
On Computational Efficiency of the Iterative 
Methods for the Simultaneous Approximation 
of Polynomial Zeros 

G. V. MILOVANOVIC and M. S. PETKOVIC 
University of NiS. 

A measure of efficiency of simultaneous methods for determination of polynomial zeros, defined by 
the coefficient of efficiency, is considered. This coefficient takes into consideration (1) the R-order of 
convergence in the sense of the definition introduced by Ortega and Rheinboldt (Iterative Solution of 
Nonlinear Equations in Several Variables. Academic Press, New York, 1970) and (2) the number of 
basic arithmetic operations per iteration, taken with certain weights depending on a processor time. 
The introduced definition of computational efficiency was used for comparison of the simultaneous 
methods with various structures. 
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1. INTRODUCTION 

Over the last 20 years many iterative formulas for the simultaneous determination 
of all zeros of a polynomial have been established. In practice, it is important to 
know the characteristics of these methods relative to the number of numerical 
operations in finding polynomial zeros with the wanted accuracy, convergence 
speed, processor time of a computer, taking possession of storage space at a 
computer, etc. An estimation of efficiency of simultaneous methods, taking into 
consideration the above points, has not been treated in the literature yet. 

The purpose of this paper is to introduce a measure of efficiency of simulta- 
neous processes, defined by the coefficient of efficiency. This coefficient takes into 
consideration (1) the R-order of convergence (in the sense of the definition 
introduced by Ortega and Rheinboldt [ 141) and (2) the number of basic arithmetic 
operations per iteration, taken with certain weights depending on processor time. 
This definition of efficiency enables the simultaneous methods to be compared 
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with various structures (e.g., those with derivatives or without them, in serial or 
parallel fashion). 

Most of the known simultaneous methods are analyzed in this paper. The 
comparison of these methods in view of efficiency is performed for various values 
of the polynomial degree. Fo:r simplicity, only the case of real and simple zeros is 
considered. This analysis can be easily expanded to the complex case. 

2. COMPUTATIONAL EFFICIENCY 

Let (xml be an iterative sequence generated by some iterative function (shorter 
IF) solving a nonlinear (algebraic or transcendental) equationf(x) = 0. A measure 
of the informational usage by an IF and a measure of the efficiency of the IF are 
required. Taking the informational usage cl of an IF as the number of new pieces 
of information required per iteration, Traub [ 17, p. 111 introduced the following 
definition: 

The informational efficiency E is the convergence order of IF r, divided by the 
informational usage d; that is, 

E=I 
d’ 

The informational usage d is the total number of new function evaluations (the 
values off and its derivatives) per iteration. 

Ostrowski [15, p. 201 gave an alternative definition of efficiency, the efficiency 
index, 

*E = ,.1/d 

The concept of informational efficiency does not take into account the cost of 
evaluating the values of function f and its derivatives. The computational effi- 
ciency of an iterative function 4 relative to f, which does take these costs into 
consideration, was introduced by Traub [ 1’7, pp. 260-2641: 

E(d, f) = rl’o, 

where 8 = C 6, and 0, is the cost of evaluating f (j). If the informational usage 
of C$ is d, and if flj is independent of j, then E(4, f) is independent of f and 
reduces to 

*E = E(d) = rlld. 

Now, let f be a manic algebraic polynomial P of degree n with real simple zeros 
4 1,.--, &; that is, 

P(X) = X” + alxn-l + . . . + a,-lx + a, = fi (x - &) (ai E I?). 
i=l 

Applying the simultaneous methods for determination of all zeros of the poly- 
nomial P, one forms n sequences (XT), . . . , (xF)(m = 1, 2, . . .) starting with a 
reasonably good initial approximation xy, . . . , xi. The previous definitions of 
efficiency refer to one sequence only so ,that they cannot be applied for the 
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simultaneous methods where n mutually dependent sequences are produced. 
Furthermore, in generating these sequences by some iterative formula, besides 
the evaluations of polynomial and (eventually) its derivatives, the necessity for 
evaluation of some arithmetic expressions (sums, products, and so on), depend- 
ing on the approximations of polynomial zeros (the terms of sequences (xS ), 
k= 1, . . . . n), appears. In order to define the cost of iteration, a heterogenous 
(intermixed) structure imposes the necessity of introducing the total number of 
basic arithmetic operations (addition, subtraction, multiplication, division) for 
all zeros per iteration. 

In practical application of simultaneous methods, the Gauss-Seidel approach 
(which uses the approximations to the zeros immediately as they become avail- 
able) is the most frequently used. Besides the accelerated convergence attained 
without additional evaluations, this procedure is also favorable relative to the 
occupation of storage space at a digital computer. The analysis of the convergence 
order of these methods in serial fashion is provided by the concept of the R-order 
of convergence. Since the R-order of convergence depends on the polynomial 
degree n, we will denote it with r(n) in the sequel. 

It is obvious that any simultaneous method is more efficient if its R-order of 
convergence is greater and the total number of basic arithmetic operations per 
iteration is smaller. Defining a coefficient of efficiency, it is also necessary to 
take into consideration the processor time needed for execution of the mentioned 
operations. Because of that, we will correspond to each operation the weight that 
is (1) proportional to the number of elementary steps (period clocks) necessary 
in the execution of this operation in the arithmetic units of the computer and 
(2) normalized in reference to the addition. These weights will be denoted by WA, 
ws, we, and wn for addition, subtraction, multiplication, and division, respec- 
tively, setting WA = 1 because of the normalization. 

Let us analyze now the number of necessary arithmetic operations per iteration. 
We presume that the Horner scheme is used for the evaluation of the given 
polynomial and its derivatives (if they appear). 

In evaluating the polynomial values at n point approximations to the zeros, 
taking into account the weights of the basic operations, the corresponding cost 
of evaluation of the polynomial P can be defined as follows: 

G(n) = w&n) + wMR(n). 

Here A(n) and R(n) denote the number of additions and multiplications, 
respectively. It is well known that 

A(n) = n2, RI(n) = n2 

for a real polynomial of degree n. 
The number of all remaining operations, which are necessary in realization of 

one iteration, will be denoted by 

A(n) (additions), 
S(n) (subtractions), 
M(n) (multiplications), and 
D(n) (divisions). 
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The quantities A(n) and M(n) include the operations necessary for evaluation 
of the derivatives of the poly:nomial (by the Horner scheme), when they appear. 

The total cost of the evaluation (for all zeros) per iteration is equal to 

T(n) = G(n) + alAA + w&n) + wMM(n) + u@(n). 

It is convenient to introduce the normalized cost of evaluation 

f)(n) = q!!i. 
Gl(n) ’ 

that is, 

wAA(n) + Loss(n) + wMM(n) + wnD(n) 
8(n) = 1 + L 

G(n) 

Finally, according to the previous consideration, we may define the coefficient 
of the efficiency of the simultaneous iterative process (shorter SIP) for finding 
polynomial zeros. 

Definition. If r(n) is the R-order of convergence of the simultaneous iterative 
process SIP and 8(n) is the :normalized cost of evaluation, then 

r(n) 
6%) E(SIP, n) = 8(n) 

will be called the coefficient of the efficiency of SIP. 

An alternative definition of the coefficient of efficiency, analogous to the 
Ostrowski efficiency index, can be introduced by 

(E2) *E(SIP, n) = r(n) 1/0(n) . 

But the formula (E,) is more complicated for computation and shows greater 
disagreement with the experimental result,3 (measuring CPU time in realization 
of an iterative process on a computer) compared to the above definition (El). 
Therefore, in the sequel we will use the formula (El). 

Note that the definitions (El) and (E2) can also be applied in the case of 
complex zeros of the polynomial. 

3. LIST OF METHODS 

In this section we will give a review of the most frequently used simultaneous 
methods for polynomial zeros. First, let us introduce some notations: 

1” The approximations of the zeros XT, . . , X; in the mth iteration will be 
briefly denoted with xl, . . . , x,, and new approximations x(;+‘, . . . , xT+l, 
obtained by some simultaneous methods, by il, . . . ,32,, respectively; 

2” Q(x) = (x - x1)(x - 3~2) . . . (x - n,); 
3” Wk = P(x~)/Q’(x~) (Weierstrass’s correction); 
4” Nk = P(xk)/P’(xk) (Newton’s correction). 
ACM Transactions on Mathematical Software, Vol. 12, No. 4, December 1986. 
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3.1 Iterative Formulas without Derivatives 

One of the most popular formulas for the simultaneous approximations of the 
polynomial zeros is as follows: 

pbk) 

ik = xk - n rcl,i2k (xk _ xi) @ = 1, . . * ’ n)* (1) 

Formula (1) is the classical result introduced by Weierstrass [ 18, p. 2581 in 1891, 
in connection with a proof of the fundamental theorem of algebra. However, this 
formula found its application for the simultaneous determination of polynomial 
zeros much later (Docev [5], Durand [6], Kerner [8], and others, gave various 
derivations of this formula). 

The convergence of the total-step iterative process (1) is quadratic. Using the 
Gauss-Seidel approach, (1) can be accelerated. In such a way, one obtains the 
single-step method 

* pbk) 

xk = xk - fly; (xk - ii) n rzk+l (xk - xi) tk = l, * * * ’ n)* (2) 

It was proved in [2] that the R-order of convergence of procedure (2) is at 
least r(n) = 1 + G,,, where c,, > 1 is the unique positive solution of the 
equation un - u - 1 = 0. 

A modification of SIP (l), which has cubic convergence and uses Weierstrass’s 
correction Wi, is given by Nourein [12]: 

pbk) 

i/Z = xk - n~cl,i.k (xk - Xi + Wi) tk = l, . . . ’ n)- 

Further acceleration of convergence can be attained combining the formulas 
(2) and (3) (see Petkovic and Milovanovic [16]): 

pbk) 

The R-order of convergence of this iterative process is at least r(n) = 1 + 7,, 
where r, > 2 is the unique positive solution of the equation 

rn - 7 - csz; 7k = 0. 

The modification of the basic Weierstrass formula (1) due to Borsch-Supan 
[4] follows: 

ik = xk - 
wk 

1+ f: J!c- 
(k = 1, . . . , n). (5) 

i=l,i#k xk - xi 

The convergence order of this method is three. 
Similar to constructing formula (3), the following method of the fourth order 

can be obtained from (5) (Nourein [13]): 

ik = xk - 
wk 

1+ i: Wi 
(k = 1, . . . ) n). (6) 

i=l,i#k xk - wk - xi 
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3.2 Iterative Formulas with Derivatives 

Using the logarithmic deriva.tive of the polynomial P, Maehly [lo] (and, later, 
Aberth [l], Borsch-Supan [3:], Ehrlich [7], and others) derived the formula 

ik = xk - - 
1 

N,;’ - i 
r (k = 1,. . .) n), (7) 

-- 
i=l,i#k xk ‘- xi 

which has a cubic convergence. 
The single-step modification of (7) 

ik = xk - ~ 
1 

k-l 

Nkl-xL- f ’ 
(k = 1,. . . ) n) (8) 

has the R-order of convergence of at least r(n) = 2 + pn, where p,, > 1 
is the unique positive solution of the equation CL” - p - 2 = 0 (Alefeld and 
Herzberger [2]). 

Using Newton’s correction, Nourein [ 121 obtained the following modification 
of (7): 

ik = xk - - 
1 

j&-l .- i 1 
- (k=l,...,n), 

-- 
i=l,i+k Xk - XL + Ni 

(9) 

with the convergence order equal to four. 
Analogously to (4), we obtain from (8) the single-step method 

ik = xk - 
1 

k-l 

Nil-z- ‘A 
- - i=$+l :a - ,’ + N. 

(k = 1,. . . , n), (10) 

i-1 xk-xi I I 

where the R-order of convergence is at least r(n) = 2(1 + h,) and where X, > 1 
is the unique positive solution of the equation X” - X - 1 = 0 (Milovanovic and 
Petkovic Ill]). 

The review of the number of basic arithmetic operations A(n), S(n), M(n), 
and D(n) for the aforementioned methods (l)-(10) (excluding only polynomial 
evaluations G(n)) is given in Table I as a function of polynomial degree n. 

The values of the R-order of convergence r(n) for the listed methods (l)-(10) 
are displayed in Table II for n = 3(1)10. The value of r(n) when n + cx, is denoted 
by rm (the last row). 

4. EFFICIENCY OF SIMULTANEOUS METHODS 
In order to compare the methiods (l)-(lo), we have computed the estimations of 
the efficiency for these methods using the definition (Ei). We have used the 
characteristics (period clocks)1 of the arithmetic units of the computing machines 
HONEYWELL DPS 6/92, VAX 11/780, IBM 4341, and, also, of the super- 
computers CRAY X-MP/2 and FUJITSU VP-200 (on the basis of data given 
in [9]). Typical values of the operation weights, obtained after a procedure of 
normalization in relation to !,“A, are given in Table III. 
ACM Transactions on Mathematical Software, Vol. 12, No. 4. December 1986. 
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Table I. Number of Basic Arithmetic Operations for the Simultaneous Iterative 
Methods (l)-(10) as a Function of Polynomial Degree n 

SIP A(n) S(n) M(n) D(n) 

(1) 0 n2 n(n - 2) n 
c-4 0 n2 n(n - 2) n 
(3) n(n - 1) n(2n - 1) 2n(n - 2) 2n 
(4) $(n - 1) 2n2 - 2n + 1 2n2 - 5n + 2 2n - 1 

(5) n(n - 1) 2nZ - n n(n - 2) n2 + n 
(6) n(n - 1) 3n* - 2n n(n - 2) n2 + n 
(7) n(n - 1) 2nZ - n n(n - 1) n2 + n 
(8) n(n - 1) 2n2 - n n(n - 1) n2 + n 
(9) 2n(n - 1) 2n2 - n n(n - 1) n* + 2n 

(10) fn(n - 1) 2nZ - n n(n - 1) n* + 2n - 1 

Table II. The Values of the R-Order of Convergence r(n) 

r(3) 
r(4) 
45) 
r(6) 
47) 
r(8) 
49) 
410) 
r, 

(1) 
2 
2 
2 
2 
2 
2 
2 
2 
2 

(2) 
2.325 
2.221 
2.167 
2.135 
2.113 
2.097 
2.085 
2.076 
2.000 

(4) 

3.148 
3.066 
3.032 
3.016 
3.008 
3.004 
3.002 
3.001 
3.000 

(5) 

3 
3 
3 
3 
3 
3 
3 
3 
3 

(6) (7) (8) (9) (10) 
4 3 
4 3 
4 3 
4 3 
4 3 
4 3 
4 3 
4 3 
4 3 

3.521 
3.353 
3.267 
3.215 
3.180 
3.154 
3.135 
3.125 
3.000 

4.649 
4.441 
4.335 
4.269 
4.226 
4.194 
4.170 
4.152 
4.000 

Table III. The Operation Weights Normalized in Relation to WA 

WA WS WM WLI 

HONEYWELL DPS 6/92 1.00 1.00 3.00 5.62 
VAX 11/780 1.00 1.00 1.50 5.25 
IBM 4341 1.00 1.00 1.50 12.37 
CRAY X-MP/P 1.00 1.00 1.17 2.33 
FUJITSU VP-200 1.00 1.00 1.33 9.33 

The normalized cost of the evaluation e(n) for all listed methods can be 
expressed in the form 

O(n) = a + ; + 3, 

where a (>O), b, and c are real constants that depend on the number of basic 
arithmetic operations A(n), S(n), M(n), D(n) (Table I), G(n) = (WA + wM)n’, 
and the operation weights WA, ws, u)M, and WD (Table III). The values of the 
constants a, b, and c for the methods (l)-( lo), related to the considered computers, 
are shown in Table IV. 

Using the values of the R-order of convergence r(n) (Table II) and the con- 
stants a, b, and c (Table IV), the coefficient of the efficiency E(SIP, n) was 
computed by (E, ) for n = 3( 1)lO and displayed in Table V for various 
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Table IV. The Values of tk.e Constants a, b, and c 

SIP (1) (2) (3) (4) (5) (6) (7) 03) (9) (10) 

HONEYWELL DPS 6/92 
i -0.095 2.000 -0.095 2.000 -0.069 3.250 

c 0.000 0.000 0.000 

VAX 11/780 

1 0.900 2.000 0.900 2.000 3.400 1.000 
c 0.000 0.000 0.000 

IBM 4341 
a 2.000 2.000 3.400 
b 3.748 3.748 6.696 
C 0.000 0.000 0.000 

CRAY X-MP/2 
it -0.005 2.000 -0.005 2.000 -0.931 3.461 

C 0.000 0.000 0.000 

FUJITSU VP-200 

i 2.000 2.863 2.000 2.863 3.429 4.867 
C 0.000 0.000 0.000 

3.125 3.905 4.155 3.905 3.905 4.155 4.030 
-1.565 -0.595 -0.845 0.155 0.155 1.310 1.435 

0.345 0.000 0.000 0.000 0.000 0.000 -1.405 

3.200 4.900 5.300 4.900 4.900 5.300 5.100 
0.200 0.100 -0.300 0.700 0.700 2.400 2.600 

-0.500 0.000 0.000 0.000 0.000 0.000 -2.100 

3.200 1.748 8.148 7.748 1.748 8.148 7.948 
5.896 2.948 2.548 3.548 3.548 8.096 8.296 

-3.348 0.000 0.000 0.000 0.000 0.000 -4.948 

3.230 3.995 4.456 3.995 3.995 4.456 4.226 
-1.701 -0.926 -1.387 -0.387 -0.387 0.226 0.456 

0.465 0.000 0.000 0.000 0.000 0.000 -1.074 

3.215 6.863 7.292 6.863 6.863 7.292 7.077 
4.081 2.004 1.575 2.575 2.575 6.150 6.365 

-2.434 0.000 0.000 0.000 0.000 0.000 -4.004 

machines and SIP (l)-(10). The maximum values of E(SIP, n) for each n are 
boxed. The arrows in the next to last column show the tendency of an increase 
(t) or a decrease (1) of E(SIF’, n) when n increases. If IZ + ~0, then 0 (n) + a and 
r(n) + r, = r (r E N), where r is the convergence order of the basic method (in 
parallel fashion). Therefore, E(SIP, ) n += r/a when n + cu (the last column in 
Table V). 

First of all, we observe from Table V that the order of the efficiency of SIP for 
the considered computers, stated according to the values E(SIP, rz), is preserving 
(with slight exceptions) varying n. This fact makes it possible for us to form a 
rating of the methods (l)-(10) related .to their efficiency. Let (E((k,), n), 

E((klO)~ n)) (kj E 119 * . * 9 lOl,j = l, f * * 9 10) be the ordered lo-tuplet whose 
cbiponents satisfy E((&), n) > E((k,), n) > . . . > E((kd, n), and let hE,) = 

(k,, . . . . klo)T be the rating uector of the iterative methods (kl), . . . , (klo) in 
reference to the definition (E,). The vector RcE1) defines the efficiency of SIP for 
a given computer. The rating of the considered methods, related to the given 
computers, for (relatively) small n (say, n 5 10) and for large n (>lO) is shown 
in Table VI. 

Remark 1. We observe from Table VI tE.at there exists slight disagreement in 
the rating of the simultaneous methods for n 5 10 and for large n. The only 
exception is the HONEYWELL computer, but in that case, the differences 
between coefficients of efficiency of the dominant methods (2), (l), (lo), (9), (6), 
and (4) are insignificant-mostly about 4 percent. 

Remark 2. For all considersed computers and for any polynomial degree n, SIP 
(2) is the most efficient, of course, in the sense of definition (E,). Further, we 
ACM Transactions on Mathematical Scdtware, Vol. 12, No. 4, December 1986. 



Table V. The Values of E(SIP, n) Computed by (E,) ( rounded to the third decimal digit) 

n 

SIP 3 4 5 6 7 8 9 10 n-00 

HONEYWELL DPS 6/92 
(1) 1.016 1.012 
(2) 1.181 1.124 
(3) 0.993 0.975 
(4) 1.192 1.113 
(5) 0.809 0.799 
(6) 1.033 1.014 
(7) 0.758 0.761 
(8) 0.890 0.850 
(9) 0.871 0.892 

(10) 1.068 1.033 

VAX 11/780 
(1) 0.870 0.899 
(2) 1.011 0.998 
(3) 0.804 0.822 
(4) 0.980 0.953 
(5) 0.608 0.609 
(6) 0.769 0.766 
(7) 0.584 0.591 
(8) 0.686 0.66 1 
(9) 0.656 0.678 

(10) 0.811 0.790 

IBM 4341 
(1) 0.616 0.681 
(2) 0.716 0.756 
(3) 0.533 0.591 
(4) 0.657 0.687 
(5) 0.344 0.354 
(6) 0.445 0.455 
(7) 0.336 0.347 
(8) 0.394 0.388 
(9) 0.369 0.393 

(10) 0.458 0.457 

CRAY X-MP/2 
(1) 1.001 1.001 
(2) 1.163 1.111 
(3) 0.952 0.923 
(4) 1.159 1.082 
(5) 0.814 0.797 
(‘3 1.002 0.973 
(7) 0.776 0.769 
03) 0.911 0.860 
(9) 0.883 0.886 

(10) 1.092 1.039 

FUJITSU VP-200 
(1) 0.677 0.736 
(2) 0.787 0.818 
(3) 0.594 0.646 
(4) 0.731 0.751 
(5) 0.398 0.407 
(6) 0.512 0.521 
(7) 0.388 0.400 
(8) 0.456 0.447 
(9) 0.428 0.453 

(10) 0.531 0.527 

1.010 1.008 1.007 1.006 1.005 1.005 1 1.000 
1.094 1.076 1.064 1.055 1.048 1.043 1 1.000 
0.964 0.957 0.952 0.948 0.945 0.943 1 0.923 
1.073 1.049 1.034 1.024 1.016 1.010 1 0.960 
0.792 0.788 0.785 0.783 0.781 0.780 1 0.768 
1.004 0.996 0.992 0.988 0.985 0.983 1 0.963 
0.762 0.763 0.764 0.765 0.765 0.765 t 0.768 
0.830 0.818 0.810 0.804 0.799 0.797 1 0.768 
0.906 0.915 0.921 0.926 0.930 0.933 t 0.963 
1.017 1.009 1.005 1.002 0.999 0.998 1 0.993 

0.917 0.930 0.940 0.947 0.952 0.957 T 1.000 
0.994 0.993 0.993 0.993 0.993 0.994 t 1.000 
0.833 0.841 0.847 0.851 0.854 0.857 t 0.882 
0.942 0.937 0.935 0.934 0.933 0.934 t 0.937 
0.610 0.610 0.610 0.611 0.611 0.611 f 0.612 
0.763 0.762 0.761 0.760 0.760 0.759 1 0.755 
0.595 0.598 0.600 0.601 0.603 0.604 t 0.612 
0.648 0.641 0.636 0.632 0.630 0.629 1 0.612 
0.692 0.702 0.709 0.714 0.719 0.722 f 0.755 
0.783 0.780 0.779 0.778 0.777 0.778 t 0.784 

0.727 0.762 0.789 0.810 0.828 0.842 t 1.000 
0.788 0.813 0.833 0.850 0.863 0.874 f 1.000 
0.633 0.664 0.689 0.708 0.724 0.737 f 0.882 
0.714 0.738 0.757 0.773 0.787 0.799 f 0.937 
0.350 0.364 0.367 0.370 0.372 0.373 f 0.387 
0.462 0.467 0.470 0.472 0.474 0.476 f 0.491 
0.355 0.360 0.363 0.366 0.368 0.370 f 0.387 
0.386 0.386 0.385 0.385 0.385 0.386 f 0.387 
0.410 0.421 0.430 0.437 0.442 0.447 t 0.491 
0.461 0.464 0.468 0.471 0.473 0.476 t 0.503 

1.001 1.000 1.000 1.000 1.000 1.000 1 1.000 
1.084 1.068 1.057 1.049 1.043 1.038 1 1.000 
0.916 0.907 0.902 0.897 0.893 0.891 1 0.867 
1.042 1.019 1.004 0.993 0.985 0.979 1 0.929 
0.787 0.781 0.777 0.773 0.771 0.769 1 0.751 
0.957 0.947 0.939 0.934 0.930 0.927 1 0.898 
0.766 0.763 0.761 0.760 0.759 0.758 1 0.751 
0.834 0.818 0.807 0.799 0.793 0.790 1 0.751 
0.888 0.890 0.891 0.892 0.893 0.893 T 0.898 
1.014 0.999 0.990 0.983 0.978 0.974 1 0.947 

0.777 0.807 0.830 0.848 0.863 0.875 T 1.000 
0.842 0.862 0.877 0.889 0.899 0.908 T 1.000 
0.681 0.707 0.727 0.743 0.756 0.766 T 0.875 
0.771 0.788 0.803 0.815 0.825 0.834 T 0.933 
0.413 0.417 0.420 0.422 0.423 0.425 T 0.437 
0.526 0.529 0.532 0.534 0.536 0.537 t 0.549 
0.407 0.411 0.415 0.418 0.420 0.421 f 0.437 
0.443 0.44 1 0.440 0.439 0.439 0.438 1 0.437 
0.469 0.481 0.490 0.496 0.502 0.506 t 0.549 
0.529 0.532 0.535 0.537 0.539 0.541 T 0.565 
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Table VI. The Rating Vectors RtE,) 

HONEYWELL CRAY FUJITSU 
DPS 6/92 VAX 1 l/780 IBM 4341 X-MP/2 VP-200 

- 
large large large large large 

n 5 10 n n$lO n ns10 n n 5 10 n n 5 10 n 

2 2 2 2 2 2 2 2 2 2 
4 1 4 1 1 1 4 1 1 1 

10 10 1 4 4 4 1 10 4 4 
1 9 3 3 3 3 10 4 3 3 
6 6 10 10 6 10 6 6 10 10 
3 4 6 6 10 6 3 9 6 6 
9 3 9 9 9 9 9 3 9 9 
8 8 8 8 8 8 8 8 a 8 
5 5 5 5 5 5 5 5 5 5 
7 7 7 7 7 7 7 7 7 7 

observe that the class of methods of Weierstrass’s type (SIP (l)-(4)) is the most 
powerful (in the order (2), (l), (4), and (3)). Besides, it is obvious from Table VI 
that the methods (7), (5), amd (8) are the least efficient for all considered 
computers. These conclusions have been verified by the experimental results, 
which were based on the CPU times of computers. 

In order to verify the previous results related to the coefficient of the efficiency 
of SIP (l)-(lo), we have performed the analysis of the efficiency of SIP by 
measuring the CPU times corresponding to HONEYWELL DPS 6/92, 
VAX 11/780, and IBM 4341. In this experiment the iterative methods were 
tested on polynomials with degrees ranging from 4 to 15. The (real) zeros 
of those polynomials were normalized to lie in the union of intervals 
[-5.0, -0.51 U [0.5, 5.01. The criterion for stopping any iterative process was 
given by 

(SC) max 1 Xy - [i 1 <: t = lo-‘, 
152 n 

where m is the iteration index and q is the number of correct decimal places in 
the approximations to the zeros &, . . . , &,. Two values of the required accuracy 
t were used, tl = lo-l2 and t;! = 10e3’. To avoid round-off errors and to attain 
very high accuracy of approximations, all programs were realized in multiple- 
precision arithmetic. 

Let Tk be the CPU time necessary that SIP(h)(k E (1, . . . , 10)) satisfies the 
stopping criterion (SC). Further, let Tcprr = ( Tk,, . . . , Tk,J be the ordered 
lo-tuplet of CPU times such that Tmin q = Tk, < Tkz < . . . < Tklo, and let 
tCPU = (tk,, . . . . tk,,,), where tk, is obtained by normalization, tk, = Tk,/Tmi, 
(j = 1, . . .) lo) (consequently, tk, = 1). Now we can correspond to tcpu the 
rating vector RCpU = (kl, . . . , ho) *, which determines the efficiency of 
SIP (l)-(10) related to the CPU times. 

The tests performed on the aforementioned three computing machines have 
demonstrated very good coincidence of the rating vectors RcE,) and RCPU. This 
means that the definition (E1 ) for the coefficient of the efficiency of SIP is really 
applicable and describes a real situation in. practical realization of an iterative 
process on a computer. 
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Table VII. The Normalized CPU Times 

SIP 

Number 
of 

iterations 
required 

for 
accuracy (SC): 61 = lo-i2 (SC): c* = 1o-3o 

HONEYWELL VAX IBM HONEYWELL VAX IBM 
c, 62 DPS 6192 111780 4341 DPS 6/92 11/780 4341 

(1) 4 6 1.0022 1.0031 1.0025 1.2027 1.2037 2.2030 
(2) 4 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
(3) 3 4 1.2143 1.4535 1.4619 1.2952 1.5504 1.5593 
(4) 3 4 1.0474 1.3570 1.2014 1.1173 1.4474 1.2815 
(5) 3 4 1.4408 1.7674 2.1759 1.5369 1.8853 2.3210 
(6) 2 3 1.0054 1.2403 1.5014 1.2065 1.4884 1.8018 
(7) 3 4 1.4089 1.5837 2.1111 1.5028 1.6893 2.2519 
(8) 3 4 1.4072 1.5814 2.1092 1.5010 1.6868 2.2498 
(9) 2 3 1.0459 1.1977 1.6140 1.2551 1.4372 1.9369 
(10) 2 3 1.0109 1.1504 1.5572 1.2131 1.3805 1.8687 

Table VIII. The Rating Vectors Rcpu 

(SC): 61 = lo-l2 (SC): c2 = lo+ 

HONEYWELL HONEYWELL 
DPS 6/92 VAX 11/780 IBM 4341 DPS 6/92 VAX 111780 IBM 4341 

2 2 2 2 2 2 
1 1 1 4 1 1 
6 10 4 1 10 4 

10 9 3 6 9 3 
9 6 6 10 4 6 
4 4 10 9 6 10 
3 3 9 3 3 9 
8 8 8 8 8 8 
7 7 7 7 7 7 
5 5 5 5 5 5 

To demonstrate the above conclusions, we give the normalized CPU times tk, 
for the computers HONEYWELL DPS 6/92, VAX 11/780, and IBM 4341. 
These times have been calculated by normalizing the measured CPU times 
Tk, (j = 1, . . . , 10) applying the iterative methods (l)-( 10) for the determination 
of zeros of the polynomial 

P(x) = 3c5 - 15x4 + 85x3 - 225x2 + 274x - 120 
= (x - 1)(x - 2)(x - 3)(x - 4)(x - 5). 

The initial approximations were correct to one decimal place. The normalized 
CPU times for two SCs, Q = lo-l2 and t2 = 10m3’, are displayed in Table VII. 

According to the values of the normalized CPU times, shown in Table VII, the 
rating vectors RCpU for the tested computers were formed relating to two SCs 
and given in Table VIII. Comparing the rating vectors RcpU and RcE,) (Table VI), 
we notice significant coincidence of the corresponding components of these 
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vectors. For example, eight components of RCpU and RcE,) coincide for the 
IBM 4341 system. This conclusion refers to the above example where n = 5, but 
the same is valid for other n too. 

In conclusion, the definition El for the efficiency index of SIP is practically 
applicable. In particular, this definition a.nd the corresponding rating vectors 
RcE,, can be of interest in designing a package for the simultaneous approximation 
of polynomial zeros, in which automatic procedure selection is desired. 
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