H,_(t) and H,(t).

Notice that Theorem 3.1 is an immediate consequence of the statement (i)

in

the previous theorem. In the case £k =1 and m = 2, Alves and Dimitrov [4]
provided a complete characterization of the positive constants 4 and B, for
which the corresponding Landau type polynomial inequalities hold. For ex-

ample, if 0 < 4/B < (4n(n— 1)), then
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a2 AP+ B|P|?
17" < -

24(n— 1)+ B(2n)
for every P(t) € 2,. Setting B = 4n’A4 this inequality reduces to Varma’s in-
equality (3.3).

In an unpublished manuscript from 1987, we ([31]) considered a general
extremal problem:

For fixed k,m and 1 (1 <k <m<n, 0<A<1) determine the best constant
C, = C,(k,m, ) such that

IPOIP < Gy (2P + (1= 2)1P ) (37)

for each P(1) € 2,, where ||f||> = (1, 1), (f,g) = Jo f(0)g()dpu(t), and du(r) is
a nonnegative measure on the real line, with compact or infinite support for

which all moments , = [, #*du(r), k =0,1,..., exist and are finite, and p, > 0.
At first, we can put o = AC, and f = (1 — 1)C,, so that inequality (3.7)
becomes

1PY* = BIIP™ < o P (3-8)
Let {p:(¢)} be a system of orthonormal polynomials with respect to the mea-

sure du(z). Then for an arbitrary polynomial P(¢) € #,, we have expressions

n

P(t)=> cp(t) and PY (1) :Zn:c,p;“(t).

=0 =k
Therefore

n
2
PP = "¢
i=0

and

n

2 m) 2 k - m
F =PRI — BIP P = el — B cicib)”,

ij=k ij=m
where

b = [ o wn 0due) (s> o0)

Let O = [q,-_,-]k <ij<n be the corresponding symmetric matrix of the quadratic

form F, i.e.,
F=(0c¢)=c"0c, ¢=[ce,chst - 0"
Then we have
F c¢'Oc
<t
|P|~  ce

< )”ma)u
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where Amax = Amax(f) 1s the maximal eigenvalue of the matrix Q. Regarding
(3.8) we have now o = Ana(f), i.€.,

)vcn = imax((l - ;“)Cn)v (39)

from which we conclude that the solution of Eq. (3.9) gives the best constant C,.
Two special cases 4 =1 and A = 0 are well known.
For 4 =1 the problem (3.7) reduces to the well-known Markov inequality in
L?>-norm

IPOIP<GIIPI* (P(1) € 2,)
(see [33, Chapter 6]).
The case 1 =0, i.e.,
IPOIP<ClIP™ P (P(2) € 2,),

can be reduced to the L?-inequalities of Turdn type (cf. [33, Section 6.2.6]).
In the simplest case with the Hermite measure du(z) = e d¢ on (—o0, +00),
the matrix Q is diagonal

: k k m m
0 = diag (bl - by 1, b, = BB, B = BB,

where b = 2°s1(%).
Let ¢;(B) = 2°k!(}) — p2"m!(!), m <i<n. Then

T () = max {2kk!<’"n‘1 1), max @i(ﬂ)}. (3.10)

m<i<n

In the case k = 1, m = 2, (3.10) reduces to

Jomas () = max {2’%! <’”n‘1 1), max (2i — 4i(i — 1)/3)}.

2<i<n
We see that for = (1 — )C, <1(2n—1)"",
Amax(B) = 2n[1 = 2(n — 1),
and then

2n 4n?
n = Sﬂgl .
¢ A+4n(n—1)(1-2) <l—i-4n2 )

For example, if 2 =4n?/(1 + 4n*) we get Varma’s inequality (3.3). For 1 =1
we have the classical Schmidt’s result [37].

The following characterization of the classical orthogonal polynomials was
given by Agarwal and Milovanovi¢ [2].

Theorem 3.4. For all P(t) € P, the inequality
(22, + B'(0))||[VAP'|)> < ||[AP"|)> + 22||P||° (3.11)
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holds, with equality if only if P(t) = cQ,(t), where Q,(t) is the classical orthog-
onal polynomial of degree n orthogonal to all polynomials of degree <n — 1 with
respect to the weight function t—w(t) on (a,b), and c is an arbitrary real con-
stant. The 4,,A(t) and B(t) are given in Table 1.

In order to prove (3.11) we use the differential equation (2.2). So, we have
ILIPYI® = |4P"|* + 1BP'|* + Z3||P||* + 2(AP", BP') + 24,(4P", P)
+27,(BP, P).

A simple application of integration by parts gives
2(4P", BP') = —B(0)|VAP — |BP'|]

and
|VAP'||> = —(4P", P) — (BP,P).

Then we find
ILIPYI® = |4P"|* = B'(O)[VAP'|* + A [IPI* — 22, | VAP'|I”.

Since ||L[P,]|| = 0, we obtain (3.11).

It is easy to see that the equality case is given by P,(¢) = ¢Q,(¢). Namely, the
polynomial solution of Eq. (2.2) is only ¢Q,(¢), where ¢ is a constant.

We mention now some special cases.

First, for w(f) = e on (—oo, +00), the inequality (3.11) reduces to Varma’s
inequality (3.3).

In the generalized Laguerre case, the inequality (3.11) becomes

2P,

1
2n —1
where w(t) = e’ (s > —1) on (0, +00).

In the Jacobi case we get the inequality

(2n— D)o+ p) +2(n* +n— 1) |V1 = 2P| <n*(n+ o+ p+ 1)°||P|
+ (1= 2P|,

2
PP 1P|
VPP < P +

where w(r) = (1 — £)"(1 4+ ¢)(a, > —1) on (=1, 1).
In the simplest case, when oo = § = 0 (Legendre case), we obtain

2(n41)° 1
- ,zgn(nipz I
| T L e sy

In Chebyshev case (o = ff = —1/2), we get

4 1
l_tz/z< n Pz l—tzP”z
IVT=2P P < 55— 1P + 55— 10 = )P,

11— )P
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where w(t) = 1/v1 —# on (—1,1). Similarly, for « = f = 1/2 we have

2 2
+2)
/1 2p 2< n (I’l P 2

where w(t) = v1 —# on (—1,1).

_ 2\p2
s a3 1 =P,

4. Weighted polynomial inequalities in L?-norm and classical orthogonal
polynomials

Guessab and Milovanovié [20] considered a weighted L*-analogue of the
Bernstein’s inequality [9,10], which can be stated in the following form:

V1= 2P (1) <nllP]l- (4.1)

Let w be the weight of the classical orthogonal polynomials (w € CW) and A(¢)
be given as in Table 1. Using the norm |f||>, = (f,f), where the inner product
(f,g) is defined by (2.1), Guessab and Milovanovi¢ [20] solved the following
problem connected with the Bernstein’s inequality (4.1):

Determine the best constant C,,,(w) (1 <m <n) such that the inequality
14" 2P, < Con(W)IIP], (4.2)
holds for all P(¢) € 2,.

Theorem 4.1. For all P(t) € P, the inequality (4.2) holds, with the best constant

Cn,m (W) =V /’Ln,())”n,l e /ln,m—h

where Jy , is given by (2.4). The equality is attained in (4.2) if and only if P(t) is a
constant multiple of the classical polynomial Q,(t) orthogonal with respect to the
weight function w € CW.

Suppose that P(7) € 2, and take the corresponding expansion in orthogonal
polynomials {Q(¢)}, P(t) = >.'_, a,0,(¢). The main rule in proving this the-
orem plays the linear functional

- % (A(t)w(l) dl;—@) + Aw(1)P(1),

where 4, is defined as in Table 1. Since L,[Q,] = 0, we get

n

Ln[P] = Z()“n - )Lv)avw(t)QV(t)'

v=0

L,[P]

Using the inner product (2.1), we obtain

n

(0 LIPLP) = 3" (4 — )OI (4.3)

v=0
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On integration by parts, we find that
(WL, [P}, P) = —|IVAP'[[, + 2Pl

Since 4, < 4, for v<n, from the last equality and (4.3) we conclude that the
inequality

VAP, < V7P,
holds. Thus, Theorem 4.1 is true for m = 1. Equality case follows from the fact
that (W 'L,[P],P) = 3" (4w — 2)@2[| Q|5 = 0 if and only if a, =0 for
v=0,1,...,n—1 and a, is an arbitrary real constant. Therefore, P(¢) =

a, O, (2).
Using the corresponding differential equation for kth derivative of Q, (), we
get the following inequality:

14" 2PON <\ Zpga [ATD2PEVY L (P(e) € 2,)
with equality if and only if P(¢) = a,0,(¢).
Finally, iterating this inequality for £ = 1,...,m, we finish the proof.
In some special cases we have (see [20]):
(1) Let w(t) = (1 — )" (1 + 1)’ (¢, > —1) on (—1,1) (Jacobi case). Then

'F(n—l—oc+ﬂ+m+ )

1—2)2pm) < |- . 44
with equality if and only if P(t) = cP*P (¢).

Daugavet and Rafal’son [12] and Konjagin [26] considered the extremal
problems of the form

1Py < Aun (s WP, (P(2) € 2,),

where

(1o -eyra)”, osr< o,

ess sup|f(t)|(1 — )", r=+00.
—-1<t<

1A =

The case when p=r =1, u=v =0, and m = 1, was considered by Hille
et al. [23]. The exact constant 4, ,(r, u;p,v) is known in a few cases, for
example, 4, (+00,0;1,0) = 2n and

. [ nll(n+4p+m+1)

The last case, in fact, is the previous result (4.4) with the Gegenbauer
weight (o = = 2p).
(2) Let w(¢) = e (s > —1) on (0,+00) (generalized Laguerre case). Then

2P|, < v/nt/ (n = m)l||Pl,,,

with equality if and only if P(¢) = cL:(¢).
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(3) The Hermite case with the weight w(r) = e on (—oc, 4+00) is the simplest.
Then the best constant is C,,(w) = 2"/2\/n!/(n — m)!.
This result can be found in Ph.D. Thesis of Shampine [38] (see also [14,30]).
The case m = 1 was investigated by Schmidt [37] and Turan [46].
Recently, Guessab [18] obtained sharp Markov—Bernstein inequalities in L?
norms that are weighted with classical weights.

Theorem 4.2. Let P(t) € 2, and w € CW. Then

w2 OPYII, + VA COPIL, < BlIPI (4.5)
where A(t) and 4, are given in Table 1, and V(t) = \/A()w(¢),

| > 1
) =+ b 5 |, Jacobi case,
4\ (1-0" (149
CH)=91/s2-1 .
1 5 +1], generalized Laguerre case,
12, Hermite case,

and

(a+ 1)(B+1), Jacobi case,

(s+1), generalized Laguerre case,

=)
=
Il
~
=
+
— N = N =

Hermite case.

The equality is attained in (4.5) if and only if P(t) is a constant multiple of the
classical polynomial Q,(t) orthogonal with respect to the weight function t+— w(t).

This elegant result was established by using the second-order Sturm-Liou-
ville type differential equations satisfied by the classical orthogonal polynomials.

Using the method from [20], Guessab [19] has investigated the extremal
problem

max
P(1)e2)

where w € CW, w,, = A"w, 2, = {P € 2,/|P|,, <1}, and

. = ([ morora)

Theorem 4.3. Let P(t) € 2} and w € CW. Then

H (\/Z/wm) (me('”)), . < \//ln,oin,l D1 B (4.6)

)
Win

(\/Z/Wm) (wn,P™)'

1/2
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where A,, is given in Theorem 4.1, B, = Aym + B'(0) + (k — 1)4"(0), and A(¢)
and B(t) are given in Table 1.
The equality is attained in (4.6) if and only if P(t) is a constant multiple of the

classical polynomial Q,(t) orthogonal with respect to the weight function t— w(t).

n.m

At the end we mention the following extremal problem of Markov’s
type

2P,
Com(w) = sup ————*
’ Piyer, |[A™*P|,

(m=1)

for the differential operator Z,, defined by

D, P = % [A"P] (P(t) € 2,).
The best constant C,,,(w) was found in the following three cases (see [21]):
1. w(¢) =1 on [—1, 1] (the Legendre weight):

(n+ 2m)!

Com(w) = p

with the extremal polynomial P*(¢) =yC"*'/2(¢), where C"(¢) is the Ge-
genbauer polynomial of degree #;
2. w(t) =e " on [0,400) (the Laguerre weight):
~(n+m)!
Cn,m<w) - Ta
with the extremal polynomial P*(z) = yL”(¢), where L (¢) is the generalized
Laguerre polynomial of degree n;
3. w(t) = e on (—o00,+00) (the Hermite weight):

Com(d2) = 2"2/nl/(n — m)!,

with the extremal polynomial P*(¢) = yH,(¢), where H,(¢) is the Hermite
polynomial of degree n.

Some extremal problems for differential operators were also investigated by
Stein [42] and Dzafarov [15].
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