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Abstract: Neural networks (NN), have become increasingly popular due to their practical 

applications. NN training is a crucial stage in constructing a reliable model that can accurately 

predict data. The goal of NN training is to determine the best internal parameters to optimize the 

network's performance on test data, according to a specific metric. In this study, we explore the use 

of metaheuristics to guide the entire training process. Our approach involves identifying favorable 

areas of the search space and invoking an optimizer to intensify the search in these regions. To 

train NN, we implemented two metaheuristics, Variable Neighborhood Search (VNS) and the 

Memetic algorithm (MA), and measured their effectiveness using classification accuracy as an 

evaluation metric on publicly available classification datasets. The obtained results suggest that 

MA is able to outperform both VNS and traditional training methods. 

Keywords: Machine Learning, Combinatorial Optimization, Classification Accuracy, Variable 

Neighborhood Search, Memetic Algorithm 

1. INTRODUCTION 

Neural networks (NN) [2, 6] are a well-known type of machine learning algorithm, inspired by 

the structure of the human brain. They consist of nodes (neurons), which process and distribute data 

across the network. Neurons are organized into layers (Figure 1), each layer taking the output of the 

previous layer as its input, processing it, and propagating the result to the next layer. Given their 

capacity for learning from new data and adapting to it, neural networks are particularly 

advantageous for tasks like audio and picture recognition, natural language processing, and 

prediction modeling. They have revolutionized fields such as computer vision, robotics, and 

autonomous vehicles, and are increasingly being applied to a wide range of industries and 

applications [1]. However, training neural networks can be computationally demanding due to the 

substantial amount of data needed for effective training.  

In Figure 2, we show a generic representation of a neuron. Variables    represent input data,    

are weights,   is a bias, whereas  denotes the output of a neuron. The goal of the training process is 

to find values for    and   for each of the neurons in the network so that the overall performance of 

the network is maximized regarding some chosen metric. 

The goal of this paper is to assess the possibility of guiding the training process by utilizing 

metaheuristics, for the purpose of obtaining a better accuracy of the network. More precisely, we 

will take a look at two different metaheuristics: Variable Neighborhood Search (VNS) and Memetic 

algorithm (MA). Although it is possible to train NN by directly applying some metaheuristics 

capable of global optimization to determine the optimal set of parameters (for exa mple, a VNS-

based global optimization method [4]), this study takes a different approach.   

The structure of this paper is as follows. The conventional approach for NN training is 

presented in Section 2, while Section 3 elaborates on our VNS algorithm for guiding the NN 

training process. Our MA approach is introduced in Section 4. Section 5 detai ls our experimental 
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setup and the results obtained. Section 6 concludes the paper by discussing some of the issues 

associated with this approach and outlining possible areas for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. NEURAL NETWORK TRAINING 

Training neural networks involves feeding input data through the network and adjusting the 

weights and biases of the neurons in order to minimize the difference between the predicted output 

and the actual output (i.e. the loss function). A wide range of loss functions are available [12], and 

choosing the right loss function depends on the specific nature of the problem at hand. The  

optimization process typically involves the use of an optimizer algorithm, which adjusts the weights 

and biases of the network in small increments based on the gradient of the loss function. There are 

many different optimizers to choose from [3], most notably Adam, Gradient Descent, Stochastic 

Gradient Descent, Adamax, and many others. During training, the network is usually evaluated on a 

validation set (also known as testing set), allowing us to monitor its performance and prevent 

overfitting to the training data. Once training is complete, the network can be used to make 

predictions on new, unseen data. In Algorithm 1 we present a generic method for training neural 

networks. At first, we define a neural network by specifying layers of nodes and activation 

functions [11], and select an optimizer. We then create a loader, which is a component of the 

software pipeline responsible for loading and preprocessing data into a format that can be used by 

the neural network. Loaders are often used when dealing with large datasets, where it is not feasible 

to load all of the data into memory at once. Instead, the loader loads a batch of data into memory at 

a time, allowing the neural network to train on that batch before loading in the next one. This 

approach is known as minibatch training and is commonly used in deep learning. The core of the 

algorithm (Lines 6-11) involves training the model by using an optimizer and a loss function to 

update the neural network parameters. This process, which we refer to as "Local Search" in this 

paper, is also used as a subroutine in VNS and MA. Local Search is conducted over a fixed number 

of epochs, which refers to a single pass through the training dataset.  

 

 

 

 

 

 

 

 

 

Figure 2: A generic representation of a 

neuron 

Figure 1: A generic representation of a neural 

network 
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Algorithm 1: General procedure for training a neural network 

1: procedure TRAIN_NN(                               ) 

2:                               
3:                               

4:                                  
5:  for     to            do 
6:   for                           do 

7:                           
8:                                       

9:                                       
10:                                      

11:                                      
12:  return       

 

3. VARIABLE NEIGHBORHOOD SEARCH 

Variable Neighborhood Search was first introduced by Mladenović and Hansen (1997) [9]. It 

comprises of three main steps: shaking, local search, and move or not procedure. The solution is 

represented as an array of values, where each value corresponds to a specific weight or bias. We 

obtain the initial solution by taking the initial values of each variable from our defined model. Our 

shaking procedure is presented in Algorithm 2. It basically chooses one variable at random in each 

step and then adds or removes the value of   to/from it. The value of   is a predetermined parameter 

of the algorithm. In general, the value of   can be dynamically determined to better suit each 
solution component, although this specific aspect was not examined in the scope of this research. 

As a local search procedure, we call an optimizer with the perturbed solution as its starting point, 

providing it with the training data. After the optimizer completes its execution, we evaluate the 

obtained solution using the testing data. If the newly found solution is better than the incumbent 

solution, we accept it as the new incumbent solution. The main loop of the VNS algorithm follows 

the standard procedure, as described in Algorithm 3 presented by Matijević et al. [8]. In this basic 

version, the variables      and      represent the minimum and maximum values, respectively, of 

a variable called k. This k variable governs the size of the neighborhood at each iteration of the 

algorithm. More details about the VNS method can be found in a publication by Hansen et al. [5]. 

 

Algorithm 2: Shaking procedure 

1: procedure SHAKE( ,  ,         ) 

2:      
3:  for     do 

4:                                    
5:                              

6:   if       then 
7:                              
8:   else 

9:                              
10:         
11:  return          
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4. MEMETIC ALGORITHM  

A memetic algorithm is a type of evolutionary algorithm that combines principles of genetic 

algorithms with local search methods. It was first proposed by Moscato (1989) [10]. In MA, a 

population of candidate solutions undergoes a series of operations similar to those found in genetic 

algorithms, such as mutation and crossover, to produce new candidate solutions. However, in 

memetic algorithms, the local search is applied to the individuals in the population to improve their 

fitness before they are selected for breeding. This approach is utilized to better exploit the 

knowledge of the search space by taking advantage of the existing structures and patterns in the 

population. The use of local search also helps to prevent premature convergence, where the 

algorithm becomes stuck in a suboptimal solution. 

In Algorithm 3, we present our own MA for guiding NN training. Likewise to VNS, solutions 

are encoded as arrays of values representing weights and biases. At first, the NN is defined (Line 2), 

and the initial population is created (Line 3). Generating the initial population is performed by 

taking the initial values of the variables in the defined model, and for each individual the shaking 

procedure is performed (Algorithm 2). The neighborhood size for each individual is determined at 

random, which combined with the stochastic nature of the shaking procedure guarantees the 

diversity of the population. After the initial population is generated, each individual is evaluated 

according to some evaluation metric (Line 4). Lines 5-12 represent the main part of the algorithm. 

In each iteration, we find the best individual (according to the chosen metric) in our current 

population and improve it by applying an NN optimizer to it, as a form of local search (Line 7). It 

must be borne in mind that we only apply optimizer to the best individual in the population, not to 

all of them. This is done to improve performance by avoiding the optimization of non-promising 

solutions. Although we have not tested it, it could be beneficial to apply an optimizer to the n-best 

solutions instead of just one. Once the best individual has been improved by an optimizer, a 

predefined number of offspring is generated through the application of the CROSSOVER operator. 

The number of offspring produced is determined by the parameter offspring_num. Our approach 

employs a crossover operator that functions as follows: for each offspring, two individuals are 

randomly chosen and referred to as parents. Subsequently, for each variable in the solution, a value 

is randomly selected with an equal probability from one of the parents. After the offspring are 

generated, we subject each one to the MUTATION operator (Line 10), which entails applying the 

SHAKE procedure (Algorithm 2) with a probability determined by the parameter  , after which the 

offspring is added to the population (Line 11). Additionally, the parameter      defines the 
maximum neighborhood size that can be utilized during the shaking procedure. Finally, the worst 

individuals are removed from the population (Line 12). 

 

Algorithm 3: Memetic algorithm 

1: procedure MA(                                                      ) 

2:                       

3:                                     
4:                                 

5:  while stopping criterion is not met do 

6:                                       
7:                                     
8:                                                 
9:   for              do 

10:                           
11:                            
12:                                                    

13:  return                                
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5. EXPERIMENTAL EVALUATION 

 

To perform experimental evaluation, we selected five benchmark datasets for the classification 

problem, publicly accessible at 'https://www.kaggle.com/datasets'. Each dataset was divided into a 

training and testing set of instances, with a 60:40 ratio. All methods were implemented using the 

Python programming language and the PyTorch framework for machine learning. For all three 

algorithms, we employed the Adam optimizer [7] and utilized the Cross-Entropy Loss function to 

optimize the neural network parameters during training. The experimental tests were conducted on a 

personal laptop featuring an Intel i7-10750H CPU and 32GB of RAM, operating on Ubuntu 20.04 

OS. To showcase the consistency and reliability of the obtained results, we conducted the 

experiments 30 times, ensuring their stability.  

To achieve the optimal results, it is crucial to meticulously choose the hyperparameters for our 

algorithms. In our study, we employed the iRace1 package for the R programming language to 

statistically identify an optimal set of hyperparameters. With a budget of 5000 tests, the iRace 

package generated the following set of values: the learning rate and weight decay hyperparameters 

for the Adam optimizer were both set to 0.01, the  value used in the shaking procedure was set to 

0.4884, while for VNS, we set      and      to 5 and 20 respectively. Finally, for MA, we set the 

mutation probability ( ) to 0.1, number of offspring to 6, and the population size to 10. 

As a stopping criterion for all three methods, we imposed a limit on the number of calls to the 

local search procedure, which we fixed at 200. While this limit may seem low for certain real -world 

applications, our primary objective was to showcase the advantages of our approach and encourage 

more attention from the research community. Additionally, with larger neural networks and 

datasets, even 200 calls can consume a considerable amount of computational resources. 

Table 1 displays the results of our experiments. The first two columns provide details about the 

datasets used, including the name and number of instances. The third column presents the average 

accuracy achieved over 30 runs using the traditional neural network training method (as outlined in 

Algorithm 1), along with the standard deviation in parentheses. The final two columns show the 

results obtained using our proposed metaheuristics. As shown in the presented table, VNS 

outperformed the traditional method in four out of five cases, though the improvement was not 

significant in most cases. Conversely, MA exhibited superior performance in all the tested 

instances, surpassing both the traditional method and VNS.  

 

Table 1: The obtained results  

Dataset Num. inst. Traditional VNS MA 

Iris 148 0.9744 (0.0102) 0.8363 (0.1529) 0.9904 (0.013) 

Star 

classification 
100000 0.7076 (0.0446) 0.7149 (0.0432) 0.8142 (0.0492) 

Wine quality 6497 0.5322 (0.0539) 0.5580 (0.0608) 0.6249 (0.0518) 

Diabetes 253680 0.8438 (0.0651) 0.8517 (0.0668) 0.8899 (0.0357) 

Driving 6728 0.3878 (0.0675) 0.4778 (0.0811) 0.5417 (0.1137) 

6. FINAL REMARKS 

As demonstrated in the preceding section, MA-guided neural network training yielded models 

with superior accuracy compared to VNS-guided and traditional training methods. Nevertheless, 

                                                 

1
 https://cran.r-project.org/web/packages/irace/readme/README.html 

https://www.kaggle.com/datasets
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there are certain problems that warrant more attention. Foremost among them is the fact that 

metaheuristics, especially MA, utilize significantly more memory, posing increasing challenges 

with the growth of neural network size. Secondly, determining optimal hyperparameter values 

presents a formidable challenge of its own. Although it is feasible to employ statistical tools to 

determine these parameters for smaller networks and datasets, their utility is not always viable when 

handling vast networks and datasets. Lastly, as metaheuristics are often stochastic in nature (though 

not universally), their output can rely heavily on the seed value of the random number generator.  

This paper aimed at demonstrating the feasibility of metaheuristic-guided neural network 

training, but further research is necessary to fully explore its potential. Specifically, this approach 

should be tested on various network architectures and larger datasets to assess its effectiveness and 

scalability. Moreover, the genetic operators utilized in MA, including crossover, mutation, and 

selection, are rudimentary, and exploring more advanced operators could potentially yield even 

better solutions. 
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