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A measure of efficiency of simultaneous methods for determination of polynomial zeros, defined by
the coefficient of efficiency, is considered. This coefficient takes into consideration (1) the R-order of
convergence in the sense of the definition introduced by Ortega and Rheinboldt (Iterative Solution of
Nonlinear Equations in Several Variables. Academic Press, New York, 1970) and (2) the number of
basic arithmetic operations per iteration, taken with certain weights depending on a processor time.
The introduced definition of computational efficiency was used for comparison of the simultaneous
methods with various structures.
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1. INTRODUCTION

Over the last 20 years many iterative formulas for the simultaneous determination
of all zeros of a polynomial have been established. In practice, it is important to
know the characteristics of these methods relative to the number of numerical
operations in finding polynomial zeros with the wanted accuracy, convergence
speed, processor time of a computer, taking possession of storage space at a
computer, etc. An estimation of efficiency of simultaneous methods, taking into
consideration the above points, has not been treated in the literature yet.

The purpose of this paper is to introduce a measure of efficiency of simulta-
neous processes, defined by the coefficient of efficiency. This coefficient takes into
consideration (1) the R-order of convergence (in the sense of the definition
introduced by Ortega and Rheinboldt [14]) and (2) the number of basic arithmetic
operations per iteration, taken with certain weights depending on processor time.
This definition of efficiency enables the simultaneous methods to be compared
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with various structures (e.g., those with derivatives or without them, in serial or
parallel fashion).

Most of the known simultaneous methods are analyzed in this paper. The
comparison of these methods in view of efficiency is performed for various values
of the polynomial degree. For simplicity, only the case of real and simple zeros is
considered. This analysis can be easily expanded to the complex case.

2. COMPUTATIONAL EFFICIENCY

Let {x™} be an iterative sequence generated by some iterative function (shorter
IF) solving a nonlinear (algebraic or transcendental) equation f(x) = 0. A measure
of the informational usage by an IF and a measure of the efficiency of the IF are
required. Taking the informational usage d of an IF as the number of new pieces
of information required per iteration, Traub [17, p. 11] introduced the following
definition:

The informational efficiency E is the convergence order of IF r, divided by the
informational usage d; that is,

The informational usage d is the total number of new function evaluations (the
values of f and its derivatives) per iteration.

Ostrowski {15, p. 20] gave an alternative definition of efficiency, the efficiency
index,

*E = ri/,

The concept of informational efficiency does not take into account the cost of
evaluating the values of function f and its derivatives. The computational effi-
clency of an iterative function ¢ relative to f, which does take these costs into
consideration, was introduced by Traub [17, pp. 260-264]:

E(¢, ) = r'/®,

where O = ¥ 0, and 6; is the cost of evaluating f). If the informational usage
of ¢ is d, and if 0, is independent of j, then E(¢, f) is independent of f and
reduces to

*E = E(¢) = r'°.

Now, let f be a monic algebraic polynomial P of degree n with real simple zeros
&, ..., &, that is,

Px)=x"+aqx" '+ - +apx+a,=]] x— &) (a € R).
i=1

Applying the simultaneous methods for determination of all zeros of the poly-
nomial P, one forms n sequences {x*}, ..., {x7}(m = 1, 2, ...) starting with a
reasonably good initial approximation x3, ..., x%. The previous definitions of
efficiency refer to one sequence only so that they cannot be applied for the
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simultaneous methods where n mutually dependent sequences are produced.
Furthermore, in generating these sequences by some iterative formula, besides
the evaluations of polynomial and (eventually) its derivatives, the necessity for
evaluation of some arithmetic expressions (sums, products, and so on), depend-
ing on the approximations of polynomial zeros (the terms of sequences {x}'},
k=1,...,n), appears. In order to define the cost of iteration, a heterogenous
(intermixed) structure imposes the necessity of introducing the total number of
basic arithmetic operations (addition, subtraction, multiplication, division) for
all zeros per iteration.

In practical application of simultaneous methods, the Gauss—-Seidel approach
(which uses the approximations to the zeros immediately as they become avail-
able) is the most frequently used. Besides the accelerated convergence attained
without additional evaluations, this procedure is also favorable relative to the
occupation of storage space at a digital computer. The analysis of the convergence
order of these methods in serial fashion is provided by the concept of the R-order
of convergence. Since the R-order of convergence depends on the polynomial
degree n, we will denote it with r(n) in the sequel.

It is obvious that any simultaneous method is more efficient if its R-order of
convergence is greater and the total number of basic arithmetic operations per
iteration is smaller. Defining a coefficient of efficiency, it is also necessary to
take into consideration the processor time needed for execution of the mentioned
operations. Because of that, we will correspond to each operation the weight that
is (1) proportional to the number of elementary steps (period clocks) necessary
in the execution of this operation in the arithmetic units of the computer and
(2) normalized in reference to the addition. These weights will be denoted by w,,
ws, wy, and wp for addition, subtraction, multiplication, and division, respec-
tively, setting wa = 1 because of the normalization.

Let us analyze now the number of necessary arithmetic operations per iteration.
We presume that the Horner scheme is used for the evaluation of the given
polynomial and its derivatives (if they appear).

In evaluating the polynomial values at n point approximations to the zeros,
taking into account the weights of the basic operations, the corresponding cost
of evaluation of the polynomial P can be defined as follows:

G(n) = waA(n) + wuM(n).

Here A(n) and M(n) denote the number of additions and multiplications,
respectively. It is well known that

A(n) = n? M(@»n) =n?

for a real polynomial of degree n.
The number of all remaining operations, which are necessary in realization of
one iteration, will be denoted by

A(n) (additions),
S(n) (subtractions),
M(n) (multiplications), and
D(n) (divisions).
ACM Transactions on Mathematical Software, Vol. 12, No. 4, December 1986.
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The quantities A(n) and M(n) include the operations necessary for evaluation
of the derivatives of the polynomial (by the Horner scheme), when they appear.
The total cost of the evaluation (for all zeros) per iteration is equal to

T(n) = G(n) + waA(n) + wsS(n) + wuM(n) + wpD(n).
It is convenient to introduce the normalized cost of evaluation

_ T
0m) =Sy’
that is,
waA(n) + wsS(n) + wuM(n) + wpD(n)
G(n) )

On)=1+

Finally, according to the previous consideration, we may define the coefficient
of the efficiency of the simultaneous iterative process (shorter SIP) for finding
polynomial zeros.

Definition. If r(n) is the R-order of convergence of the simultaneous iterative
process SIP and O(n) is the normalized cost of evaluation, then

r(n)

~ O

will be called the coefficient of the efficiency of SIP.

(E1) E(SIP, n)

An alternative definition of the coefficient of efficiency, analogous to the
Ostrowski efficiency index, can be introduced by

(E;) *E(SIP, n) = r(n)Yo®,

But the formula (E;) is more complicated for computation and shows greater
disagreement with the experimental results (measuring CPU time in realization
of an iterative process on a computer) compared to the above definition (E;).
Therefore, in the sequel we will use the formula (E,).

Note that the definitions (£,) and (E,) can also be applied in the case of
complex zeros of the polynomial.

3. LIST OF METHODS

In this section we will give a review of the most frequently used simultaneous
methods for polynomial zeros. First, let us introduce some notations:

1° The approximations of the zeros x7*, ..., x7 in the mth iteration will be
briefly denoted with x,, ..., x,, and new approximations x7"*", ..., x*',
obtained by some simultaneous methods, by %1, . . ., %,, respectively;

2° Qx) = (x —x)(x —x2) -+ (x — xp);
3° W, = P(x:)/Q’(xx) (Weierstrass’s correction);
4° Ni = P(x:)/P’(x) (Newton’s correction).
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3.1 lterative Formulas without Derivatives

One of the most popular formulas for the simultaneous approximations of the
polynomial zeros is as follows:

PR P(x:)
k= Xy —
I i (e — x)

Formula (1) is the classical result introduced by Weierstrass [18, p. 258] in 1891,
in connection with a proof of the fundamental theorem of algebra. However, this
formula found its application for the simultaneous determination of polynomial
zeros much later (Docev [5], Durand [6], Kerner [8], and others, gave various
derivations of this formula).

The convergence of the total-step iterative process (1) is quadratic. Using the
Gauss-Seidel approach, (1) can be accelerated. In such a way, one obtains the
single-step method

o P(x:)
= Xk — - - n
Hf’e=11 (xe — %) Hi=k+1 (e — x:)
It was proved in [2] that the R-order of convergence of procedure (2) is at
least r(n) = 1 + o,, where o, > 1 is the unique positive solution of the
equation ¢" — o —1=0.
A modification of SIP (1), which has cubic convergence and uses Weierstrass’s
correction W,, is given by Nourein [12]:
i = xp — P(x:)
g g T (6 — % + W)
Further acceleration of convergence can be attained combining the formulas
(2) and (3) (see Petkovi¢ and Milovanovic [16]):
= x P (xx)
k= Xp — - < ,,
MY (e = %) T Ppe (xp — % + W)
The R-order of convergence of this iterative process is at least r(n) =1 + 7,
where 7, > 2 is the unique positive solution of the equation

" — 7 =Y k=0

The modification of the basic Weierstrass formula (1) due to Borsch-Supan
[4] follows:

(k=1,...,n) (1)

(k=1,...,n). (2)

(k=1,...,n). (3)

(k=1,...,n) (4)

Xp = X Wi
k= Ak T n
1+ Y W

i=1,i%k Xk T Xi

(k=1,...,n) (5)

The convergence order of this method is three.
Similar to constructing formula (3), the following method of the fourth order
can be obtained from (5) (Nourein [13]):

. Wi
Xp = Xp — n
W.
1+ Yy —
i=1,i#k Xkp Wi — x;
ACM Transactions on Mathematical Software, Vol. 12, No. 4, December 1986.
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3.2 lterative Formulas with Derivatives

Using the logarithmic derivative of the polynomial P, Maehly [10] (and, later,
Aberth [1], Borsch-Supan [3], Ehrlich [7], and others) derived the formula
fo = 0 ——— (k=1,...,n) 0
Ni't— Y ———

i=1,izk Xk "~ Xi

which has a cubic convergence. .
The single-step modification of (7)
N 1
Xp=Xp— —
k k k~1 1 n 1

Ni'=- X - ¥

A o
=1 Xk ™ Xi  i=k+1Xp T X

(k=1,...,n) (8)

has the R-order of convergence of at least r(n) = 2 + pu,, where u, > 1
is the unique positive solution of the equation u” — u — 2 = 0 (Alefeld and
Herzberger [2]).

Using Newton’s correction, Nourein [12] obtained the following modification
of (7):

j‘:k__--xk_ n ]. (k=17'--7n)’ (9)
N;l —
i=1,ik Xp — X; + N;

with the convergence order equal to four.
Analogously to (4), we obtain from (8) the single-step method
N 1
Xp=Xp— . (k=1,...,n), (10)
1 1 i 1
Nit—- Y - -y

A

i=1 %k — X;  i—ge1 % — % + N;

where the R-order of convergence is at least r(n) = 2(1 + A\,) and where A\, > 1
is the unique positive solution of the equation A\* — A — 1 = 0 (Milovanovié¢ and
Petkovic [11]).

The review of the number of basic arithmetic operations A(n), S(n), M(n),
and D(n) for the aforementioned methods (1)-(10) (excluding only polynomial
evaluations G(n)) is given in Table I as a function of polynomial degree n.

The values of the R-order of convergence r(n) for the listed methods (1)-(10)
are displayed in Table II for n = 3(1)10. The value of r(n) when n — « is denoted
by r. (the last row).

4. EFFICIENCY OF SIMULTANEOUS METHODS

In order to compare the methods (1)-(10), we have computed the estimations of
the efficiency for these methods using the definition (F;). We have used the
characteristics (period clocks) of the arithmetic units of the computing machines
HONEYWELL DPS 6/92, VAX 11/780, IBM 4341, and, also, of the super-
computers CRAY X-MP/2 and FUJITSU VP-200 (on the basis of data given
in [9]). Typical values of the operation weights, obtained after a procedure of
normalization in relation to w,, are given in Table III.
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Table I. Number of Basic Arithmetic Operations for the Simultaneous Iterative
Methods (1)-(10) as a Function of Polynomial Degree n

SIP A(n) S(n) M(n) D(n)
(1) 0 n? nin —2) n
(2) 0 n? nin —2) n
3) n{n—1) n(2n—1) 2n(n — 2) 2n
4) in(n—1) 2n? — 2n + 1 on? —Bn + 2 2n -1
(5) nin—1) 2n*—n n(n—2) n*+n
(6) nn—-1) 3n?— 2n n(n—2) ni+n
) nin—-1) 2nt—n nn—1) n+n
8) nin—1) 2n?-n nin—1) n’+n
9) 2n(n—1) 2n2—n nin—1) n’*+2n
(10) in(n—1) 2n?—n nin—1) n*+2n-~1

Table II. The Values of the R-Order of Convergence r{n)
(§9) (2) (3) (4) 5 ® (7O (8) 9 (10)

r(3) 2 2.325 3 3.148 3 4 3 3.621 4 4.649
r(4) 2 2.221 3 3.066 3 4 3 3.353 4 4.441
r(5) 2 2.167 3 3.032 3 4 3 3.267 4 4.335
r(6) 2 2.135 3 3.016 3 4 3 3.215 4 4.269
r(7) 2 2.113 3 3.008 3 4 3 3.180 4 4.226
r(8) 2 2.097 3 3.004 3 4 3 3.154 4 4.194
r(9) 2 2.085 3 3.002 3 4 3 3.135 4 4.170
r(10) 2 2.076 3 3.001 3 4 3 3.125 4 4.152
Te 2 2.000 3 3.000 3 4 3 3.000 4 4.000

Table III. 'The Operation Weights Normalized in Relation to wy

Wy Ws Wum Wp
HONEYWELL DPS 6/92 1.00 1.00 3.00 5.62
VAX 11/780 1.00 1.00 1.50 5.25
IBM 4341 1.00 1.00 1.50 12.37
CRAY X-MP/2 1.00 1.00 1.17 2.33
FUJITSU VP-200 1.00 1.00 1.33 9.33

The normalized cost of the evaluation 8(n) for all listed methods can be
expressed in the form

b
0(n)=a+—+—c—2,
n n

where a (>0), b, and ¢ are real constants that depend on the number of basic
arithmetic operations A(n), S(n), M(n), D(n) (Table I), G(n) = (wa + wm)n?,
and the operation weights wa, ws, wy, and wp (Table III). The values of the
constants a, b, and ¢ for the methods (1)-(10), related to the considered computers,
are shown in Table IV.

Using the values of the R-order of convergence r(n) (Table II) and the con-
stants a, b, and ¢ (Table IV), the coefficient of the efficiency E(SIP, n) was
computed by (E;) for n = 3(1)10 and displayed in Table V for various
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Table IV. The Values of tke Constants a, b, and ¢
SIP (1) (2 (3) (4) (5) ()] (7) (8) 9 (10)

HONEYWELL DPS 6/92
a 2.000 2000 3.250 3.125 3.905 4.155 3905 3905 4.155  4.030
b —0.095 —0.095 —0.069 —1.565 —0.595 —0.845 0.155 0.155 1.310 1.435
¢ 0.000  0.000 0.000 0345 0000 0.000 0.000 0000 0.000 —1.405

VAX 11/780
a 2.000 2000 3.400 3200 4900 5300 4900 4900 5300 5.100
b 0900 0900 1.000 0200 0100 —0.300 0700 0.700 2.400  2.600
¢ 0.000  0.000 0.000 —0.500 0.000 0000 0000 0.000 0.000 —2.100

IBM 4341
a 2.000 2000 3.400 3200 7.748 8148 7.748 7748 8.148  7.948
b 3748 3748 6696 5896 2948 2548 3548 3548 8.096  8.296
¢ 0.000 0.000 0000 —3.348 0.000 0000 0.000 0.000 0000 —4948

CRAY X-MP/2
a 2.000 2000 3461 3230 3995 4456 3995 3.995 4.456  4.226
b —0.005 —0.005 —0931 —1.701 —0.926 —1.387 —0.387 —0.387 0226  0.456
¢ 0.000  0.000 0.000 0465 0000 0000 0.000 0.000 0.000 —1.074

FUJITSU VP-200
a 2.000 2.000 3.429 3215 6.863 7.292 6.863 6.863 7.292 7.077
b 2.863  2.863 4.867 4.081 2004 1575 2575 2575 6.150  6.365
c 0.000  0.000 0000 -2434 0000 0000 0000 0.000 0.000 —4.004

machines and SIP (1)-(10). The maximumn values of E(SIP, n) for each n are
boxed. The arrows in the next to last column show the tendency of an increase
(1) or a decrease (}) of E(SIP, n) when n increases. If n — o, then §(n) — a and
r(n) —» ro = r (r € N), where r is the convergence order of the basic method (in
parallel fashion). Therefore, E(SIP, n) — r/a when n — o (the last column in
Table V).

First of all, we observe frorn Table V that the order of the efficiency of SIP for
the considered computers, stated according to the values E (SIP, n), is preserving
(with slight exceptions) varying n. This fact makes it possible for us to form a
rating of the methods (1)-(10) related to their efficiency. Let (E((k;), n),
ceos E((Ryo), n)) (KEL, ..., 10},j=1,...,10) be the ordered 10-tuplet whose
components satisfy E((k:), n) > E((ks), n) > ... > E((ky), n), and let Rz, =
(R1, ..., k)T be the rating vector of the iterative methods (%), ..., (k) in
reference to the definition (E;). The vector R g, defines the efficiency of SIP for
a given computer. The rating of the considered methods, related to the given
computers, for (relatively) small n (say, n = 10) and for large n (>10) is shown
in Table VI.

Remark 1. We observe from Table VI that there exists slight disagreement in
the rating of the simultaneous methods for n = 10 and for large n. The only
exception is the HONEYWELL computer, but in that case, the differences
between coefficients of efficiency of the dominant methods (2), (1), (10), (9), (6),
and (4) are insignificant—mostly about 4 percent.

Remark 2. For all considered computers and for any polynomial degree n, SIP
(2) is the most efficient, of course, in the sense of definition (E;). Further, we
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Table V. The Values of E(SIP, n) Computed by (E,) (rounded to the third decimal digit)

n

SIp 3 4 5 6 7 8 9 10 n— o
HONEYWELL DPS 6/92 _
1) 1.016  1.012 1010 1.008 1.007 1.006 1.005 1005 | 1.000
) 1181 1124 1094 1076 1.064 1055 1048 1.043 | 1.000
(3) 0993 0975 0964 0957 0952 0948 0945 0943 | 0.923
(4) 1192 1113 1073  1.049 1.034 1024 1016 1010 | 0960
(5) 0.809 0799 0792 0788 0.785 0.783 0781 0.780 | 0.768
(6) 1.033  1.014  1.004 0996 0992 0988 0985 0983 | 0.963
(7) 0.758 0.761 0762 0763  0.764  0.765 0765 0.765 1 0.768
(8) 0.890 0.850 0.830 0818 0810 0804 0799 0797 | 0.768
9) 0.871 0892 0906 0915 0921 0926 0930 0933 1 0963
(10) 1.068  1.033 1017 1009 1005 1002 0999 0998 | 0.993
VAX 11/780
(1) 0.870  0.899 0917 0930 0940 0947 0952 0957 1 1.000
(@) 1011 0998 0994 0993 0993 0993 0993 0994 ] 1.000
(3) 0.804 0822 0833 0841 0847 0851 0854 0857 1| 0.882
(4) 0980 0953 0942 0937 0935 0934 0933 0934 | 0937
(5) 0.608 0609 0610 0610 0610 0611 0611 0611 1 0.612
(6) 0769 0766 0763 0762 0761  0.760  0.760 0.759 | 0.755
(7) 0584 0591 0595 0598 0.600 0.601 0603 0604 1| 0612
(8) 0.686 0661 0648 0641 0636 0632 0630 0629 | 0612
(9) 0656 0.678 0.692 0702 0709 0714 0719 0722 1 0.755
(10) 0.811 0790 0783 0780 0779 0.778  0.777 0778 | 0.784
IBM 4341
(1) 0616 0681 0727 0762 0789 0810 0.828 0.842 1 1.000
(@) 0.716 0756 0788  0.813  0.833 0850 0863 0874 1 1.000
3) 0533 0591 0633 0664 0689 0708 0724 0737 1 0882
(4) 0.657 0687 0714 0738 0757 0773 0787 0799 1 0937
(5) 0344 0354 0350 0364 0367 0370 0372 0373 | 0387
() 0.445 0455 0462 0467 0470 0472 0474 0476 1 0.491
1) 0336 0347 0355 0360 0363 0366 0368 0370 | 0.387
(8) 0.394 0388 038 0386 038 0385 038 038 1 0.387
(9) 0.369 0393 0410 0421 0430 0437 0442 0447 1 0.491
(10) 0458 0457 0461 0464 0468 0471 0473 0476 1 0503
CRAY X-MP/2
(1) 1001 1.001  1.001 1.000 1.000 1.000 1.000 1.000 | 1.000
@) 1163 1111 1084 1068 1057 1.049 1043 1.038 | 1.000
3) 0952 0923 0916 0907 0902 0897 0893 0891 | 0867
(4) 1159 1082 1.042 1019 1004 0993 0985 0979 | 0929
(5) 0814 0797 0787 0781 0777 0773 0771 0769 | 0.751
(6) 1002 0973 0957 0947 0939 093¢ 0930 0927 | 0.898
) 0776 0769  0.766  0.763 0761 0.760 0759 0.758 | 0.751
(8) 0911 0860 0834 0818 0807 0799 0793 0790 | 0.751
) 0.883 0.886 0.888 0.890 0891 0.892 0893 0893 1 0.898
(10) 1.092 1039 1014 0999 0990 0983 0978 0974 | 0947
FUJITSU VP-200
(1) 0677 0736 0777 0807 0830 0848 0863 0875 1 1.000
) 0.787 0818 0.842 0.862 0877 0889 0899 0908 1 1.000
(3) 0594 0646 0681 0.707 0727 0743 0756 0766 1 0.875
(4) 0731 0751 0771 0.788 0803 0815 0825 0834 1 0933
(5) 0398 0407 0413 0417 0420 0422 0423 0425 1 0.437
(6) 0512 0521 0526 0529 0532 0534 0536 0537 1 0.549
(7) 0.388 0400 0407 0411 0415 0418 0420 0421 1 0.437
(8) 0456 0447 0443 0441 0440 0439 0439 0438 | 0437
9) 0428 0453 0469 0481 0490 0496 0502 0506 1 0.549
(10) 0531 0527 0529 0532 0535 0537 0539 0541 1 0565
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Table VI. The Rating Vectors R,

HONEYWELL CRAY FUJITSU
DPS 6/92 VAX 11/780 IBM 4341 X-MP/2 VP-200

large large largs large large
n=10 n n=10 n n =10 n n
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observe that the class of methods of Weierstrass’s type (SIP (1)-(4)) is the most
powerful (in the order (2), (1), (4), and (3)). Besides, it is obvious from Table VI
that the methods (7), (5), and (8) are the least efficient for all considered
computers. These conclusions have been verified by the experimental results,
which were based on the CPU times of computers.

In order to verify the previous results related to the coefficient of the efficiency
of SIP (1)-(10), we have performed the analysis of the efficiency of SIP by
measuring the CPU times corresponding to HONEYWELL DPS 6/92,
VAX 11/780, and IBM 4341. In this experiment the iterative methods were
tested on polynomials with degrees ranging from 4 to 15. The (real) zeros
of those polynomials were normalized to lie in the union of intervals
[—5.0, —0.5]) U [0.5, 5.0]. The criterion for stopping any iterative process was
given by
(SC) max | % — & <e=107",
where m is the iteration index and g is the number of correct decimal places in
the approximations to the zeros §i, ..., &,. Two values of the required accuracy
¢ were used, ¢, = 107'% and ¢ = 107°°, To avoid round-off errors and to attain
very high accuracy of approximations, all programs were realized in multiple-
precision arithmetic.

Let T, be the CPU time necessary that SIP(k)(k € {1, ..., 10}) satisfies the
stopping criterion (SC). Further, let Tcpy = (Tk, ..., Tk,) be the ordered
10-tuplet of CPU times such that Ty = Th < Tp, < -+ < Ty, and let
“tepy = (tr, ..., tw,), Where by, 18 obtained by normalization, ty, = Tk}./Tmin
(j =1, ..., 10) (consequently, t,, = 1). Now we can correspond to tcpy the
rating vector Rcpy = (ki, ..., ki), which determines the efficiency of
SIP (1)-(10) related to the CPU times.

The tests performed on the aforementioned three computing machines have
demonstrated very good coincidence of the rating vectors Rz, and Rcpy. This
means that the definition (E;) for the coefficient of the efficiency of SIP is really
applicable and describes a real situation in practical realization of an iterative
process on a computer.
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Table VII. The Normalized CPU Times

Number
of
iterations
required
for
accuracy (SC): g = 10712 (SC): e = 1072
HONEYWELL VAX IBM HONEYWELL VAX IBM
SIP € € DPS 6/92 11/780 4341 DPS 6/92 11/780 4341
(1) 4 6 1.0022 1.0031 1.0025 1.2027 1.2037  2.2030
2) 4 5 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
3) 3 4 1.2143 1.4535 1.4619 1.2952 1.5504 1.5593
(4) 3 4 1.0474 1.3570 1.2014 1.1173 1.4474 1.2815
(5) 3 4 1.4408 1.7674 2.1759 1.5369 1.8853 2.3210
(6) 2 3 1.0054 1.2403 1.5014 1.2065 1.4884 1.8018
(7 3 4 1.4089 1.56837 2.1111 1.5028 1.6893 2.2519
(8) 3 4 1.4072 1.5814 2.1092 1.5010 1.6868  2.2498
9) 2 3 1.0459 1.1977 1.6140 1.2551 1.4372  1.9369
(10) 2 3 1.0109 1.1504 1.5572 1.2131 1.3805  1.8687
Table VIII. The Rating Vectors Rcpy
(SC): ¢ = 10712 (SC): o =107
HONEYWELL HONEYWELL
DPS 6/92 VAX 11/780 IBM 4341 DPS 6/92 VAX 11/780 IBM 4341
2 2 2 2 2 2
1 1 1 4 1 1
6 10 4 1 10 4
10 9 3 6 9 3
9 6 6 10 4 6
4 4 10 9 6 10
3 3 9 3 3 9
8 8 8 8 8 8
7 7 7 7 7 7
5 5 5 5 5 5

To demonstrate the above conclusions, we give the normalized CPU times t;
for the computers HONEYWELL DPS 6/92, VAX 11/780, and IBM 4341.
These times have been calculated by normalizing the measured CPU times
Ty (j =1,..., 10) applying the iterative methods (1)-(10) for the determination
of zeros of the polynomial

P(x) = x5 — 15x* + 85x° — 225x2 + 274x — 120
=(x—1)(x—2)(x — 3)(x—4)(x —b).

The initial approximations were correct to one decimal place. The normalized
CPU times for two SCs, ¢ = 1072 and ¢; = 1072, are displayed in Table VII.
According to the values of the normalized CPU times, shown in Table VII, the
rating vectors Rcpy for the tested computers were formed relating to two SCs
and given in Table VIII. Comparing the rating vectors Rcpy and Rg,, (Table VI),
we notice significant coincidence of the corresponding components of these
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vectors. For example, eight components of Rcpy and R, coincide for the
IBM 4341 system. This conclusion refers to the above example where n = 5, but
the same is valid for other n too.

In conclusion, the definition E; for the efficiency index of SIP is practically
applicable. In particular, this definition and the corresponding rating vectors
R(g,) can be of interest in designing a package for the simultaneous approximation
of polynomial zeros, in which automatic procedure selection is desired.
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