

1057

UTILIZING METAHEURISTICS TO GUIDE THE TRAINING OF NEURAL
NETWORKS

LUKA MATIJEVIĆ1

1 Mathematical Institute of the Serbian Academy of Sciences and Arts, luka@mi.sanu.ac.rs

Abstract: Neural networks (NN), have become increasingly popular due to their practical

applications. NN training is a crucial stage in constructing a reliable model that can accurately

predict data. The goal of NN training is to determine the best internal parameters to optimize the

network's performance on test data, according to a specific metric. In this study, we explore the use

of metaheuristics to guide the entire training process. Our approach involves identifying favorable

areas of the search space and invoking an optimizer to intensify the search in these regions. To

train NN, we implemented two metaheuristics, Variable Neighborhood Search (VNS) and the

Memetic algorithm (MA), and measured their effectiveness using classification accuracy as an

evaluation metric on publicly available classification datasets. The obtained results suggest that

MA is able to outperform both VNS and traditional training methods.

Keywords: Machine Learning, Combinatorial Optimization, Classification Accuracy, Variable

Neighborhood Search, Memetic Algorithm

1. INTRODUCTION

Neural networks (NN) [2, 6] are a well-known type of machine learning algorithm, inspired by

the structure of the human brain. They consist of nodes (neurons), which process and distribute data

across the network. Neurons are organized into layers (Figure 1), each layer taking the output of the

previous layer as its input, processing it, and propagating the result to the next layer. Given their

capacity for learning from new data and adapting to it, neural networks are particularly

advantageous for tasks like audio and picture recognition, natural language processing, and

prediction modeling. They have revolutionized fields such as computer vision, robotics, and

autonomous vehicles, and are increasingly being applied to a wide range of industries and

applications [1]. However, training neural networks can be computationally demanding due to the

substantial amount of data needed for effective training.

In Figure 2, we show a generic representation of a neuron. Variables represent input data,

are weights, is a bias, whereas denotes the output of a neuron. The goal of the training process is

to find values for and for each of the neurons in the network so that the overall performance of

the network is maximized regarding some chosen metric.

The goal of this paper is to assess the possibility of guiding the training process by utilizing

metaheuristics, for the purpose of obtaining a better accuracy of the network. More precisely, we

will take a look at two different metaheuristics: Variable Neighborhood Search (VNS) and Memetic

algorithm (MA). Although it is possible to train NN by directly applying some metaheuristics

capable of global optimization to determine the optimal set of parameters (for exa mple, a VNS-

based global optimization method [4]), this study takes a different approach.

The structure of this paper is as follows. The conventional approach for NN training is

presented in Section 2, while Section 3 elaborates on our VNS algorithm for guiding the NN

training process. Our MA approach is introduced in Section 4. Section 5 detai ls our experimental

1058

setup and the results obtained. Section 6 concludes the paper by discussing some of the issues

associated with this approach and outlining possible areas for future research.

2. NEURAL NETWORK TRAINING

Training neural networks involves feeding input data through the network and adjusting the

weights and biases of the neurons in order to minimize the difference between the predicted output

and the actual output (i.e. the loss function). A wide range of loss functions are available [12], and

choosing the right loss function depends on the specific nature of the problem at hand. The

optimization process typically involves the use of an optimizer algorithm, which adjusts the weights

and biases of the network in small increments based on the gradient of the loss function. There are

many different optimizers to choose from [3], most notably Adam, Gradient Descent, Stochastic

Gradient Descent, Adamax, and many others. During training, the network is usually evaluated on a

validation set (also known as testing set), allowing us to monitor its performance and prevent

overfitting to the training data. Once training is complete, the network can be used to make

predictions on new, unseen data. In Algorithm 1 we present a generic method for training neural

networks. At first, we define a neural network by specifying layers of nodes and activation

functions [11], and select an optimizer. We then create a loader, which is a component of the

software pipeline responsible for loading and preprocessing data into a format that can be used by

the neural network. Loaders are often used when dealing with large datasets, where it is not feasible

to load all of the data into memory at once. Instead, the loader loads a batch of data into memory at

a time, allowing the neural network to train on that batch before loading in the next one. This

approach is known as minibatch training and is commonly used in deep learning. The core of the

algorithm (Lines 6-11) involves training the model by using an optimizer and a loss function to

update the neural network parameters. This process, which we refer to as "Local Search" in this

paper, is also used as a subroutine in VNS and MA. Local Search is conducted over a fixed number

of epochs, which refers to a single pass through the training dataset.

Figure 2: A generic representation of a

neuron

Figure 1: A generic representation of a neural

network

1059

Algorithm 1: General procedure for training a neural network

1: procedure TRAIN_NN()

2:
3:

4:
5: for to do
6: for do

7:
8:

9:
10:

11:
12: return

3. VARIABLE NEIGHBORHOOD SEARCH

Variable Neighborhood Search was first introduced by Mladenović and Hansen (1997) [9]. It

comprises of three main steps: shaking, local search, and move or not procedure. The solution is

represented as an array of values, where each value corresponds to a specific weight or bias. We

obtain the initial solution by taking the initial values of each variable from our defined model. Our

shaking procedure is presented in Algorithm 2. It basically chooses one variable at random in each

step and then adds or removes the value of to/from it. The value of is a predetermined parameter

of the algorithm. In general, the value of can be dynamically determined to better suit each
solution component, although this specific aspect was not examined in the scope of this research.

As a local search procedure, we call an optimizer with the perturbed solution as its starting point,

providing it with the training data. After the optimizer completes its execution, we evaluate the

obtained solution using the testing data. If the newly found solution is better than the incumbent

solution, we accept it as the new incumbent solution. The main loop of the VNS algorithm follows

the standard procedure, as described in Algorithm 3 presented by Matijević et al. [8]. In this basic

version, the variables and represent the minimum and maximum values, respectively, of

a variable called k. This k variable governs the size of the neighborhood at each iteration of the

algorithm. More details about the VNS method can be found in a publication by Hansen et al. [5].

Algorithm 2: Shaking procedure

1: procedure SHAKE(, ,)

2:
3: for do

4:
5:

6: if then
7:
8: else

9:
10:
11: return

1060

4. MEMETIC ALGORITHM

A memetic algorithm is a type of evolutionary algorithm that combines principles of genetic

algorithms with local search methods. It was first proposed by Moscato (1989) [10]. In MA, a

population of candidate solutions undergoes a series of operations similar to those found in genetic

algorithms, such as mutation and crossover, to produce new candidate solutions. However, in

memetic algorithms, the local search is applied to the individuals in the population to improve their

fitness before they are selected for breeding. This approach is utilized to better exploit the

knowledge of the search space by taking advantage of the existing structures and patterns in the

population. The use of local search also helps to prevent premature convergence, where the

algorithm becomes stuck in a suboptimal solution.

In Algorithm 3, we present our own MA for guiding NN training. Likewise to VNS, solutions

are encoded as arrays of values representing weights and biases. At first, the NN is defined (Line 2),

and the initial population is created (Line 3). Generating the initial population is performed by

taking the initial values of the variables in the defined model, and for each individual the shaking

procedure is performed (Algorithm 2). The neighborhood size for each individual is determined at

random, which combined with the stochastic nature of the shaking procedure guarantees the

diversity of the population. After the initial population is generated, each individual is evaluated

according to some evaluation metric (Line 4). Lines 5-12 represent the main part of the algorithm.

In each iteration, we find the best individual (according to the chosen metric) in our current

population and improve it by applying an NN optimizer to it, as a form of local search (Line 7). It

must be borne in mind that we only apply optimizer to the best individual in the population, not to

all of them. This is done to improve performance by avoiding the optimization of non-promising

solutions. Although we have not tested it, it could be beneficial to apply an optimizer to the n-best

solutions instead of just one. Once the best individual has been improved by an optimizer, a

predefined number of offspring is generated through the application of the CROSSOVER operator.

The number of offspring produced is determined by the parameter offspring_num. Our approach

employs a crossover operator that functions as follows: for each offspring, two individuals are

randomly chosen and referred to as parents. Subsequently, for each variable in the solution, a value

is randomly selected with an equal probability from one of the parents. After the offspring are

generated, we subject each one to the MUTATION operator (Line 10), which entails applying the

SHAKE procedure (Algorithm 2) with a probability determined by the parameter , after which the

offspring is added to the population (Line 11). Additionally, the parameter defines the
maximum neighborhood size that can be utilized during the shaking procedure. Finally, the worst

individuals are removed from the population (Line 12).

Algorithm 3: Memetic algorithm

1: procedure MA()

2:

3:
4:

5: while stopping criterion is not met do

6:
7:
8:
9: for do

10:
11:
12:

13: return

1061

5. EXPERIMENTAL EVALUATION

To perform experimental evaluation, we selected five benchmark datasets for the classification

problem, publicly accessible at 'https://www.kaggle.com/datasets'. Each dataset was divided into a

training and testing set of instances, with a 60:40 ratio. All methods were implemented using the

Python programming language and the PyTorch framework for machine learning. For all three

algorithms, we employed the Adam optimizer [7] and utilized the Cross-Entropy Loss function to

optimize the neural network parameters during training. The experimental tests were conducted on a

personal laptop featuring an Intel i7-10750H CPU and 32GB of RAM, operating on Ubuntu 20.04

OS. To showcase the consistency and reliability of the obtained results, we conducted the

experiments 30 times, ensuring their stability.

To achieve the optimal results, it is crucial to meticulously choose the hyperparameters for our

algorithms. In our study, we employed the iRace1 package for the R programming language to

statistically identify an optimal set of hyperparameters. With a budget of 5000 tests, the iRace

package generated the following set of values: the learning rate and weight decay hyperparameters

for the Adam optimizer were both set to 0.01, the value used in the shaking procedure was set to

0.4884, while for VNS, we set and to 5 and 20 respectively. Finally, for MA, we set the

mutation probability () to 0.1, number of offspring to 6, and the population size to 10.

As a stopping criterion for all three methods, we imposed a limit on the number of calls to the

local search procedure, which we fixed at 200. While this limit may seem low for certain real -world

applications, our primary objective was to showcase the advantages of our approach and encourage

more attention from the research community. Additionally, with larger neural networks and

datasets, even 200 calls can consume a considerable amount of computational resources.

Table 1 displays the results of our experiments. The first two columns provide details about the

datasets used, including the name and number of instances. The third column presents the average

accuracy achieved over 30 runs using the traditional neural network training method (as outlined in

Algorithm 1), along with the standard deviation in parentheses. The final two columns show the

results obtained using our proposed metaheuristics. As shown in the presented table, VNS

outperformed the traditional method in four out of five cases, though the improvement was not

significant in most cases. Conversely, MA exhibited superior performance in all the tested

instances, surpassing both the traditional method and VNS.

Table 1: The obtained results

Dataset Num. inst. Traditional VNS MA

Iris 148 0.9744 (0.0102) 0.8363 (0.1529) 0.9904 (0.013)

Star

classification
100000 0.7076 (0.0446) 0.7149 (0.0432) 0.8142 (0.0492)

Wine quality 6497 0.5322 (0.0539) 0.5580 (0.0608) 0.6249 (0.0518)

Diabetes 253680 0.8438 (0.0651) 0.8517 (0.0668) 0.8899 (0.0357)

Driving 6728 0.3878 (0.0675) 0.4778 (0.0811) 0.5417 (0.1137)

6. FINAL REMARKS

As demonstrated in the preceding section, MA-guided neural network training yielded models

with superior accuracy compared to VNS-guided and traditional training methods. Nevertheless,

1
 https://cran.r-project.org/web/packages/irace/readme/README.html

https://www.kaggle.com/datasets

1062

there are certain problems that warrant more attention. Foremost among them is the fact that

metaheuristics, especially MA, utilize significantly more memory, posing increasing challenges

with the growth of neural network size. Secondly, determining optimal hyperparameter values

presents a formidable challenge of its own. Although it is feasible to employ statistical tools to

determine these parameters for smaller networks and datasets, their utility is not always viable when

handling vast networks and datasets. Lastly, as metaheuristics are often stochastic in nature (though

not universally), their output can rely heavily on the seed value of the random number generator.

This paper aimed at demonstrating the feasibility of metaheuristic-guided neural network

training, but further research is necessary to fully explore its potential. Specifically, this approach

should be tested on various network architectures and larger datasets to assess its effectiveness and

scalability. Moreover, the genetic operators utilized in MA, including crossover, mutation, and

selection, are rudimentary, and exploring more advanced operators could potentially yield even

better solutions.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Science, Technological Development and Innovation of

the Republic of Serbia, Agreement No. 451-03-47/2023-01/200029.

REFERENCES

[1] Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A. and Arshad, H., 2018.

State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), p.e00938.

[2] Aggarwal, C.C., 2018. Neural networks and deep learning. Springer, 10(978), p.3.

[3] Bottou, L., Curtis, F.E. and Nocedal, J., 2018. Optimization methods for large-scale machine

learning. SIAM review, 60(2), pp.223-311.

[4] Drazić, M., Kovacevic-Vujcić, V., Cangalović, M. and Mladenović, N., 2006. Glob—a new

VNS-based software for global optimization. Global optimization: from theory to

implementation, pp.135-154.

[5] Hansen, P., Mladenović, N., Brimberg, J. and Pérez, J.A.M., 2019. Variable neighborhood

search (pp. 57-97). Springer International Publishing.

[6] Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences, 79(8), pp.2554-2558.

[7] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[8] Matijević, L., Davidović, T., Ilin, V. and Pardalos, P., 2019. General Variable Neighborhood

Search for Asymmetric Vehicle Routing Problem.

[9] Mladenović, N. and Hansen, P., 1997. Variable neighborhood search. Computers & operations

research, 24(11), pp.1097-1100.

[10] Moscato, P., 1989. On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms. Caltech concurrent computation program, C3P Report,

826(1989), p.37.

[11] Sharma, S., Sharma, S. and Athaiya, A., 2017. Activation functions in neural networks.

Towards Data Sci, 6(12), pp.310-316.

[12] Wang, Q., Ma, Y., Zhao, K. and Tian, Y., 2020. A comprehensive survey of loss functions in

machine learning. Annals of Data Science, pp.1-26.

