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Abstract: In this paper, we consider the problem of feature selection for multi-label data. Multi-label feature
selection is a process of finding the appropriate subset of features that allows multi-label classifiers to find
better solutions in a shorter amount of time. For this purpose, we developed the Bee Colony Optimization
algorithm based on mutual information and compared it with other metaheuristics from literature, i.e. Ant
Colony Optimization and Memetic Algorithm. After testing it on several benchmark instances, we concluded
that our approach outperforms the other two methods.
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1. INTRODUCTION

In recent years, machine learning (ML) and data mining techniques have become invaluable tools in business,
medicine, in banking and finance, and many other professional areas. With the evergrowing amount of data and
its dimensionality, it is becoming increasingly important to properly select the appropriate subset of features
that will allow the aforementioned techniques to provide users with good quality predictions in a reasonable
amount of time.

The Feature Selection (FS) problem aims at reducing the dimensionality of the data by removing less
relevant features. Multi-label FS is a more general case of FS, in the sense that each object in the data can have
multiple labels associated with it. There are two ways of approaching this problem: transforming the multi-label
data into single-label data and applying classical FS, or constructing algorithms that can directly deal with
multi-label data. In both cases, there are three main types of methods: filter, wrapper, and embedded methods.
Filter methods use statistical techniques to reduce the number of features, without evaluating the result with
some specific ML model. In contrast, wrapper methods use ML models to evaluate every considered solution.
Embedded methods reduce the number of features during the learning process itself. In this paper, we are only
interested in wrapper methods, or, more precisely metaheuristics.

The main contribution of this paper is in the development of the Bee Colony Optimization (BCO) algorithm
for the multi-label FS problem. We also presented a stochastic way of adding and removing features from the
current solution, that can be utilized in other metaheuristics as well.

This paper is organized as follows: In Section 2 we present the formulation of the problem, followed by the
relevant literature in Section 3. In Section 4 we provide a detailed description of our method, and in Section 5
we present the results of experimental evaluation.

2. PROBLEM FORMULATION

Multi-label Feature Selection (MLFS) problem can be formulated in the following manner:

▶ Definition 1. Let D be a dataset where each row has a finite set of features S = {s1,s2, · · · ,sn} and M is a
specific machine learning model. The objective is to determine a feature subset Sk of size k (k < n) where

max
Sk⊂S

Accuracy(M (D[Sk])) , (1)

D[Sk] being the transformation of the original dataset. Only the features from Sk are present in D[Sk].

The function accuracy can be defined as follows.

▶ Definition 2. Let us assume that dataset D consists of n test instances (xi,Yi), i = 1...n, where Yi is a subset
of labels associated with instance xi. We will denote the predicted set of labels as Zi for each test instance. We
define classification accuracy as:
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Accuracy =
1
n

n

∑
i=1

I(Zi = Yi) (2)

where I(true) = 1 and I( f alse) = 0.

We can substitute the function Accuracy for any other appropriate multi-label metric, such as Hamming-Loss
or Precision. Some of these metrics are described in a paper by Tsoumakas et al. (2009) [16].

3. RELATED WORK

There have been several attempts during recent years to apply metaheuristic methods to multi-label feature
selection.

One of the first papers published on this topic was by Zhang et al. (2009) [18], who used the Principal
Component Analysis (PCA) to reduce the number of irrelevant features before applying a Genetic algorithm
(GA). Shao et al. (2013) [14] used mutation-based simulated annealing (SA), combined with GA and greedy
hill-climbing algorithm. Similarly to [18], Yu et al. (2014) [17] discarded irrelevant features by using a forward
search strategy, before applying the GA. In research by Lee and Kim (2015) [8], a Memetic algorithm (MA) is
proposed, using a local search based on mutual information. Jungjit and Freitas (2015) [7] used a basic GA but
introduced a different fitness function based on the correlation between features and labels and between pairs of
features. Particle Swarm Optimization (PSO) is utilized by Zhang et al. (2017) [19] for MLFS, combined with
a local learning strategy. In a study by Dowlatshahi et al. (2017) [5], the authors proposed a novel approach
called Epsilon-Greedy Swarm Optimizer. Paniri et al. (2019) [13] utilized the Ant Colony Optimization (ACO)
algorithm for MLFS.

4. PROPOSED METHOD

In this paper, we propose the Bee Colony Optimization based on the improvement concept (BCOi) for finding
a satisfactory solution to MLFS. BCO is a stochastic, nature-inspired, population based metaheuristic, first
introduced by Lučić and Teodorović [9, 10, 11], and since then it has been successfully applied to many
optimization problems [1, 3, 4]. A more detailed description of the algorithm and its application can be found in
papers [2, 15].

Firstly, we adopt the function Q( f ) from paper [8] for evaluating the influence of features on the current
solution (Equation 3). In this function, f stands for a specific feature we want to evaluate, Y is a set of all labels,
and Sk is the set of already selected features. The function I( f ,h) is approximated mutual information, presented
in Equation 4. H( f ) represents the entropy of variable f , while H( f ,h) is the joint entropy of variables f and h.
With this in mind, we can construct stochastic methods for adding and removing features from the solution.

Q( f ) = ∑
y j∈Y

I( f ,y j)− ∑
f j∈Sk

I( f , f j) (3)

I( f ,h) = H( f )+H(h)−H( f ,h) (4)

When adding a new feature, we first evaluate every feature f that is not present in the current solution,
by calculating the Q( f ). Instead of adding the feature with the best (highest) value of Q( f ), we opted for a
stochastic approach, inspired by the GRASP metaheuristic [6]. Therefore, we detect α best features and choose
one of them at random to add it to the current solution. This method is presented in Algorithm 1. Likewise, we
remove a feature from the current solution in a similar manner, by calculating Q( f ) for all of the features present
in the current solution, detecting α of those with the lowest value, and choosing one at random (Algorithm 2).
The value of α is provided as a hyperparameter.
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Algorithm 1 Procedure that adds a feature into the set of selected features
1: procedure ADD_FEATURE( f eatures, α)
2: A ← F \ f eatures

▷ F is the set of all the possible features
3: for ∀ f ∈ A do
4: Evaluate Q( f )
5: end for
6: f ← randomly choose one of α best evaluated features ▷ Higher Q( f ) indicates a better feature
7: f eatures ← f eatures∪{ f}
8: return f eatures
9: end procedure

Algorithm 2 Procedure that removes a feature from the set of selected features
1: procedure DEL_FEATURE( f eatures,al pha)
2: for ∀ f ∈ f eatures do
3: Evaluate Q( f )
4: end for
5: f ← randomly choose one of α worst evaluated features ▷ Lower Q(f) indicates a worse feature
6: f eatures ← f eatures\{ f}
7: return f eatures
8: end procedure

In Algorithm 3, we provided an overall structure of our BCOi algorithm. First, we initialize all the bees
with a starting solution (Line 2). The starting solution is generated by randomly choosing one feature and then
calling ADD_FEATURE procedure (n−1) times, where n is the preset number of features in the solution. After
each bee is initialized with a solution and each solution is evaluated, the best solution among them is memorized
(Line 4). The evaluation is performed by transforming the dataset so that it consists only of features present
in the solution, invoking the Multi-label K-nearest neighbors algorithm on the testing part of the dataset, and
applying the aforementioned metric to the results. The main part of the algorithm consists of two steps, repeated
iteratively: forward pass (Lines 6-12) and backward pass (Lines 13-16). During the forward pass, each bee
transforms its solution, evaluates it, and if it proves better than the current best solution, the newfound solution
becomes the new current best solution. The transformation of a solution is done by applying ADD_FEATURE
function k times, followed by invoking DEL_FEATURE function k times. The argument k is determined
dynamically, based on the number of consecutive iterations in which none of the bees found a new best solution.
The idea for this approach comes from the Variable Neighborhood Search metaheuristic (VNS) [12], where the
size of the neighborhood is increased after each non-improving iteration. In the backward pass of the algorithm,
each bee decides whether it is going to stay loyal to its solution and explore it further, or to adopt a solution
from some other bee. The probability of a bee staying loyal to its solution is calculated as:

pi =
vi − vmin

vmax − vmin
(5)

where vi is the quality of the solution of the i− th bee, vmax and vmin are qualities of the best and the worst
solutions among all the bees, respectively. This way, we can guarantee that at least one bee is going to stay loyal
to its solution. After each bee decided on its loyalty, the bees that abandoned their solution have to choose some
loyal bee and adopt its solution (Line 16). The probability of each loyal bee being selected is calculated as:

pi =
vi

∑v j∈Bl
v j

(6)

where vi is the quality of the solution of the i− th bee and Bl is the set of loyal bees. Therefore, a loyal bee
with a better solution has a higher chance of recruiting disloyal bees. Finally, in order to prevent the algorithm
from being stuck in the local optimum, we introduce the concept of reinitialization after a certain number of
iterations without any improvement (Line 23).
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Table 1: The selected parameter values

ACO MA BCOi

number_of_ants = 25 population_size = 15 number_of_bees = 30
β = 0.8 v = 500 α = 5
ρ = 0.1 h = 15 kmax = 5

crossover_probability = 0.5
mutation_probability = 0.1

Algorithm 3 Bee Colony Optimization
1: procedure BCO(number_o f _bees, α, kmax)
2: bees ← initialize(number_o f _bees,α)
3: k ← 1
4: best_solution ← f ind_best(bees)
5: while stopping criterion is not met do
6: for ∀b ∈ bees do ▷ Forward pass
7: trans f orm(b,α,k)
8: value ← evaluate(b)
9: if value > evaluate(best_solution) then

10: best_solution ← b
11: end if
12: end for
13: for ∀b ∈ bees do ▷ Backward pass
14: decide_loyalty(b)
15: end for
16: recruitment(bees)
17: if there was an improvement then
18: k ← 1
19: else
20: k ← k+1
21: end if
22: if k > kmax then
23: bees ← initialize(number_o f _bees,α)
24: end if
25: end while
26: return best_solution
27: end procedure

5. EXPERIMENTAL EVALUATION

To evaluate our approach, we implemented three algorithms in total: ACO presented in [13], MA presented in [8],
and our own method (BCOi). All three algorithms were written in Python programming language and executed
on a personal laptop with an Intel i7-10750H CPU and 32GB of RAM, under the Ubuntu 20.04 operating
system. The algorithms were tested on four benchmark datasets for multi-label classification, available at
https://www.uco.es/kdis/mllresources/. Since some of the datasets contained features with continuous
values, those features were first discretized by dividing the interval into 10 bins. Each test was repeated 30 times
with a different value for the random number generator seed.

The values of parameters were determined by using the iRace1 package for R programming language with a
budget of 200 tests. The meaning behind the parameters for ACO and MA can be found in the papers in which
these methods were originally proposed for MLFS. In Table 1 we present the obtained values for each parameter.

As a stopping criterion, we used a limit of 500 calls to the fitness function, for all three algorithms, as
the evaluation procedure is highly expensive in terms of computational power, especially for larger datasets.

1 https://cran.r-project.org/web/packages/irace/index.html
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Table 2: Average Accuracy over 30 independent runs

Dataset Num. instances Num. features Num. labels ACO MA BCOi

Emotions 593 72 6 0.2574 (0.0107) 0.3054 (0.0066) 0.3115 (0.0095)
Birds 645 260 19 0.5108 (0.0039) 0.5012 (0.0045) 0.5158 (0.0068)
Yeast 2417 130 14 0.1586 (0.0037) 0.1747 (0.0073) 0.1759 (0.0079)
Scene 2407 294 6 0.4153 (0.0151) 0.5099 (0.0052) 0.5279 (0.0110)

Furthermore, we wanted to emphasize the differences in performance between metaheuristics while keeping the
fitness function budget relatively low. We suggest that in practice this limit should be set higher if the user has
the necessary resources, in order for algorithms to obtain better quality solutions. Larger limits have been tested
on the smallest dataset Emotions (1000, 1500, and 2000 iterations), and we exhibited the same trend as the one
presented in Figure 1.

In Table 2 we presented the obtained results for each dataset under consideration. The first column represents
the name of the dataset, the second, third, and fourth show the number of instances, features, and labels
respectively, whereas the three last columns present the average accuracy over 30 runs, with standard deviation
presented in parenthesis. We can clearly see that BCOi outperformed the other two algorithms in terms of
average accuracy for all datasets.

In Figure 1 we present a boxplot showing the performance of each algorithm over 30 independent runs for
each dataset. Furthermore, we performed Wilcoxon pair-wise statistical test comparing BCOi with the other
two algorithms, for each dataset separately. The results are presented in Table 3. Additionally, we calculated
the 95% confidence interval of the location parameter for each of the tests performed and presented it below
p-values in Table 3. With the significance level of α = 0.05, we concluded that BCOi was statistically different
from ACO in 3 out of 4 cases, and in 2 out of 4 cases compared to MA. These results support conclusions based
on Figure 1.
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Figure 1 Boxplots showcasing the difference in
the accuracy of tested algorithms on four datasets

Table 3: p-values of Wilcoxon pair-wise statis-
tical tests and 95% confidence interval for loca-
tion parameter comparing BCOi to other proposed
methods

Dataset ACO MA

Emotions 0.0001717
[0.04438175, 0.06411505]

0.1609
[-0.00155461, 0.01450039]

Birds 0.06312
[-0.0004934487, 0.0107584934]

0.0005501
[0.008805312, 0.020857824]

Yeast 0.0003197
[0.009839083, 0.024617684]

0.4268
[-0.006605605, 0.007226751]

Scene 0.0001242
[0.1034662, 0.1247954]

0.001345
[0.01040258, 0.02699941]

6. CONCLUSION

In this paper, we examined metaheuristic approaches to multi-label feature selection problems. We presented a
version of Bee Colony Optimization based on mutual information and compared it to methods already present
in the literature, i.e. Ant Colony Optimization algorithm and Memetic algorithm. Experimental evaluation was
performed on four benchmark datasets.

We demonstrated that BCO was statistically better than ACO in 3/4 cases and better than MA in 2/4 cases,
while performing relatively the same in relation to the rest of the cases. Future research should include testing
these algorithms on larger datasets and potentially finding an alternative to calculating the mutual information,
given that it is a computationally expensive task.
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