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Ser. Math. Inform. 12 (1997), 127–142

ZERO DISTRIBUTION OF POLYNOMIALS ORTHOGONAL
ON THE RADIAL RAYS IN THE COMPLEX PLANE*
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Abstract. In this paper we continue our investigations on polynomials orthog-
onal on the radial rays in the complex plane introduced and discussed in [1–4].
Here, we study zero distribution of these polynomials and locate the regions in
which these zeros are contained. We also analyze the cases when the zeros are
on the rays. Several numerical examples are included.

1. Introduction

One of us (see [1–4]) defined a new inner product as follows: For chosen
lengths and angles

ls ∈ (0, +∞], θs ∈ [0, 2π), s = 0, 1, . . . , m− 1,

let

(1.1) (f, g) =
m−1∑
s=0

ε−1
s

∫

Ls

f(z)g(z)|ws(z)| dz, εs = eiθs ,

where |ws(z)| is a weight function on the radial ray Ls which connects the
origin z = 0 and the point zs = lsεs (0 ≤ s ≤ m− 1). This can be rewritten
in the form

(f, g) =
m−1∑
s=0

∫ ls

0

f(xεs)g(xεs)|ws(xεs)| dx,
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or

(1.2) (f, g) =
∫ 1

0

m−1∑
s=0

lsf(lsεsx)g(lsεsx)|ws(lsεsx)| dx.

Because of

‖f‖2 = (f, f) =
m−1∑
s=0

∫ ls

0

|f(xεs)|2|ws(xεs)| dx > 0

except for f(z) ≡ 0, we conclude that this inner product is positive-definite.
Thus, one can construct the corresponding orthogonal polynomial sequence
{πN (z)}+∞N=0, for example by using Gram-Schmidt orthogonalizing process.
It implies the existence and uniqueness of such polynomial sequence.

In papers [1–4], we discussed the recurrence relations, associated matrix
polynomials for these sequences of the polynomials, and in some special
cases, we found generating functions, differential equations, some represen-
tations and connections with some standard polynomials orthogonal on the
real line.

If we rotate the whole figure of the rays, we can notice some interesting
properties.

Theorem 1.1. Let α be an angle in (−π, π] and let the rays L0, L1, . . . ,
Lm−1, after a rotation for the angle α, become Lα

0 , Lα
1 , . . . , Lα

m−1, respec-
tively. Then, the sequence {πα

N (z)}+∞N=0 orthogonal with respect to the inner
product

(
f, g

)
α

=
m−1∑
s=0

e−iαε−1
s

∫

Lα
s

f(z)g(z)|ws(ze−iα)| dz

can be expressed by
πα

N (z) = πN (ze−iα),

where the polynomials {πN (z)}+∞N=0 are orthogonal with respect to (1.1).

Proof. Let {πN (z)}+∞N=0 be orthogonal polynomials with respect to (1.1).
Then, we have

(
πK(e−iαz), πN (e−iαz)

)
α

=
m−1∑
s=0

e−iαε−1
s

∫

Lα
s

πK(e−iαz)πN (e−iαz)|ws(ze−iα)| dz.
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After changing variable u = ze−iα, we get

(
πK(ze−iα), πN (ze−iα)

)
α

=
m−1∑
s=0

ε−1
s

∫

Ls

πK(u)πN (u)|ws(u)| du,

i.e., (
πK(ze−iα), πN (ze−iα)

)
α

=
(
πK(u), πN (u)

)
.

Because of the uniqueness of orthogonal polynomials (up to a multiplicative
constant), we conclude that the statement is valid. ¤
Corollary 1.2. The zeros of πα

N (z) are obtained from the zeros of πN (z) by
the rotation for the angle α.

Proof. Let ζ be a zero of the polynomial πN (z), i.e., πN (ζ) = 0. According
the previous theorem, we find

πα
N (eiαζ) = πN (ζ) = 0,

i.e, ζeiα is a zero of the polynomial πα
N (z). ¤

Zeros of polynomials πN (z) and πα
N (z)

Example 1.1. Consider two rays in the complex plane whose ends are at
the points

z0 = 3 eiπ/6 and z1 =
3
2

ei5π/18 (see Figure 1.1).

The zeros of polynomials πN (z) orthogonal on these rays, with respect to the
weights ws(z) = 1 (s = 0, 1), for N = 1, 2, . . . , 10, are in the sector between
these rays (see Figure 1.1). The case after a rotation of the rays for α = π/2
is also presented in the same figure. The corresponding zeros of polynomials
πα

N (z), for N = 1, 2, . . . , 10, can be obtained from the zeros of πN (z) by a
rotation by the same angle α = π/2.

The previous simple statements will be very useful in the next section.
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2. Location of the Zeros

We start with a general case of orthogonality on the rays.

Theorem 2.1. The polynomial πN (z) (N > 0) orthogonal with respect to
(1.1) has all zeros in the minimal rectangular cover of the radial rays with
edges parallel with the coordinate axes,

R =
{
z ∈ C : a1 < Re(z) < a2 ∧ b1 < Im(z) < b2

}
,

where
a1 = min

cos θs≤0
ls cos θs, a2 = max

cos θs≥0
ls cos θs,

and
b1 = min

sin θs≤0
ls sin θs, b2 = max

sin θs≥0
ls sin θs.

Proof. Suppose that ζ is a zero of πN (z). Then we can write

πN (z) = (z − ζ)rN−1(z), rN−1(z) ∈ PN−1.

Because of the orthogonality, we have

0 =
(
πN (z), rN−1(z)

)
=

m−1∑
s=0

ε−1
s

∫

Ls

(z − ζ)rN−1(z)rN−1(z)|ws(z)| dz = 0,

i.e.,
m−1∑
s=0

ε−1
s

∫

Ls

(z − ζ)|rN−1(z)|2|ws(z)| dz = 0.

Using notation as in (1.2), we yield
∫ 1

0

m−1∑
s=0

ls(lsεsx− ζ)|rN−1(lsεsx)|2|ws(lsεsx)| dx = 0.

Since the real and imaginary part of the integral on the left must be equal
to zero, we have

∫ 1

0

m−1∑
s=0

(xls cos θs −A)ls|rN−1(xlsεs)|2|ws(xlsεs)| dx = 0

and ∫ 1

0

m−1∑
s=0

(xls sin θs −B)ls|rN−1(xlsεs)|2|ws(xlsεs| dx = 0,
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where A = Re(ζ) and B = Im(ζ). It means that the functions

F (x) =
m−1∑
s=0

(xls cos θs −A)ls|rN−1(xlsεs)|2|ws(xlsεs)|

and

G(x) =
m−1∑
s=0

(xls sin θs −B)ls|rN−1(xlsεs)|2|ws(xlsεs)|

change their signs in x ∈ (0, 1). In order to conclude that the zeros are in
R, we suppose contrary.

At first, we suppose that A ≥ a2 = max
{
ls cos θs : cos θs ≥ 0

}
. Then,

for every s and x ∈ (0, 1), we have A ≥ ls cos θs > xls cos θs. But, because
of A−xls cos θsx > 0, we conclude that F (x) < 0, for x ∈ (0, 1), which gives
a contradiction (F (x) changes the sign in (0, 1)). Thus, A < a2.

In the same way we prove A > a1 and b1 < B < b2. ¤
Example 2.1. Consider a case with four rays determined by

z0 = 2eiπ/3, z1 =
5
2
ei5π/18, z2 = 2ei4π/3, z3 = 3ei11π/6.

The zeros of polynomials πN (z) orthogonal on these rays, with respect to the
weights ws(z) = 1 (s = 0, 1, 2, 3), for N = 1, 2, . . . , 10, are in a rectangular
cover (see Figure 2.1).

Zeros of polynomials πN (z), for N = 1, 2, . . . , 10.
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Theorem 2.2. Let z0 = l0e
iθ0 , z1 = l1e

iθ1 be the endpoints of the radial
rays L0 i L1, respectively, and let

(2.1) (f, g) = e−iθ0

∫

L0

f(z)g(z)|w0(z)|dz + e−iθ1

∫

L1

f(z)g(z)|w1(z)|dz,

where |w0(z)| and |w1(z)| are weight functions on these rays. Then all zeros
of the polynomial πN (z), orthogonal with respect to the inner product (2.1),
are in the triangle Oz0z1.

Proof. Using notation from Corollary 1.2 we find three rectangles which
contain all zeros of πN (z).

(a) If we rotate the whole figure of the rays L0 and L1 for the angle α0,
such that z

(α0)
0 belongs to the positive part of the real axes. Now, all zeros

of the polynomial π
(α0)
N (z) orthogonal on the new rays L

(α0)
0 , L

(α0)
1 belong

to the minimal rectangular cover of the rays P
(α0)
0 , whose one of the edges

contains L
(α0)
0 .

(b) If we rotate the whole figure of the rays L0 and L1 for the angle α1,
such that z

(α1)
1 belongs to the positive part of the real axes. Now, all zeros

of the polynomial π
(α1)
N (z) orthogonal on the new rays L

(α1)
0 , L

(α1)
1 belong

to the minimal rectangular cover of the rays P
(α1)
1 , whose one of the edges

contains L
(α1)
1 .

(c) Finally, if we rotate the whole figure of the rays L0 and L1 for the angle
α2, such that z

(α2)
0 z

(α2)
1 belongs to the line parallel to the real axes. Now,

all zeros of the polynomial π
(α2)
N (z) orthogonal on the new rays L

(α2)
0 , L

(α2)
1

belong to the minimal rectangular cover of the rays P
(α2)
2 , whose one of the

edges contains z
(α2)
0 z

(α2)
1 .

Rotating figures obtained in (1), (2) and (3) back to the starting position,
we rotate also the zeros of the polynomials π

(αk)
N (z), k = 0, 1, 2, and their

covers to the corresponding rectangles P0, P1, P2, which contain all zeros
of the polynomial πN (z). An intersection of these rectangles is the interior
of the triangle Oz0z1. ¤

Example 2.2. We consider again the case of rays from Example 1.1. The
rectangles P0, P1, P2, mentioned in the proof of Theorem 2.2, are presented
in Figures 2.2a, 2.2b, and 2.2c.
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2.2a2.2b2.2c

Theorem 2.3. All zeros of the polynomial πN (z), N ∈ N, orthogonal with
respect to (1.1) lie in the convex hull which contains the rays.

Proof. Denote the rays by Lk, k = 0, 1, . . . , m−1 and their endpoints by
zk, k = 0, 1, . . . , m− 1.

Let Lk0 be the longest ray. If exists, the point zk1 (k1 > k0) such that
the line zk0zk1 does not have an intersection with any ray from the set
Lj , j = 0, 1, . . . ,m− 1, we rotate the whole ray-figure for the angle α0 such
that the line z

(α0)
k0

z
(α0)
k1

is parallel with the real axes. Then, all zeros of the

polynomial π
(α0)
N (z) lie in rectangle P

(α0)
0 whose one edge contains z

(α0)
k0

z
(α0)
k1

.

Also, if exists the endpoint zk2 (k2 < k0) such that the line zk0zk2 does
not have an intersection with any ray from the set Lj , j = 0, 1, . . . , m − 1,
we rotate the whole ray-figure for the angle α1 such that the line z

(α1)
k0

z
(α1)
k2

be parallel with the real axes. Then, all zeros of the polynomial π
(α1)
N (z) lie

in rectangle P
(α1)
1 whose one edge contains z

(α1)
k0

z
(α1)
k2

.
We repeat the whole procedure for the points zk1 and zk2 , and the next

points, respectively. So, we find rectangles P
(αj)
j , j = 0, 1, . . . , which contain

all zeros of the polynomials π
(αj)
N (z), j = 0, 1, . . . . By a rotation to the

starting position of the figure, we yield the rectangles Pj , j = 0, 1, 2, . . . ,
which contain all zeros of the polynomial πN (z). Their intersection is a
convex hull, containing all zeros of πN (z). The vertices of this convex hull
are the tops of those rays which hold on its convexity. ¤
Example 2.3. Consider the case of the radial rays Ls determined the points
zs = lse

iθs (s = 0, 1, . . . 7), where

ls 1 2 3 1 4 5 3 2
θs π/18 π/9 π/6 2π/9 5π/18 π/3 7π/18 4π/9
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Some zeros of the polynomials πN (z), N = 1, 2, . . . , 10, are out of the
regions which are determined by tops of successive rays (see Figure 2.3).
But, all zeros lie in the convex hull over the rays.

We consider now the case of m rays on the real line determined by

zs = ls (s = 0, 1, . . . , ν − 1) and zs = −ls (s = ν, . . . ,m− 1),

where 0 < ν < m − 1. Let w(x) be a weight function on the real line. The
polynomials πN (x) orthogonal with respect to the inner product

(f, g) =
ν−1∑
s=0

∫ ls

0

f(x)g(x)w(x) dx +
m−1∑
s=ν

∫ 0

−ls

f(x)g(x)w(x) dx

can be treated in an usual sense. Namely, taking the intervals on the real
line R,

∆s = [0, ls] (s = 0, 1, . . . , ν − 1) and ∆s = [−ls, 0] (s = ν, . . . , m− 1),

and the characteristic function of a set ∆s, defined by

χ(∆s; t) =
{

1, t ∈ ∆s,

0, t /∈ ∆s,

the previous inner product can be represented as

(f, g) =
∫

R
f(x)g(x)Ω(x) dx,
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where

Ω(x) = w(x)
m−1∑
s=0

χ(∆s;x).

It is easy to see that polynomials πN (x) has all zeros in the interval (a, b),
where

a = − max
ν≤s≤m−1

ls, b = max
0≤s≤ν−1

ls.

Remark 2.1. Using the characteristic function of a set, the case of several rays
with the same angle can be replaced only with one ray by the same angle.

3. The Case of Equidistant Angles

In this section, we study the case of equal angles between successive rays,
i.e.,

εs = ei2πs/m, s = 0, 1, . . . ,m− 1,

with an inner product defined by

(3.1) (f, g) =
m−1∑
s=0

ls

∫ 1

0

f(xlsεs)g(xlsεs)|ws(xlsεs)| dx.

Theorem 3.1. Let m = pq (p, q ∈ N) and let the lengths and the weights
of the radial rays be p-periodical, i.e.,

(3.2) ls+kp = ls, |ws+kp(xls+kpεs+kp)| = |ws(xlsεs)|,

where 0 ≤ s ≤ p−1, k = 1, 2, . . . , q−1. Then the polynomial πN (z) (N > 0)
has the property

πN (zεp) = εN
p πN (z), N = 0, 1, . . . .

Proof. Let πN (z) be the (monic) polynomial of degree N orthogonal with
respect to the inner product (3.1). Then

(πN , g) =
m−1∑
s=0

ls

∫ 1

0

πN (xlsεs)g(xlsεs)|ws(xlsεs)|dx = 0,

for any g(z) ∈ PN−1.
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For a given p, we put QN,p(z) = ε−N
p πN (zεp) and Hp(z) = g(zεp). Evi-

dently, the polynomial QN,p(z) is monic. We have

(QN,p,Hp) =
m−1∑
s=0

ls

∫ 1

0

QN,p(xlsεs)Hp(xlsεs)|ws(xlsεs)| dx

=
m−1∑
s=0

ls

∫ 1

0

ε−N
p πN (xlsεpεs)g(xlsεsεp)|ws(xlsεs)| dx

= ε−N
p

m−1+p∑

k=p

lk

∫ 1

0

πN (xlkεk)g(xlkεk)|ws(xlsεs)| dx

= ε−N
p (πN , g) = 0,

because of εm+k = εk.
Since Hp(z) can be every polynomial in PN−1, we conclude that QN,p(z)

is an orthogonal (monic) polynomial with respect to (3.1). Finally, from the
uniqueness of πN (z) it follows that ε−N

p πN (zεp) = πN (z). ¤
Theorem 3.2. Under the assumptions (3.2), if ξ is a zero of πN (z), then
its zeros are also ξεkp, k = 1, 2, . . . , q − 1.

Example 3.1. Consider a case of m = 16 radial rays Ls: zs = lse
iθs (s =

0, 1, . . . , 15) in the complex plane, whose lengths are given by l4k+ν = 2ν +
1, ν, k = 0, 1, 2, 3, and arguments by θs = sπ/8, s = 0, 1, . . . , 15 (Figure
3.1).

As we can see, the complete figure can be obtained by using only 4 succes-
sive rays. Namely, such a sub-figure constituted by 4 rays, should be rotated
3 times by the angles kπ/2, k = 1, 2, 3. Also, we see that for a zero in the
first sub-figure there exist the corresponding zeros in the other sub-figures
obtained by rotations.Now, we discuss the cases when the zeros stay on the rays.

Theorem 3.3. Let the conditions (3.2) hold for p = 1 or p = 2. Then the
polynomial πN (z) (N > 0) orthogonal on the radial rays Ls with respect to
the inner product (1.2) has all zeros on the rays Ls (s = 0, 1, . . . , m− 1).

Proof. Let ζ0 = ρeiα be a zero of πN (z). According to the previous
theorem, its zeros are also ζk = ζ0εkp, k = 1, . . . , q − 1, where q = m/p.
Hence

q−1∏

k=0

(z − ζk) = zq − ζq
0 .
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Zeros of polynomials πN (z) orthogonal on equidistant rays

Then the polynomial πN (z) we can write in the form

πN (z) = (zq − ζq
0)rN−q(z),

where rN−q(z) is a polynomial from PN−q. Because of orthogonality, we
have

0 = (πN , rN−q) =
m−1∑
s=0

ε−1
s

∫

Ls

(zq − ζq
0)rN−q(z)rN−q(z)|ws(z)| dz,

i.e.,

0 =
m−1∑
s=0

ls

∫ 1

0

[(
xlsεs

)q − ζq
0

]|rN−q(xlsεs)|2|ws(xlsεs)|dx.

The real and imaginary part of the previous integral become

m−1∑
s=0

ls

∫ 1

0

[
(xls)q cos

(2π

m
sq

)− ρq cos(αq)
]
|rN−q(xlsεs)|2|ws(xlsεs)| dx = 0

and

m−1∑
s=0

ls

∫ 1

0

[
(xls)q sin

(2π

m
sq

)− ρq sin(αq)
]
|rN−q(xlsεs)|2|ws(xlsεs)| dx = 0,
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respectively. Now, we consider two cases: p = 1 and p = 2.
Case p = 1. The previous relations become

m−1∑
s=0

ls

∫ 1

0

(
(xls)m − ρm cos(αm)

)
|rN−m(xlsεs)|2|ws(xlsεs)| dx = 0

and

−ρm sin(αm)
m−1∑
s=0

ls

∫ 1

0

|rN−m(xlsεs)|2|ws(xlsεs)| dx = 0.

From the second one we find α = πν/m, ν ∈ N0. But, if ν is an odd
number, the first relation reduces to

m−1∑
s=0

ls

∫ 1

0

(
(xls)m + ρm

)
|rN−m(xlsεs)|2|ws(xlsεs)| dx = 0,

what is impossible because of positivity of the integrand. Thus, ν must be
an even number (ν = 2s), so that α = 2πs/m, s ∈ N0.

Case p = 2. The second relation immediately gives sin(αm/2) = 0, i.e.,
α = 2πs/m, s ∈ N0.

Thus, we can conclude that an arbitrary zero ζ0 = ρeiα of πN (z) may
have the argument α from the set of the arguments of the rays only. Also,
using Theorem 2.3 on the convex hull of the zeros, we conclude that the
zeros of πN (z) are on the rays. ¤
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Example 3.2. Consider radial rays in the complex plane determined by
zs = lse

iθs , s = 0, 1, . . . 5, where l2s = 1, l2s+1 = 2, s = 0, 1, 2, and θs =
sπ/3, s = 0, 1, . . . 5. Let w(z) ≡ 1. Zeros of the corresponding orthogonal
polynomials πN (z), N = 1, 2, . . . , 10, are on the radial rays (see Figure 3.2).

Example 3.3. Let again w(z) ≡ 1. The zeros of polynomials πN (z), N =
1, 2, . . . , 10, orthogonal on the radial rays in the complex plane, whose ends
are at the points zs = lse

iθs (s = 0, 1, 2, 3, where l0 = l2 = 3, l1 = l3 = 2,
and θs = πs/2, s = 1, 2, 3, 4, are also on the rays (see Figure 3.3).

Some zeros of πN (z) are outside the rays

Example 3.4. Now, we consider three equidistant rays Ls: zs = e2isπ/3,
s = 0, 1, 2, but with different weights

|ws(xεs)| = xαs(1− x)βs , s = 0, 1, 2,

where
(α0, β0) = (1, 2), (α1, β1) = (3, 4), (α2, β2) = (5, 6).

The zeros of polynomials πN (z), N = 1, 2, . . . , 11, orthogonal on these radial
rays are displayed in Figure 3.4. Evidently, in this case, there are zeros
outside the rays.
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4. A Complete Symmetric Case

Now we consider a complete symmetric case, i.e., when ls = l, εs =
ei2πs/m, 0 ≤ s ≤ m− 1, and

|ws(xεs)| = w(x), x ∈ (0, l), s = 0, 1, . . . , m− 1.

Then the inner product (1.1) reduces to

(4.1) (f, g) =
∫ l

0

(
m−1∑
s=0

f(xεs)g(xεs)

)
w(x) dx.

For the zeros of πN (z) we can prove:

Theorem 4.1. All zeros of the polynomial πN (z), orthogonal with respect
to (4.1), are simple and located on the radial rays, with possible exception
of a multiple zero in origin z = 0 of the order ν (0 < ν < m), if N ≡ ν
(mod m).

Proof. In Theorem 3.3, we proved that the zeros of πN (z) are on the rays.
In the paper [1], it was proved that the polynomial πN (z) can be expressed
in the form πN (z) = zνq

(ν)
n (zm), ν ∈ {0, 1, . . . , m − 1}, where q

(ν)
n (t) is

orthogonal on (0, lm) with respect to a positive weight. It is well known
that the zeros of q

(ν)
n (t) are real and distinct and are located in (0, lm). Let

τ
(n,ν)
k , k = 1, . . . , n, denote the zeros of q

(ν)
n (t) in an increasing order

τ
(n,ν)
1 < τ

(n,ν)
2 < · · · < τ (n,ν)

n .

Each zero τ
(n,ν)
k generates m zeros

z
(n,ν)
k,s = m

√
τ

(n,ν)
k ei2πs/m, s = 0, 1, . . . ,m− 1,

of πN (z). On every ray we have

|z(n,ν)
1,s | < |z(n,ν)

2,s | < · · · < |z(n,ν)
n,s |, s = 0, 1, . . . ,m− 1.

Also, πN+1(z) and πN (z) separate their zeros on the rays. ¤
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5. Numerical Calculations

In the previous examples we used a method for numerical determination
of polynomial zeros. The method was based on the following facts.

Let {πN (z)}+∞N=0 be a sequence of orthogonal polynomials with respect
to the inner product (1.2). Such polynomials can be expressed by linear
relations

zπk(z) =
k∑

j=0

βkjπj(z) + πk+1(z), k = 0, 1, . . . , N − 1,

where

βkj =
(zπk, πj)
(πj , πj)

.

In the matrix form, it can be represented as

(5.1) zπN (z) = BNπN (z) + πN (z)eN ,

where

(5.2) BN =




β00 1 0 · · · 0
β10 β11 1 0
...

. . .
βN−1,0 βN−1,1 βN−1,N−1




and

πN (z) = [π0(z), π1(z), . . . , πN−1(z)]T , eN = [0, 0, . . . , 0, 1]T .

For the zeros ξj (0 ≤ j ≤ n) of πN (z), (5.1) reduces to the eigenvalue problem

ξjπN (ξj) = BNπN (ξj).

Thus, ξj are eigenvalues of the matrix BN and πN (ξj) are the corresponding
eigenvectors.

In numerical evaluation of the inner product (1.2) we use, in general case,
m Gaussian n-point quadrature rules with respect to the weight functions
Ωs(x) = |w(lsεsx)| on (0, 1), i.e.,

∫ 1

0

F (x)Ωs(x) dx ∼=
n∑

i=1

W
(s)
i F

(
x

(s)
i

)
(s = 0, 1, . . . , m− 1),
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in order to get a discretized approximation of this product. In this way, we
obtain

(f, g) =
∫ 1

0

m−1∑
s=0

lsf(lsεsx)g(lsεsx)Ωs(x) dx(5.3)

∼=
m−1∑
s=0

ls

n∑

i=1

W
(s)
i f

(
lsεsx

(s)
i

)
g
(
lsεsx

(s)
i

)
.

The number of nodes n should be taken so that the elements βkj in the
matrix (5.2) can be computed exactly, except for rounding errors. For that,
it is enough to take n = N .

Of course, in the simplest case (Legendre case) we take only one Gaussian
formula, i.e., Gauss-Legendre rule on (0, 1). Then (5.3) becomes

(f, g) ∼=
n∑

i=1

Wi

m−1∑
s=0

lsf(lsεsxi)g(lsεsxi),

where xi and Wi (i = 1, . . . , n) are Gauss-Legendre nodes and weights on
(0, 1), respectively.

Finally, for computing the eigenvalues of the upper Hessenberg matrix BT
N

(zeros of πN (z)) we use the EISPACK routine COMQR [5, pp. 277–284].
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orthogonal polynomials on the radial rays in the complex plane, II. Facta
Univ. Ser. Math. Inform. 11 (1996), 29–47.

5. B.T. Smith et al.: Matrix Eigensystem Routines – EISPACK Guide. Lect.
Notes Comp. Science Vol. 6, Springer Verlag, Berlin – Heidelberg – New
York, 1976.



Zero Distribution of Polynomials Orthogonal on the Radial Rays . . . 143

Faculty of Electronic Engineering
Department of Mathematics, P.O. Box 73
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