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Abstract
Moment-based methods are used to generate the three-term recurrence
relation for polynomials orthogonal with respect to the Prudnikov, the
generalized Prudnikov, and Prudnikov-type weight functions and their
symmetric extensions. All procedures developed are implemented, and
made available, in Matlab software.
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1 Introduction

Let
pu(z) = 222K, (2/x), x>0, veER,

where K, is the second-kind modified Bessel function of order v ([6, §10.25]).
Prudnikov polynomials [10, §3] are the polynomials orthogonal with respect
to the weight function

(1.1) w,(z) =pu(r), 0<zx<o00, >0
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A. P. Prudnikov (1927-1999) advocated their study in [7, Problem 2] and
dealt with the case v = 0 in [ibid., Problem 1]. S. Yakubovich, in [10],
considered also generalized Prudnikov polynomials orthogonal with respect
to the weight function

(1.2) wy(x) = 2%, (x), 0<zx<oo, a>-—1,

as well as Prudnikov-type polynomials, in [9, §2] of type 1, orthogonal with
respect to

(1.3) wi(x)=e"p,(z), 0<z<o0, v>-1,

v

and in [9, §3] of type 2, orthogonal with respect to
(1.4) wy, (z) =z eV, (x), 0<z<oo, veER.

Symmetric extensions of all these polynomials will also be considered,
where x in the weight function is replaced by |z|, and the support interval is
extended to the whole real line.

Multiple orthogonal polynomials relative to the pair z%p,(x), x%p,+1(x)
of weight functions have been studied in [8]; see also [8], [1], [11, §ITA].

The object of this note is to develop the respective orthogonal polynomi-
als and their symmetric extensions, in particular, to obtain the three-term
recurrence relations they satisfy and to provide related Matlab software. The
approach used in all cases is the classical Chebyshev algorithm, computing
the recurrence coefficients from the moments of the weight function. Because
of the underlying ill-conditioning, high-precision computation is required.

Weight functions involving modified Bessel functions K, (z) (rather than
K,(2y/x)) have been used previously in connection with wave functions for
nonlocal potentials [5]; see also [2, Exercise 2.32], [3, §2.1.3], [4, §2.1.3].

2 Moments

The nth-order moment of the generalized Prudnikov weight function is

(2.1) pp = / 2"wd(z)dr = T(n+a+v+1)(n+a+1), v >0, a> —1,
0



as follows from [10, Eq. (2.4)] where p is replaced by n + «. For the first
Prudnikov-type weight function, the moment of order n is

o =/ 2"w, (v) dx:/ z"e " p,(x) dx:2/ 2" PP K, (2y/7) du,
0 0

0
v>—1.

Using Mathematica 12.3, one finds (cf. also [9, Eq. (1.8)])
pr=nTn+v+1DUMm+v+1,v+1,1),

where U(a,b,z) is the confluent hypergeometric function (also known as
Tricomi’s function) or, in terms of generalized hypergeometric functions,

U(a,b,x) =279 Fy(a,a — b+ 1; —; —z1) [6, §13.6(vi)]. Thus,

For the second Prudnikov-type weight function, the moments have been given
in [9, Eq. (1.9)], though involving (in the last line of the equation) the gamma
function at a nonpositive integer, that is, co. We have, however,

(2.3) ,u;:/ x"w;(x)dx:2/ gtV K (9y/x)de, v ER.
0 0

Here, the second integral can be expressed in terms of the Meijer G-function,
for which we use here the Matlab notation on the right of

m,n R al,ag,...,ap
Gy (z, bi, b, ..., b, )
=meijerG([ay,...,an), [@nt1s---,ap),[b1,- - by [bmtt,- -, 0y), 2)
0<n<p 0<m<yq.
(The content between brackets may be empty. For example, if p = 0, the
first two arguments of meijerG are empty, or only the second one if p = n.)

To begin with, the term on the far right of (2.3) can be written as a Mellin
transform of the function f(z) = 2e~Y*K,(2\/7),

p, = (Mf)(s) = /OO 57 f(x)de, s=n+v/2.

0

Using the Mathematica 12.2 command
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MellinTransform[2 BesselK[v,2Sqrt[x]]Exp[-1/x],x,s]

yields
(2.4)
(M f)(s) = % meijerG ( [1/2,1,(2—2s —v)/4,(4 —2s —v)/4,
(2—=2s+v)/4,(4=2s+v)/4, [ |,[ ][ ],64).
Letting

ap=1, aa=1-5s—-v/2, a3=1—s+v/2 and p=n=3, ¢g=m =0,

the right-hand side of (2.4) is

2p+1—n—a1 —az—as

meijerG ([ a1/2, (a1 +1)/2,a2/2,(as +1)/2,a3/2, (as + 1)/2],

h—p/2
[ LI LT 147),
which, by [6, Eq. 16.19.4] and s = n + v/2, equals
meijerG (a1, as,as3,[ |,[ ], ],1) =meijerG ([1,1—(n+v),1-nl,[],[ |,[].1).

Thus, simplifying by employing [6, Eq. 16.19.1], we get
(2.5) p, =meijerG ([ J,[ ],[0,n +v,n],[ ], 1).

The moments of the symmetric extension of all the weight functions above
are twice the moments stated, if n is even, and zero if n is odd.

3 Orthogonal polynomials and recurrence co-
efficients
It is well known that (monic) orthogonal polynomials 7, relative to a positive

weight function w(z) on some finite or infinite interval [a, b] satisfy a three-
term recurrence relation

(3.1) T () = (2 — ag)m(v) — Bempa(z), £ =0,1,2,...,

T—1 :0, ’7'('0:17
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where the coefficients oy, are real and 5, > 0. Conventionally, 3, is taken to be
Bo = f:w(x)d:v. For any computational work with orthogonal polynomials,
knowledge of this recurrence relation, that is, of its recurrence coefficients, is
indispensable.

There is Matlab software available that generates to any given accuracy
the first N recurrence coefficients oy, Bx, k = 0,1,2,..., N — 1, and places
them into the first, respectively second, column of an N X 2 array ab; see,
e.g., [2, §1]. The procedure used here is the Chebyshev algorithm, gener-
ating the first N recurrence coefficients from the first 2N moments of the
weight function. Given the ill-conditioned nature of this proposition, it is
important to know how many working digits are required to obtain all N
coefficients [ (and thus, presumably, also all ay, # 0) to a given relative
accuracy. For the three weight functions of Prudnikov type, this is an-
swered by the Matlab routines dig_gprudnikov.m, dig_prudnikov_type.m,
and for the respective symmetric extensions by dig gprudnikov_symm.m,
dig prudnikov_type_symm.m. These routines not only provide the desired
number dig of working digits, but also the respective array ab of recur-
rence coefficients to the accuracy requested. Once this number dig of re-
quired working digits is known, the array ab can be generated directly by the
routines sr_gprudnikov.m, sr_prudnikov_type.m, sr_gprudnikov_symm.m,
sr_prudnikov_type_symm.m.

For all Matlab routines needed, visit

https://www.cs.purdue.edu/archives/2002/wxg/codes/PRUD.html.

3.1 Generalized Prudnikov polynomials

Our target precision for the recurrence coefficients, in this and the next two
subsections, is 15-digit accuracy. For generalized Prudnikov polynomials, the
results of the routine dig gprudnikov.m are shown in Table 1 for selected
values of v and for a = £1/2. (Other values of @ > —1, including o = 0,
in the range from —.9 to 10.6, have led to basically the same results, except,
occasionally, somewhat larger ones, but never by more than 3 units.) It
can be seen that, for each N shown, the results are more or less the same,
which means that the underlying conditioning is essentially independent of
the parameters v and «. The results, in fact, suggest condition numbers of
the order 10'° —10'2 when N = 25, 10?® —103° when N = 50, and 10% — 107
when N = 100.



N v a dig || N v o dig|| N v a dig
2 0 -1/2 25|50 0 -—-1/2 43| 100 O —-1/2 78
1/2 25 1/2 44 /2 79

1/3 —1/2 27 1/3 —1/2 45 1/3 —1/2 81

1/2 27 1/2 45 1/2 82

2/3 —1/2 27 2/3 —1/2 45 2/3 —1/2 81

1/2 27 1/2 45 1/2 82

1 -1/2 25 1 —1/2 43 1 -1/2 80

1/2 25 1/2 43 1/2 80

3 —1/2 25 3 —1/2 44 3 —1/2 80

1/2 26 /2 43 1/2 81

6 —1/2 26 6 —1/2 44 6 —1/2 81

/2 26 1/2 43 1/2 81

Table 1: The number dig of digits required in the Chebyshev algorithm
to obtain the first IV recurrence coefficients of the generalized Prudnikov

polynomials to an accuracy of 15 decimal digits

We used our routine sr_gprudnikov(dig,nofdig,N,nu,alpha) with dig
=30, nofdig=18, N=11, nu=alpha=0, to check Table 9.1 in [7] containing
the values of a, = /B, for n = 1,2,...,10. Agreement to all digits was
observed except for the last digit, which occasionally is off by one unit.

3.2 Prudnikov-type polynomials of the first type

Here the results of the routine dig_prudnikov_type.m with type=1 (for the
weight function w;) are shown in Table 2 for selected values of v > —1.
As before in the case of generalized Prudnikov polynomials, the results are
practically independent of v.

The condition numbers for N = 25,50, 100 are now about 10%°, 10%°, and
108, that is, substantially larger than in the case of generalized Prudnikov
weight functions.



N v dig | N v dig || N v dig
25 —2/3 34|50 -2/3 55| 100 -2/3 102
-1/3 35 —-1/3 55 —1/3 102

0 35 0 54 0 100

1/3 35 1/3 95 1/3 102

2/3 35 2/3 95 2/3 102

1 35 1 o4 1 100

3 35 3 o4 3 101

6 35 6 o4 6 101

Table 2: The number dig of digits required in the Chebyshev algo-
rithm to obtain the first N recurrence coefficients of the Prudnikov-

type polynomials of type 1 to an accuracy of 15 decimal digits

N v dig | N v dig || N v dig
25 -6 23150 —6 42 11 100 -6 79
-3 25 -3 42 -3 79

—1 25 -1 43 -1 79
-2/3 26 —2/3 44 -2/3 81
-1/3 26 -1/3 44 -1/3 81

0 24 0 42 0 79

1/3 26 1/3 44 1/3 81

2/3 26 2/3 44 2/3 81

1 24 1 43 1 79

3 26 3 43 3 80

6 25 6 44 6 80

Table 3: The number dig of digits required in the Chebyshev algo-
rithm to obtain the first N recurrence coefficients of the Prudnikov
polynomials of type 2 to an accuracy of 15 decimal digits

3.3 Prudnikov-type polynomials of the second type

Here the results of the routine dig_prudnikov_type.m with type=2 (for the
weight function w;,) are shown in Table 3 for selected values of v € R. They
are quite similar to the ones in §3.1 where applicable, and so is the degree of
ill-contitioning.



Knowing the degree of ill-conditioning, it is easy to estimate the number
of digits needed to get any desired accuracy. Thus, for example, when N =
100, to get 32-digit accuracy will require something like 324+-67=99 digits
in the case of generalized Prudnikov weight functions and Prudnikov weight
functions of type 2, and 324-87=119 digits for Prudnikov weight functions of
type 1. Both these numbers have been corroborated numerically.

3.4 Polynomials orthogonal relative to the symmetric
extension of weight functions of Prudnikov type

Symmetry usually lowers condition numbers. This is the case here, where,
compared with the case of generalized Prudnikov polynomials in subsection
3.1, the number dig of required digits is now about one half of those in
Table 1 when N is 25 and 50, and even somewhat smaller when N = 100.
More specifically, dig is never greater than 16, 22, 35 for, respectively, N =
25,50, 100 and parameters v and « as in Table 1. Similarly, for symmetric
Prudnikov-type polynomials of type 1, the largest numbers dig are 20, 27, 45
for, respectively N = 25,50, 100 and for v as in Table 2, and for symmetric
Prudnikov-type polynomials of type 2 they are 15, 21, 34 for v as in Table
3.
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